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Abstract

Identifying the epitope of an antibody is a key step in understanding its function and its

potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with

similar epitope complementarity, however, antibodies from markedly different lineages but

with similar structures can engage the same epitope. We describe a novel computational

method for epitope profiling based on structural modelling and clustering. Using the method,

we demonstrate that sequence dissimilar but functionally similar antibodies can be found

across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multi-

ple-occupancy structural clusters bind to consistent domains). Our approach functionally

links antibodies with distinct genetic lineages, species origins, and coronavirus specificities.

This indicates greater convergence exists in the immune responses to coronaviruses than is

suggested by sequence-based approaches. Our results show that applying structural ana-

lytics to large class-specific antibody databases will enable high confidence structure-func-

tion relationships to be drawn, yielding new opportunities to identify functional convergence

hitherto missed by sequence-only analysis.

Author summary

Antibodies are a key component of the immune system that combat pathogens by binding

to a defined region of their molecular surface (known as an ‘epitope’). The ability to map

which antibodies target the same epitopes is crucial when designing non-competing anti-

body therapeutics or predicting the influence of pathogen mutation on population immu-

nity. While one can use laboratory experiments to deduce when pairs of antibodies

engage the same epitope, such experiments are very expensive and time consuming if

used to compare on the order of thousands of antibodies. In this work, we report a new

computational algorithm (SPACE) that clusters antibodies that target the same epitope

based on their predicted 3D structure, as binding site structure is a property often con-

served between binders complementary to the same epitope. Unlike existing antibody epi-

tope profiling tools which assume two antibodies must share a high sequence identity/
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similar genetic basis to engage the same region, our orthogonal method can detect

broader patterns of convergent evolution across binders to different pathogen strains, and

between antibodies with different genetic and even species origins.

Introduction

The COVID-19 pandemic has generated worldwide efforts to isolate and characterise antibod-

ies able to confer protection against SARS-CoV-2. Hundreds of studies have now released data

on diverse antibodies and nanobodies capable of binding at least one coronavirus antigen [1].

Due to the escalating number of individuals infected by SARS-CoV-2, most of the reported

coronavirus-binding antibodies to date have been sourced directly from the blood of conva-

lescent human patients. The primary technique used to identify such binders is ‘serum baiting’,

where an extracellular coronavirus antigen is used to pan donated blood serum directly for

complementary antibodies [2, 3]. Another increasingly-used method is deep sequencing of the

SARS-CoV-2 convalescent B-cell receptor (BCR) repertoire, which can implicate particular

expanded antibody lineages as important to adaptive immunity without biasing towards a cho-

sen antigen bait [4–6]. Other discovery methods have included mining surface display librar-

ies, challenging and harvesting transgenic animals, and antibody engineering [1].

As of 11th March 2021, over 2,400 SARS-CoV-2 binding antibodies and nanobodies had

been identified, of which just under one-third show neutralisation activity against the virus.

The properties (including sequence and, where possible, structure) of these antibodies are doc-

umented in the Coronavirus Antibody Database (CoV-AbDab), which tracks patents and the

academic literature on a weekly basis [1]. One way to use this collated data is to look for simi-

larities between binders. For instance, when a novel antibody is antigen-baited out of SARS-

CoV-2 response serum, or is identified as an expanded clonal lineage post-SARS-CoV-2 infec-

tion, one can assess whether it bears resemblance to any other antibody previously reported to

bind a coronavirus. This resemblance can then be used to predict functional properties of the

newly-isolated antibody, such as its site of engagement with the antigen (the ‘epitope’).

A common way to cluster antibodies into such functional groupings is ‘clonotyping’, a

form of clonal lineage clustering. This can be performed in several different ways [7]. For

example, strict Fv-clonotyping maps both VH and VL antibody chains to their closest immu-

noglobulin V- and J-gene and subsequently clusters identical gene mappings by their CDRH3

and CDRL3 lengths and sequence identities (using a threshold close to 100% per CDR3

region). This approach typically yields tight and functionally-significant clustering, but is

severely limited by its ability to bring together all antibodies able to engage a particular epitope

[8–10]. As a result, leniency is often introduced to the clonotyping protocol, by lowering the

sequence identity threshold to 80% [11], ignoring J-gene annotations, and/or only considering

the heavy chain (VH-only clonotyping) [4].

Convergent lenient VH-only clonotypes have been identified between multiple SARS-CoV-

2 infected or convalescent individuals [12–18] and across different studies, for example the

overlap between the clonotypes found by Galson et al. [4] and Nielsen et al. [19]. Several

papers have compared BCR sequences from individuals to verified SARS-CoV-2 binders in

CoV-Ab-Dab and identified clonal similarities (e.g. [4, 15]).

Despite this, the clonotypes found to be enriched/to bear similarity to CoV-AbDab antibod-

ies post SARS-CoV-2 exposure often differ across studies [20–22]. This may be partly due to

the small sample sizes used in individual studies, and the intrinsic biases in individual VJ gene

usage; Xiang et al. found a larger variation between individuals within a cohort (healthy, or
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three different severities of COVID symptoms) than between cohorts [22]. Another contribut-

ing factor is lineage clustering itself. Levels of functional convergence may in fact be higher

than implied even by lenient clonotyping, as antibodies that derive from different lineages can

engage the same epitope. The evidence for this phenomenon has been growing over recent

years [9, 10, 23–25]. For example, solved structures of antibody-antigen complexes reveal pairs

of antibodies with different genetic origins but sufficiently similar binding site geometry and

paratope similarity that they bind to the same antigen with near-identical binding modes [9,

10]. Furthermore, given that individuals’ naive repertoires typically share very few clonotypes

[11, 26] and yet are often found to respond to similar ‘immunodominant’ epitopes, it follows

that multiple evolutionary routes may lead from low-moderate affinity naive BCRs to high

affinity antibodies against the same antigen surface region. This is supported by statistical

arguments showing the implausability of a purely “random repertoire” for an efficient immune

response [25, 27]. Epitope immunodominance could be rationalised via the existence of a

more ‘public’ set of backbone structures in the BCR repertoire and the concept that BCRs with

similar topologies and sufficient chemical complementarity engage the same epitope [24, 25].

Structural comparisons offer a way to analyse antibody data over and above clonotype-

based approaches. Analysis of epitope regions using solved structures and competition assays

of SARS-CoV-2—binding antibodies has already revealed discrete antibody binding sites [28,

29]. However, such assessments are very biased towards receptor binding domain (RBD)-

binding, neutralising antibodies, whose therapeutic potential renders them worth the expense

and effort of structure determination. The vast majority of datapoints in CoV-AbDab do not

have solved structures and must instead be structurally modeled. While homology models are

provided alongside each structurally-unsolved CoV-AbDab entry, no studies have yet har-

nessed this data for functional annotation.

In this analysis, we examine how structurally analysing CoV-AbDab can enhance our func-

tional understanding of coronavirus-binding antibodies. We first analyse all X-ray crystal

structures of antibodies/nanobodies bound to SARS-CoV-2 antigens, showing both that struc-

ture is conserved more often than clonality across same-epitope binders, and that paratope

profiles typically involve multiple regions of the antibody across both chains. This provides

direct evidence that relatively sequence dissimilar coronavirus-binding antibodies with high

variable domain (Fv) structural similarity are able to exhibit functional commonality. We then

model and structurally cluster the thousands of antibody Fv sequences in CoV-AbDab and

show that 92% of multiple-occupancy structural clusters bin together antibodies that bind to

consistent coronavirus antigens/domains. We also show that, in accordance with our analysis

of the SARS-CoV-2 X-ray co-crystal structures, the antibodies within these structural clusters

frequently transcend clonal lineages. This not only demonstrates that our computational struc-

tural analysis pipeline provides orthogonal information to clonotyping to improve antibody

functional profiling, but also that antibody immune responses to SARS-CoV-2 are likely to be

even more convergent than currently understood. We chose to apply our method to CoV-Ab-

Dab to illustrate the value of structural clustering on an example dataset. Our method could be

applied to any high-quality disease-focussed antibody dataset to extract additional information

and supplement existing clonotyping analyses.

Materials and methods

Database preparation

The version of CoV-AbDab [1] used throughout this analysis was timestamped to the 11th

March 2021. The framework and 6 FREAD [30, 31] CDR loop databases, which were used dur-

ing structural modeling to find suitable homologous templates for each antibody region, were
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also timestamped to contain the quality-filtered contents of SAbDab [32] on 11th March 2021.

Quality filtering restricts templates to those solved by X-ray crystallography, with a

resolution� 2.5Å and a B-factor < 80.

Numbering scheme and region definitions

IMGT numbering [33] is used throughout the manuscript. IMGT CDR region definitions are

used to analyse the solved SARS-CoV-2 structures. ABodyBuilder uses North CDR definitions

in template selection. The North-defined and IMGT-defined CDR3 region lies between IMGT

residue numbers 105 and 117 in both the heavy and light chains, meaning clonotype defini-

tions are consistent regardless of region definition (see Clonotyping).

Solved co-crystal structure analysis

Sixty solved X-ray co-crystal structures of antibodies and nanobodies bound to SARS-CoV-2

were downloaded from SAbDab. All antibodies were aligned based on the coordinates of the

cognate SARS-CoV-2-RBD chain using PyMOL functions. Paratope residues were defined as

any antibody residues with a heavy atom with 4.5Å of an antigen heavy atom. We refer to anti-

bodies by name as referenced in CoV-AbDab, using the nomenclature as set out in the litera-

ture from which the antibody was sourced. See S1 and S2 Tables for the names and

corresponding PDB codes of antibodies.

Structural modeling and analysis

The 2,063 full variable domain (Fv) sequences in CoV-AbDab were submitted to the

ABodyBuilder antibody modelling tool [34] with default Environment Substitution Score

cutoffs. In the first instance, ABodyBuilder seeks to model antibody CDR regions entirely

by homology; i.e. to use the FREAD software [30, 31] to identify a CDR structural ‘template’

likely to be adopted by each of the submitted antibody’s CDR sequences, considering back-

bone dihedral angle compatibility and loop graftability onto the framework template. If no

suitable structural template can be found for a CDR sequence, ab initio or hybrid homol-

ogy/ab initio approaches must be used to predict the loop structure, adding uncertainty to

model quality. To ensure high model quality, only the 1,500 models for which ABody-

Builder used FREAD to homology model all six CDR loops were carried forward for struc-

tural clustering [34].

Structural clustering algorithm. We developed the Structural Profiling of Antibodies to

Cluster by Epitope (SPACE) algorithm to structurally cluster the 1,500 models.

These 1,500 Fvs were first split by their combination of six CDR lengths. For each unique

CDR length combination, the first antibody in the list was selected as a cluster centre and

every subsequent antibody is fed into the following equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðH1� H3;L1� L3Þ

X D2
X12
LX

PðH1� H3;L1� L3Þ

X LX

v
u
u
t

where the sum over X refers to each of the six CDRs, LX is the length of North CDRX, and

DX12
is the Cα RMSD between the template used to model CDRX in Fv 1 and Fv 2 respectively.

If this formula equates to� 0.75Å, the Fv is clustered with the first cluster centre, otherwise it

is held out for the next round of clustering. Once all the Fvs have been considered relative to

the first cluster centre, the algorithm progresses in a greedy fashion to select the next unclus-

tered Fv region as the second cluster centre. Greedy clustering was selected due to its
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simplicity, good performance, and speed, ensuring scalability across larger datasets. The result

is a set of structural cluster centres and associated antibody Fv sequences, where each struc-

tural cluster only contains antibodies with six identical CDR lengths. This algorithm is adapted

from the final step of Repertoire Structural Profiling [24].

‘Domain-consistent’ structural clusters. The multiple-occupancy structural clusters

were each classified as ‘domain-consistent/inconsistent’ based on the CoV-AbDab binding

metadata of their mapped antibody sequences. For instance, the following examples of struc-

tural clusters would each be considered as ‘domain-consistent’:

1. a structural cluster that only contains antibodies characterised as binding to the same anti-

gen and the same domain (e.g. all shown to bind the RBD of the spike protein).

2. a structural cluster that only contains antibodies characterised as binding to internally-con-

sistent domains (e.g. some antibodies labeled as spike N-Terminal Domain (NTD) binders

and others labeled as S1 non-RBD binders; where the S NTD is a subdomain of S1 non-

RBD).

3. a structural cluster that contains some antibodies that are characterised as binding to the

same domain, and others that bind to the same antigen without domain-level resolution

(e.g. 4 antibodies shown to bind the spike RBD, and 2 antibodies shown to bind to the full-

length spike protein).

4. a structural cluster that only contains antibodies characterised to bind to the same antigen,

but no antibody has domain-level resolution (e.g. 5 antibodies all shown to bind to the full-

length spike protein, but none are localised to a particular domain).

The following structural clusters would both be considered ‘domain-inconsistent’:

1. a structural cluster that contains antibodies shown to bind to different antigens.

2. a structural cluster that contains antibodies that bind to the same antigen, but to inconsis-

tent domains (e.g. 3 antibodies that have been shown to bind the spike RBD and 1 shown to

bind the spike S2 domain).

Clonotyping. Clonotyping was performed using an in-house script. Our lenient VH-clo-

notyping protocol groups Fvs with matching IGHV genes, the same length CDRH3,

and� 80% CDRH3 sequence identity, while our lenient Fv-clonotyping protocol additionally

requires cluster members to have a matching IG[K/L]V gene, the same length CDRL3,

and� 80% CDRL3 sequence identity. These are lenient clonotyping threshold conditions by

community standards [7], as the CDR3 sequence identity threshold is set to its typical lower

bound and there is no requirement for cluster members to map to the same IGHJ/IG[K/L]J

gene.

Results

Sequences and structures in CoV-Ab-Dab

The growth of coronavirus-binding antibody and nanobody data in CoV-AbDab since its pub-

lic release on 7th May 2020 is shown in Fig 1. The antibody plot indicates how the availability

of sequence data rose much more rapidly than structural data at the start of the pandemic, sta-

bilising at a level roughly an order of magnitude higher. However, the availability of solved

antibody structures increased markedly in October 2020 and has continued to grow at an even

faster rate throughout 2021.
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Analysis of SARS-CoV-2—Antibody structural complexes

Experimentally-solved structures allow us to analyse the diversity of antibody geometries and

paratopes that engage coronavirus antigens [28, 29, 35]. At the time of this study (11st March

2021), CoV-AbDab [1] referenced 2,304 antibodies and 420 nanobodies able to bind to a coro-

navirus, with 132 having at least one solved structure. 111 of these solved structures are binders

to SARS-CoV-2 (Fig 1), of which 91 were solved in complex with the cognate antigen.

A total of 48 antibodies and 12 nanobodies had at least one published solved X-ray crystal

structure in complex with SARS-CoV-2 [12, 14, 20, 28, 36–59], all binding to the spike RBD

(see S1 and S2 Tables for names and PDB codes), while a further 31 antibodies and nanobodies

were solely structurally characterised by cryo-EM [1]. In our analysis we have focused on the

60 crystal structures, in order to determine more precise antibody binding site topologies and

paratope profiles.

Epitope binning. Inspecting the 48 antibodies solved by X-ray crystallography in complex

with the RBD, 46 appear to fall cleanly into the binding regions previously defined by Dejnirat-

tisai et al. [28] (only approximate as the original clustering was performed via competition

assays). The two remaining antibodies spanned the left and right shoulder regions (see S1

Table). Interestingly, most of the 12 nanobodies could also be assigned to these predefined

regions (9/12, see S2 Table). For a full analysis of structural epitope overlap between antibodies

within epitope groups, see S3 Table.

Structural alignment of the RBD of all complexes reveals that the 22 antibodies that bind to

the ‘neck’ cluster (as termed by Dejnirattisai et al. [28]) have high structural conservation (Fig

2A). These antibodies all compete for the ACE-2 receptor binding site (Fig 2B). Dejnirattisai

et al. identified 13 IGHV3–53/IGHV3–66-derived antibodies engaging this binding site. Even

from relatively early in the pandemic, it was clear that a disproportionate number of antibodies

reported as able to block ACE-2 binding exploited the IGHV3–53/IGHV3–66 genes [1, 28,

35]; they appeared significantly more often as binders of this region than would be expected by

their abundance in healthy antibody repertoires. Banach et al. realised that many of the coro-

navirus-binding antibodies deriving from the IGHV3–53/IGHV3–66 genes possess a

Fig 1. Comparing the quantity and growth of sequence (red) vs. structural (blue) data referenced by CoV-AbDab for antibodies (left-hand plot) and

nanobodies (right-hand plot) against any coronavirus antigen. Structures are classed as solved if evaluated at least once either by X-ray crystallography or cryo-

electron microscopy. The x-axis measures the database timestamp after the initial public release of CoV-AbDab on 7th May 2020 (Day 0), up until 11th March 2021

(Day 308). CDR3 sequences are often released ahead of full sequences to protect intellectual property during peer review and/or patent filing.

https://doi.org/10.1371/journal.pcbi.1009675.g001
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conserved set of structural motifs that enable complementarity to a SARS-CoV-2 RBD epitope

[60]. Our updated analysis reiterates the importance of these V gene origins in engaging this

highly conserved binding site: 19/22 (86%) of the antibodies align closest to the IGHV3–53

gene, while the remaining 3 align closest to IGHV3–66.

Despite the highly similar V genes, these 22 tightly structurally-clustered antibodies repre-

sent 15 different ‘lenient VH-only clonotypes’ (Fig 2C) (clustered antibodies require the same

CDRH3 length, 80% CDRH3 sequence identity, and an identical heavy V gene, see Methods).

This corresponds to 18 ‘lenient Fv clonotypes’ when the light chain is also considered (clus-

tered antibodies must also have the same CDRL3 length, 80% CDRL3 sequence identity, and

an identical light V gene, see Methods). The analysis of the co-complex structures of these 22

antibodies suggests highly similar functionality, which cannot be wholly identified through

clonotyping. Even using lenient clonotype definitions, the antibodies would not be grouped

together, so their similar binding mode and functional similarity would be missed.

Dejnirattisai et al. [28] also highlighted an antibody binding cluster located away from the

ACE-2 binding site, termed the ‘left flank’. This binding region contains four antibodies,

EY6A, CR3022, S304 and COVA1–16, (see Methods and S1 Table for antibody naming con-

ventions). As shown in Fig 3A, these antibodies appear to bind to slightly different areas. In

our updated analysis, we identify one antibody (MW06) and four nanobodies (VHH_U,

VHH_V, VHH_W and VHH-72) all able bind to the ‘left flank’ binding region (Fig 3A). We

highlight the antibody pair of EY6A and S304, which are structurally similar and adopt a com-

mon binding mode to the same RBD epitope [29], but share only 43% CDRH3 sequence iden-

tity (Fig 3B) so could not have been identified as binding to the same site by sequence data

alone.

Even across the relatively small number of solved SARS-CoV-2—antibody structures, we

can see numerous examples of functionally and structurally similar antibodies that would not

be grouped by sequence clustering alone. Grouping coronavirus-binding antibodies into sets

that have similar structures therefore represents an orthogonal and promising approach by

which to highlight the potential functional commonalities of sequence-dissimilar antibodies.

Fig 2. a) A cartoon representation of the 22 antibodies in the RBD ‘neck’ cluster binding to the SARS-CoV-2-RBD (salmon) [PDB

code 6XC2] at a similar site to ACE-2. See S1 Table for PDB codes of the 22 antibodies. b) A cartoon representation of ACE-2

(green) binding to SARS-CoV-2 RBD (salmon) [PDB code 6VW1, ACE-2 chain A, SARS-CoV-2-RBD chain E]. C) The CDRH3

sequences represented across the 22 RBD ‘neck’-binding antibodies. Lenient VH-clonotypes are separated with solid lines, with the

cluster representative highlighted in bold font.

https://doi.org/10.1371/journal.pcbi.1009675.g002
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Paratope analysis. We then analysed the binding interfaces across the set of 48 antibodies,

to investigate whether structure needs to be conserved across the whole Fv, or whether conser-

vation over particular regions is typically sufficient.

An average of ~67% of paratope residues were found to lie on the heavy (VH) chain while

~33% reside on the light chain (VL). The percentage of paratope residues donated by the most

hypervariable region, the CDRH3 loop, varies from just 9% up to 58%. As expected, structures

with longer CDRH3 regions tend to exhibit more CDRH3-dominated binding; the paratopes

of the nine antibodies with CDRH3 length� 19 on average comprised 41% CDRH3 residues.

For the 22 highly structurally-conserved antibodies in the RBD neck epitope region, an average

of 23% of the paratope residues originate from CDRH3 (range 8–34%).

These RBD neck-binding antibodies exhibit high levels of paratope residue conservation

across the CDRH1 and CDRH2 (Fig 4), which is also seen at the sequence similarity level. This

explains the predominance of the IGHV3–53/IGHV3–66 genes, as the residues and topologies

pre-encoded by this germline play a key role in neck epitope complementarity. Paratope con-

servation is considerably less consistent across the CDRH3 region, accounting for the 18

unique CDRH3 sequences seen across the 22 antibodies. For such epitopes, a clonotyping

framework (which conditions on high CDRH3 sequence identity being a pre-requisite for

same-epitope binding), will clearly fail to capture the functional similarity of the spectrum of

cognate antibodies.

Fig 3. a) The CDRH3 loops of nanobodies and antibodies of two binding regions, the ‘neck’ and ‘left flank’, binding to SARS-CoV-2 RBD (salmon). The ‘neck’

cluster includes 22 antibodies (red). The ‘left flank’ region includes five antibodies (the four antibodies identified by [28] are shown in orange, antibody MW06 is

shown in magenta) and four nanobodies (shown in blue). MW06 and the nanobodies were not included in the analysis by [28]. See S1 and S2 Tables for antibody

and nanobody PDB codes respectively. b) A ribbbon representation of sequence dissimilar antibodies S304 (blue) [PDB code 7L0N] and EY6A (green) [PDB

code 6ZER, chain A] binding to the SARS-CoV-2-RBD (salmon) [PDB code 6ZER, chain B]. The CDRH1, CDRH2 and CDRH3 loops are illustrated in cartoon.

The CDRH3 sequences of the two antibodies, S304 and EY6A, are shown, with dissimilar residues indicated in bold.

https://doi.org/10.1371/journal.pcbi.1009675.g003
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Fig 4. CDR paratope conservation and divergence across the 22 antibodies in the ‘neck’ cluster. Frequency

indicates the number of times an amino acid was seen at each IMGT-defined CDR position [33]. Paratope residues are

coloured by side chain chemistry (black = hydrophobic, green = polar neutral, red = acidic, blue = basic,

purple = amide). Grey indicates amino acids present at the positions but not in the paratope (within 4.5Å of the

SARS-CoV-2 antigen). CDRL2 has not been shown, as it was found not to contain paratope residues. Produced using

Logomaker [61].

https://doi.org/10.1371/journal.pcbi.1009675.g004
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For those antibody paratopes that use CDRH3 sparsely, the paratope is mostly drawn from

the CDRH1, CDRH2, CDRL1 and CDRL3 residues, with occasional amino acids provided by

the framework regions (FWRs). In particular, a serine residue at position 83 and/or glycine at

position 84 of the light chain (part of the formal FWRL3, IMGT numbering) are dispropor-

tionately involved in binding. These residues were found in 18/48 (38%) of crystallised-anti-

body paratopes, of which 15 are from the ‘neck’ structural cluster. Using Arpeggio [62] to

identify the type of binding interactions these FWRL3 residues were involved in, 9 paratopes

contained hydrogen bonds between L83 and the RBD, to residue 498 in all cases apart from

one (for full Arpeggio analysis of interactions between antibodies and the RBD see S3 Table).

Overall, we conclude that structural conservation is important across the entire Fv, to

ensure that the paratope residues, which in most coronavirus-binding antibodies are spread

evenly throughout the CDRs, are held in equivalent topological positions.

We now perform a comprehensive structure-based analysis on CoV-AbDab, where 95% of

SARS-CoV-2 binding antibodies have no solved structure and 27% completely lack binding-

domain annotation.

Structural convergence across CoV-AbDab antibodies

As of 11th March, just ~5% (113/2,304) of the antibodies in CoV-AbDab had at least one

solved X-ray or cryo-EM structure, while ~90% (2,063/2,304) of the antibodies had full Fv

amino acid sequences (Fig 1). We used high-throughput homology modelling approaches to

approximate and analyse the geometries of this much broader set of neutralising and non-neu-

tralising antibodies able to bind to multiple coronaviruses, antigens, and domains.

We used ABodyBuilder [34] to homology model the 2,063 antibody entries in CoV-AbDab

with full Fv sequences. This resulted in a total of 1,500 models in which every loop was entirely

FREAD-modellable without any need for ab initio loop modelling or backbone adjustment

(see Methods); we focus on this subset of models as we have the highest confidence in their

accuracy [23, 24, 34]. This represents 72.7% modellability across the set of Fv sequences, a

remarkably high percentage relative to recent studies on both healthy and disease-related natu-

ral antibody datasets [23, 24]. Typically, only ~40% of randomly-sampled human CDRH3s

can be homology modelled by FREAD. The increase in modellability is likely to be related to

the scientific effort that has gone into solving a large number of SARS-CoV-2-binding anti-

body structures within the first year of the pandemic. It also hints at a high degree of underly-

ing structural convergence across the reported coronavirus-binding antibodies in

CoV-AbDab.

After modelling, we performed structural clustering. Briefly, Fvs with 6 modellable CDRs

are first clustered according to their combination of six CDR lengths, and are then further

structurally grouped by a greedy clustering algorithm that considers the pairwise structural

root-mean square deviation (RMSD) between the selected FREAD template for each CDR

region (see Methods for a full description). The result is a set of predicted ‘structural clusters’,

each adopted by at least one Fv sequence. We term this algorithm Structural Profiling of Anti-

bodies to Cluster by Epitope (SPACE); see Methods for a full description.

The 1,500 homology modelled Fv regions fell into 1,159 structural clusters, of which 200

were adopted by more than one Fv sequence (‘multiple-occupancy’ structural clusters). In

total, 541/1500 (36.1%) of the antibodies belonged to a multiple-occupancy structural cluster.

For a full breakdown of each multiple-occupancy structural cluster, labelled SC0-SC199, see S1

File.

When applied to an entire antibody repertoire, the number of antibodies with similar struc-

tures but different functionalities is likely to be significant [24]. However, on ‘cleaner’ datasets
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such as CoV-AbDab, where every antibody has been shown to bind a coronavirus antigen

(and often a particular domain) in vitro, antibodies with similar Fv structures should have a

high chance of binding to the same surface region and therefore being complementary to the

same epitope, as demonstrated in our analysis of solved structures.

Nonetheless, inaccuracy in CDR structure prediction and/or the lack of consideration for

paratope residues can lead to misleading clusters of antibodies that have markedly different

functionalities. Therefore, to assess (in the context of this large disease-specific antibody data-

base) how predictive belonging to the same structural cluster is of engaging the same epitope,

we estimated a pseudo-‘true positive’/‘false positive’ ratio based on the consistency of the

CoV-AbDab epitope metadata across antibodies grouped into the same structural cluster.

‘Domain-consistent’ structural clusters were classed as those only containing antibodies

reported as binding to internally-consistent antigen domains (see Methods).

A total of 184/200 (92%) of our multiple-occupancy structural clusters were domain-consis-

tent, indicating that structurally clustering with another member of CoV-AbDab is likely to be

highly predictive of function.

Amongst the 16 structural clusters considered to be ‘false positives’, the domain-inconsis-

tent antibody within four structural clusters (SC2, SC84, SC96, SC136) bore significant simi-

larities to at least one other antibody in the cluster, suggesting that some experimentally-

deduced epitope labels may be inaccurate. The original papers detailing the binding of the

antibodies support this possibility. For example, we classify SC2 as domain-inconsistent, as it

contains 8 antibodies that bind to spike outside the RBD [63, 64], and one (COVA2–32 [65])

labelled as binding to the RBD. However, COVA2–32 only marginally met the area under

curve (AUC) threshold to be classified as an RBD binder (see Fig 4 of Brouwer et al. [65]).

The remaining twelve ‘false positive’ structural clusters are likely to result from a combina-

tion of inaccurate structural modelling and/or the fact that bearing the same binding site struc-

ture does not guarantee functional commonality. We focus the remainder of our analysis on

the 92% of domain-consistent structural clusters.

Epitope binning. Some members of a structural cluster can have a lower resolution of

functional characterisation than others. In these cases, functional properties of the less well-

characterised antibodies can be inferred from other antibodies predicted to adopt the same

structure.

Thirty-one antibodies experimentally shown only to bind to the whole spike protein, or to

bind the spike protein but not the RBD, can be localised to a more precise epitope using our

structural clusters. For example, three of the antibodies assigned to SC11 that were shown to

bind the full-length spike protein, but not a soluble RBD protein [63], can be inferred to bind

to the S2 domain in the same way as cluster members DH1147 and DH1149 [64]. Similarly,

CC12.24, previously shown only to bind to the whole SARS-CoV-2 spike protein [41], can be

localised to the same binding site in the RBD as C139 [12] and COVOX-45 [28] (SC57).

A further 62 antibodies fall into 19 structural clusters for which no antibody has been

resolved as binding to a particular domain. For some structures, the selected FREAD templates

could offer an indication of epitope specificity: the PDB structure ‘6NB8’ [66] is used to model

all three light chain CDRs in at least one antibody assigned to SC6, SC15, and SC71, while

‘7BEN’ [28] is used to model the CDRH3 in all four antibodies assigned to SC16. The antibody

in both of these PDB structures engages the SARS-CoV-2 RBD, which could imply that the

cluster groups RBD-complementary antibodies. Even ignoring these indications, just 19 bind-

ing characterisation experiments could lend functional annotations to over three-times the

number of CoV-AbDab entries (62).

Evolutionarily-conserved epitope topologies across coronaviruses. Evolutionarily-con-

served epitope topologies are implied by our structural clusters that contain antibodies able to
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bind multiple coronaviruses. As an extreme example, SC0 pools together a set of 13 IGHV1–

69-derived antibodies, of which at least one which has been shown to engage each of SARS-

CoV-1, SARS-CoV-2, HKU1, 229E, NL63, OC43, and MERS-CoV. More broadly, 69/184

(37.5%) of our structural clusters contain an antibody shown on the current levels of data to

have cross-coronavirus binding potential. This number may be an underestimate, as several

antibodies have only been tested against a single coronavirus strain in vitro.

These epitopes could represent sites of particular vulnerability across coronaviruses; anti-

gen regions whose structure must be preserved for viral function. They therefore reflect the

most promising regions against which to design pan-coronavirus neutralising antibodies, and

could be exploited in epitope-focused vaccine design strategies [67] to achieve a more broadly

neutralising response.

The epitope and corresponding paratope residues within these binding sites will differ

between lineages, meaning that sequence-based clustering approaches would struggle to spot

their functional commonality. Structural clustering can see beyond paratope profiles to cap-

ture broader epitope topology conservation via the geometries of their cognate antibodies.

Epitopes targetable by multiple species. A recent study has shown that mouse and

human antibodies use a different distribution of CDRH3 structures, which also varies by B-cell

maturation stage [23]. This can be rationalised by their species-specific gene loci having differ-

ent predetermined structural biases and the fact that negative selection occurs against different

self-epitopes. Nevertheless, assuming that each CDR loop can only adopt a finite set of geome-

tries imposed by the loop closure criterion, and that many of the same antigens would be con-

sidered pathogenic to both species, there ought to be some structural overlap between human

and mouse antibodies and therefore the potential for some epitopes to be targetable by both

species. These would be extremely hard to identify by sequence alone, as human and murine

gene loci are highly sequence dissimilar.

We identified SC62, which groups human antibody Ab_511E7 [68] alongside the two

murine antibodies DK4 & DK7 (patent CN111978395A), all of which have been shown to

bind the SARS-CoV-2 RBD (albeit only weakly in the case of Ab_511E7). Even more remark-

ably, SC174 pools antibodies from different species confirmed to bind to different coronavi-

ruses; in SC174, a human antibody (C131 [12]) that binds the SARS-CoV-2 RBD is grouped

with a murine antibody (F26G18 [69]) shown to bind the full-length SARS-CoV-1 spike pro-

tein. Should F26G18 be confirmed to engage the RBD, and the SC62 antibodies compete for

the same epitope, this would show the ability of structural clustering to identify cross-corona-

virus epitopes targetable by multiple organisms.

Structural clusters frequently span multiple clonal lineages. We analysed each of the

184 domain-consistent structural clusters to determine how often the antibodies clustered

together belonged to multiple lenient Fv clonotypes. A total of 88 (47.8%) contained at least one

pair of antibodies from different lenient Fv clonotypes and 73 (39.7%) of the structural clusters

contain at least two lenient VH-only clonotypes. It is clear that antibodies with both heavy and

light chains of differing clonality can frequently co-exist within our structural clusters.

Many structural clusters contain at least one pair of antibodies from the same clonotype;

this is unsurprising since the ‘near-identical sequence, similar function’ assumption underpin-

ning clonotyping experiments is often correct. However, the high frequency with which we

group antibodies spanning several clonotypes into the same structural cluster recapitulates the

findings of other papers [8–10], and our earlier analysis on solved structures, that clonotyping

cannot group together all antibodies capable of same-epitope engagement.

In most cases where multiple clonotypes are found in the same structural cluster, it is due

to significant differences in the CDRH3 sequence. However, some clusters such as SC134

(which pools COV2–2490 (60) with H712061+K711727 (61)), contain many differences across
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the entirety of the sequence (26 differences across VH, 27 across VL) and align closest to differ-

ent heavy V (IGHV3–7 vs. IGHV3–30) and light V (IGKV1–5 vs. IGKV1D-16) genes.

‘Public’ response antibodies. ‘Public’ antibodies, those that are raised independently

across multiple individuals against an immunodominant epitope, are of high interest to several

fields of research, from vaccinology to drug discovery [70–72].

Several studies have already identified public SARS-CoV-2 response antibodies based on

convergence towards particular clonotype lineages [12–18], but none have yet considered the

fact that antibodies from different lineages can exert similar functions. As demonstrated

above, structural clustering enables us to group together clonally-distinct antibodies with a

high chance of engaging the same epitope. We therefore examined our structural clusters to

reveal functionally similar groups of antibodies from different genetic lineages that have been

independently isolated across several different studies (i.e. “public structures”).

A striking example of a public structure that spans multiple clonotypes is SC3 (Fig 5). SC3

contains nine antibodies from five independent sources, spanning five lenient Fv-clonotypes.

All antibodies align closest to the IGHV1–58/IGKV2–30 gene transcripts but have sequence-

diverse CDRH3s all containing a common intra-loop disulfide bridge.

The SC21 and SC24 clusters also map to these genes and contain a disulfide bridge; anti-

bodies assigned to SC21 and SC3 have identical CDR lengths but are predicted to have differ-

ent CDR structures, while SC24 is necessarily classed as a separate structural cluster to SC3 as

its CDRL3 loop is of a different length (10 residues rather than 9).

When aligned to the solved COVOX-253:RBD co-crystal structure, SC3, SC21, and SC24

appear to all be topologically complimentary to the same RBD epitope (Fig 5). The length-10,

more protruding CDRL3 loop of SC24 is accommodated by the small G485 residue on the

RBD, while the CDRH3s across all three structural clusters protrude to a similar extent

towards residues F456-N460 on the RBD. The antibodies mapped to SC21 and SC24 (from an

additional three independent sources) comprise an additional three lenient Fv-clonotypes,

making a total of eight lenient Fv-clonotypes with potential same-epitope complementarity.

This set of similar structures has been observed across eight independent studies indicating

that the corresponding epitope is immunodominant. Moreover, none of the antibodies

directly engage the carboxylate group of residue E484 (5Å for length-10 CDRL3s or 11Å for

length-9 CDRL3s, with too acute an angle for hydrogen bonding) nor the amide group of

N501 (�12Å for all antibody topologies). This should make them of particular interest as

clones that might neutralise both wildtype SARS-CoV-2 and the more recent E484K/N501Y-

containing variants of concern.

Soon after we identified this broad structural cluster, a preprint was released by Schmitz

et al. [73] showing that many IGHV1–58-encoded SARS-CoV-2 binding antibodies have

highly similar residues at equivalent paratope positions (defined by the S2-E12 crystal struc-

ture [74]). On this occasion, the other CDRH3 sequence-diverse antibodies hypothesised to

have similar function were shortlisted through inspection of their sequences; they all derive

from IGHV1–58 germline and bear the -C(X)4C- motif within their CDRH3 loop (X4 repre-

senting four non-cysteine residues). We have shown that structural modelling and clustering

supports the theory that these antibodies are functionally similar, and offers a systematic route

to the identification of other sequence-diverse clusters of functionally-common antibodies

that do not bear such clearly conserved motifs.

Discussion

Here, we have analysed the solved X-ray crystal structures of antibodies and nanobodies

bound to SARS-CoV-2 from the perspective of their structural and paratope conservation, and
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performed the first analysis of thousands of structural models of coronavirus-binding antibod-

ies reported in over 100 independent literature sources.

We have updated the previously-reported sets of antibodies shown to bind to specific

regions of the RBD [28] and demonstrated that the antibodies within these clusters are often

structurally similar but sequence dissimilar. For example, a cluster of 22 antibodies from 15

different lenient VH clonotypes all approach the same SARS-CoV-2 RBD ‘neck’ epitope with a

closely-related binding mode. The paratopes of these antibodies are highly conserved across

the CDRH1 and CDRH2 regions (accounting for the strong bias towards IGHV3–53/IGHV3–

66 gene origins) while the CDRH3 sequence can diverge substantially in sequence identity.

The same phenomenon was observed for two antibodies solved engaging the RBD ‘left flank’

with a near-identical binding mode but just 43% CDRH3 sequence identity. These scenarios

represent a problem for the functional interpretation of sequence-based clustering approaches

such as clonotyping; antibodies that are functionally similar would be binned into different

clusters. Inspired by the structural similarity of antibodies that bind to the same epitope, we

predicted and clustered the structures of the broad set of antibodies documented in CoV-Ab-

Dab [1] using our SPACE algorithm.

We found that this structural clustering is likely to achieve a very high accuracy of epitope

binning. Up to 92% of multiple-occupancy structural clusters grouped antibodies reported to

Fig 5. SARS-CoV-2 RBD-binding antibodies with similar predicted structure that span multiple clonotypes. A representative of structural cluster 3 (SC3, cyan),

structural cluster 21 (SC21, orange), and structural cluster 24 (SC24, green) are aligned in the context of the COVOX-253:RBD co-crystal complex (RBD in salmon).

The CDRH3 and CDRL3 structures are highlighted in cartoon representation. All 100% sequence non-redundant CDRH3 and CDRL3 sequences across the three

structures are listed, grouped by lenient VH- or VL-clonotype, with the cluster representative in bold font. The alignment shows the various CDRH3 and CDRL3

structures are likely to be topologically compatible with this RBD epitope. Residues E484 and N501, commonly mutated in SARS-CoV-2 variants of concern, are

highlighted as sticks and coloured by default atom type. Closest heavy-atom distances between the functional group (carboyxlate/amide heteroatom) and the different

structural classes of antibody are shown.

https://doi.org/10.1371/journal.pcbi.1009675.g005
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bind to consistent domains, based on the current levels of metadata in CoV-AbDab. This sug-

gests that we can use this method to predict the epitopes of many as-yet uncharacterised coro-

navirus binders, as well as prospectively to predict the epitopes of newly-isolated SARS-CoV-2

binding antibodies.

These structural clusters also offer a unique perspective on the data that can not be identi-

fied through standard, sequence-based clonotyping. First, they can functionally-associate anti-

bodies that derive from highly distinct clonal lineages; around 40% of our structural clusters

contain at least two antibodies from different lenient VH clonotypes. They also functionally

connect disease-response antibodies that originate from different species, of interest in the

study of functional crossovers between immune repertoires that exploit different gene loci.

Moreover, they can reveal which epitope topologies are likely to be conserved across coronavi-

rus strains, helping to co-ordinate efforts to design prophylactics towards more fruitful sites

for pan-coronavirus neutralisation.

Such powerful structure-function relationships are likely only possible due to the collation

of clean, high confidence binding data. Our work demonstrates the clear value of building

large class-specific databases of antibody-binders against extracellular disease-associated anti-

gens. We hope to create similar datasets for other pathogen families and suspect others will do

the same, enabling the validation of computational structural profiling in multiple different

disease contexts.

In addition to offering functional annotations to as-yet uncharacterised antibodies, these

databases could also be used to identify important gaps in structural space. This would ensure

that time-consuming experimental structure determination efforts are targeted towards sets of

antibodies that yield maximal functional insight. For structural clusters with limited existing

epitope knowledge, a central antibody could be selected for structural evaluation with the cog-

nate antigen, enabling the functional annotation of many other antibodies in the same struc-

tural cluster. Similarly, structurally modelling the entire database reveals which antibodies

cannot currently be accurately modeled and should therefore be prioritised for experimental

structure characterisation.

As more coronavirus-binding antibody structures continue to be released to the PDB, the

coverage and expected accuracy of the CoV-AbDab homology models will increase accord-

ingly, likely further improving the accuracy of our epitope binning over time. However,

solved antibody-pandemic virus structures are not a prerequisite of meaningful epitope bin-

ning via predicted structure. Forty-eight of our domain-consistent structural clusters cur-

rently connect antibodies that bind outside of the RBD, despite the fact no high-quality X-

ray structures of antibodies binding outside the SARS-CoV-2 RBD had been solved at the

time of this analysis (� 2.5Å resolution, a requirement for use as an ABodyBuilder tem-

plate). This indicates that structural clustering is able to draw functional connections

between antibodies isolated at the start of a pandemic, even if the number of solved anti-

body-pandemic virus structures is very low.

Additionally, given recent developments in single-domain protein modelling techniques

[75], we may soon see significant improvements in the speed and accuracy of antibody struc-

ture prediction, and by extension antibody structure-based epitope profiling. Many alternative

clustering methods exist beyond the template-based approach reported here, and these may be

more appropriate to use when clustering models generated by future high-throughput struc-

ture modelling algorithms.

An open question remains as to how strictly an antibody’s structure needs to be conserved

to engage the same epitope. This is likely to be highly epitope dependent. For example, for epi-

topes naturally suited to VH-dominated engagement, less selection pressure would act upon

light chain structure and vice versa, while some epitope topologies and environments (e.g.
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extent of glycosylation) may also exert different levels of pressure on complementary antibody

geometries.

Overall, our results show that structural information via computational modeling enhances

the picture of disease-characteristic convergence across SARS-CoV-2 response antibodies. It is

clear that while clonotyping COVID-19 antibody repertoires can offer an indication for which

epitopes are public in the response, they risk understating the true levels of same-epitope reac-

tivity across individuals. Accurately capturing the functions of the antibodies raised during the

immune response is critical when evaluating vaccine efficacy, both against the injected viral

strain and against new variants of concern that may arise and alter the immunogenicity of cer-

tain epitopes. Structure prediction and clustering has a crucial role to play alongside clonotyp-

ing to yield the maximum functional inference from the vast amount of disease-specific

antibody data available.
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