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Abstract

Genetic structure is ubiquitous in wild populations and is the result of the pro-
cesses of natural selection, genetic drift, mutation, and gene flow. Genetic drift
and divergent selection promotes the generation of genetic structure, while gene
flow homogenizes the subpopulations. The ability to detect genetic structure from
marker data diminishes rapidly with a decreasing level of differentiation among sub-
populations. Weak genetic structure may be unimportant over evolutionary time
scales but could have important implications in ecology and conservation biology.
In this paper we examine methods for detecting and quantifying weak genetic struc-
tures using simulated data. We simulated populations consisting of two putative
subpopulations evolving for up to 50 generations with varying degrees of gene flow
(migration), and varying amounts of information (allelic diversity). There are a
number of techniques available to detect and quantify genetic structure but here we
concentrate on four methods: FST, population assignment, relatedness, and sibship
assignment. Under the simple mating system simulated here, the four methods
produce qualitatively similar results. However, the assignment method performed
relatively poorly when genetic structure was weak and we therefore caution against
using this method when the analytical aim is to detect fine-scale patterns. Further
work should examine situations with different mating systems, for example where
a few individuals dominate reproductive output of the population. This study will
help workers to design their experiments (e.g., sample sizes of markers and indi-
viduals), and to decide which methods are likely to be most appropriate for their
particular data.

Introduction
The genetic structuring of populations, a systematic varia-
tion in allele frequencies through space, is common in wild
populations and is primarily the result of the opposing forces
of genetic drift and gene flow, and spatial variation in natu-
ral selection. Genetic drift is the change in allele frequencies
through time caused by the random sampling of parental
alleles, along with the role of chance in governing the sur-
vival to reproduction of the offspring. This process becomes
particularly important when population size is small. Thus,
through time, allele frequencies in a population can change
by chance alone. Gene flow works to homogenize spatial
genetic variation by moving alleles through space (Slatkin
1987). Barriers to gene flow can be physical, such as rivers or

mountain ranges, which prevent individuals or gametes mov-
ing between regions, or related to demographic rates (such
as hunting or predation pressure). There are also the natural
limits imposed by the organism’s dispersal ability, which can
be especially restricted in plants and small animals. In some
cases, gene flow between regions can be reduced to zero, but
often gene flow is merely reduced by some degree. When
gene flow is reduced, the opportunity for divergence in allele
frequencies via genetic drift is enhanced. Therefore, so is the
development of genetic structure. In addition, with time, any
variation in the success of particular gene variants due to
regional differences in natural selection will generate spatial
variation in allele frequencies.

The fact that population genetic structure arises from
these distinct phenomena means that observations of spatial
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variation in allele frequencies can be used to infer the pro-
cesses that gave rise to them. Consequently, using genetic data
alone, it is possible to make inferences about gene flow and
therefore dispersal behavior. Following this, inferences can be
made about the mating system, social and phylogeographic
structure, and population dynamics of the population (Nutt
2008). These inferences provide vital information for the ef-
fective management of endangered species.

There are numerous approaches to estimating gene flow in-
directly using genetic data. One method is to regress measures
of genetic distance, such as FST (e.g., Rousset 1997, 2000) or
relatedness (Hardy and Vekemans 1999), against the distance
between individuals. Alternatively, even nonspatially explicit
data can be revealing. For example, a measure of related-
ness can be informative, because dispersal is likely to influ-
ence local relatedness patterns (Mossman and Waser 1999;
Banks et al. 2002; Hazlitt et al. 2004): as dispersal increases,
relatedness at a particular sampling location will tend to
decrease.

Besides their utility in revealing current dispersal patterns,
genetic structure information can also be used to elucidate
phylogeographic history. For example, population fragmen-
tation to isolated refugia during glacial periods would re-
sult in divergence of allele frequencies due to genetic drift
and selection. In addition, as populations expand into newly
available habitats differentiation and divergence can occur via
selection and hitchhiking and, if further immigration is lim-
ited, drift (Hewitt 1996; Johnson et al. 2007). In some cases,
such events may be regarded as founder events and lead to
founder effects (a special case of drift). Information on gene
flow and population structure is potentially very valuable for
conservation as this information could provide early warning
of changing distribution patterns, for example due to climate
change.

There are several methods in use for detecting and assessing
genetic structure. We briefly discuss four of them because they
will be compared in this simulation study.

The first method makes use of one of Wright’s F-statistics,
FST (Wright 1965). FST is a widely used statistic in popula-
tion genetics. It is an estimate of the proportion of genetic
diversity among populations: when FST is zero, there is no
differentiation; and when it is 1, the populations are fixed
for different alleles (Hartl and Clark 1997). We would thus
expect FST to decline as gene flow increases, for example via
increased dispersal ability or declining distance between sub-
populations. One criticism of FST for inferring gene flow is
that the underlying model assumes that the population is at
an equilibrium state, and therefore, the method may not be
suitable to studies on short timescales (Whitlock and Mc-
Cauley 1999; Paetkau et al. 2004).

The second method uses individual-based population as-
signment tests to estimate structure. With this method, the

likelihood of an individual originating from each of a num-
ber of candidate subpopulations is calculated using the indi-
vidual multilocus genotype and the allele frequencies of the
candidate subpopulations, and the individual is assigned to
the subpopulation that has the maximum likelihood. This
assignment method was described in Paetkau et al. (2004)
and was called the frequency method in Cornuet et al.
(1999). Where the subpopulations in which the individu-
als are found correlate strongly with the subpopulations to
which they are assigned, the population may be considered
structured. On the other hand, where the pattern of assign-
ment appears to be random, the population is considered
unstructured.

The third method makes use of pairwise relatedness infor-
mation (i.e., between pairs of individuals in the population;
Wang 2002). Generally, as migration increases, pairwise re-
latedness within subpopulations will tend to decrease relative
to that between subpopulations. By comparing the average
relatedness within and between subpopulations, it is possible
to infer population structure.

The fourth and final method of detecting and quantifying
genetic structure has received little attention in the past and
makes use of kin structure, or inferred sibship, information
in the population. Where the population is unstructured,
sibships (and indeed any relationship) will be distributed
randomly amongst subpopulations. However, when the pop-
ulation is structured, sibships are more likely to be found
within subpopulations rather than between subpopulations
(Piyapong et al. 2011).

Among the four methods, the last two are similar but with
some important differences. The relatedness method esti-
mates a continuous quantity between 0 and 1 measuring
the proportion of alleles that are identical by descent shared
between individuals, while the sibship method infers a dis-
crete genealogical relationship, sibship, against the unrelated.
The former is more general and does not require any specific
sample structure, while the latter assumes a single-generation
sample of individuals taken from a population, so that, close
across-generation relationships (e.g., parent–offspring) are
impossible. However, relatedness is usually much more diffi-
cult to estimate accurately than relationship (sibship), espe-
cially for a single-generation sample in which only a few well-
differentiated candidate relationships are available (Wang
2006).

In this paper, we assess the efficacy of these four meth-
ods for detecting weak genetic structure under a range of
conditions using simulated data. We vary the amount of ge-
netic information in the data (in the form of number allelic
diversity), and the length of time allowed for genetic struc-
ture to develop (and therefore strength of genetic structure).
Our results will help biologists who are considering analytical
methods for their study system.
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Materials and Methods

Because it is analytically intractable to compare the accuracy
and power of the four methods, we used simulations instead.
We simulated the evolution of a pair of subpopulations split
from the same ancestral population with different migratory
characteristics. By varying the number of generations allowed
to have elapsed since the subpopulations were separated, and
the amount of migration between subpopulations, we could
control the amount of genetic structuring that would result.

Simulating populations

We first randomly generated a set of multilocus genotypes
for 500 diploid individuals in a single large population, given
the allele frequencies generated from a uniform Dirichlet
distribution and Hardy–Weinberg and linkage equilibria.
We then randomly assigned half (250) of the individuals
from this initial population to each of two separate sub-
populations (A and B). Each subpopulation has discrete gen-
erations and evolves under a monoecious mating system.
In this system, 250 pairs of individuals were randomly se-
lected (with replacement) and allowed to mate and produce
a single offspring to contribute to the next generation. Pop-
ulation size thus remained constant through time. At each
generation, a certain amount of migration between the sub-
populations was allowed to control the rate of development
of population structure. This migration was stochastic, with
each individual having a certain probability of migrating to
the other subpopulation. In addition, we allowed a small
mutation rate, according to the k-allele model, of u = 0.0001
(where k is the number of alleles per locus). For this model,
at each locus, we drew a random number (m) from a Poisson
distribution with a mean of 500u to determine the number
of allelic copies that experience a mutation at that locus in
a subpopulation. Then m allelic copies were then selected at
random from the population and each mutating allele copy
in question was replaced by one of the k alleles (including the
existing allele) chosen at random with an equal probability
of 1/k. We validated this simulation procedure by comparing
the FST values calculated from simulated data to theoretical
expectations (see Supporting Information).

Under the simulation model, therefore, the genetic struc-
ture of the population can increase from nonexistent at t =
0 to substantial as time progresses and the allele frequencies
of the subpopulations diverge via genetic drift. The develop-
ment of genetic structure will be constrained by migration
of individuals between subpopulations, and will also be in-
fluenced by mutations. Therefore, the rate of development
of genetic structure will be fastest when the migration rate
is zero, and the rate will decline as the rate of migration
increases.

We established an experimental design with migration rate,
and degree of polymorphism, varying as follows. Migration

was defined as the probability of individuals in the popula-
tion that moved between subpopulations. It was either zero,
negligible (0.04, which corresponds to, on average, one in-
dividual per generation in our simulations), small (0.10) or
high (0.20); number of loci was fixed at 10; and finally, poly-
morphism, defined as the number of alleles per locus, was
low (5), medium (10), or high (20). For each case, we con-
ducted 50 replicate simulations. We used R (R Development
Core Team 2009) to conduct all of these simulations.

Estimating genetic structure

We tested the utility of four approaches for detecting popula-
tion genetic structures. In each case, we used the marker data
from a randomly selected subset of the populations (20% of
the individuals, i.e., 50 from each subpopulation) rather than
the entire population in inferring population structures. We
did this to mimic incomplete sampling of the population,
which is the norm in most studies. Individuals were sampled
after the migration events.

FST method

We estimated FST using the fstat function in the R package
“adegenet” (Jombart 2008). Significance of the observed FST

value was determined by a permutation test with 500 per-
mutations. For each replicate of the permutation test, the
location of the individuals in the population (i.e., subpopu-
lation A or subpopulation B) was randomly permuted, and
FST recalculated. The P-value was then taken to be the pro-
portion of the 500 resampled FST values that were greater
than the observed value. Thus, we regard the population as
significantly structured when only 25 or less of the 500 (5%)
permutations produce FST values greater than or equal to the
observed FST value.

Population assignment method

The population assignment method examines each indi-
vidual in turn and, based on its genotypes and the sub-
population allele frequencies, assigns it to one of the putative
subpopulations that has the maximum likelihood. A popu-
lar program for doing this is STRUCTURE (Pritchard et al.
2000), but we use our own algorithm programmed in R. Like
STRUCTURE, our algorithm estimates the likelihood of as-
signment of each individual to each subpopulation based on
Hardy–Weinberg and linkage. If the proportion of “correct”
individual assignments (i.e., individuals are assigned to the
subpopulation from which they are sampled) is significantly
higher than that of “misassignments” (i.e., individuals are not
assigned to the subpopulation from which they are sampled),
then a genetic structure of the population is detected. Other-
wise, the population is regarded as genetically unstructured.
As above, we estimated significance for this method using a
permutation test with 500 permutations. Again we permuted
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the population assignments (i.e., subpopulation A or sub-
population B) and calculated the proportion that were misas-
signed. The P-value for the significance of population struc-
ture was taken to be the proportion of the 500 permutations
where the misassignment proportion in the permuted set was
lower than the empirical observation.

Relatedness method

We use COANCESTRY (Wang 2010) to estimate pairwise
relatedness using five different moment estimators: Wang’s
estimator (Wang 2002), an estimator described by both
Lynch (1998) and Li et al. (1993), Lynch and Ritland’s
(1999) estimator, Ritland’s (1996) estimator, and Queller and
Goodnight’s (1989) estimator. We calculated the average
within-population relatedness for dyads in which both in-
dividuals come from the same subpopulation, and the aver-
age between-population relatedness for dyads in which in-
dividuals come from different subpopulations. A significant
difference between the average within-population related-
ness and the average between-population relatedness indi-
cates the genetic structure. We determined the significance
of genetic structure using a permutation test with 500 per-
mutations. With this approach, we took the P-value to be
the proportion of randomized between-population related-
ness estimates that were greater than the observed between-
population relatedness estimate.

Sibship method

We used COLONY (Wang 2004; Jones and Wang 2010) to
reconstruct sibships of the sampled individuals and to in-
vestigate the distribution of sibship within and between sub-
populations. The idea behind this sibship method is that, with
a completely mixed pair of subpopulations (i.e., no struc-
ture), the proportion of sibdyads that occur within the same
subpopulation (i.e., A–A or B–B) and the proportion that

occur between the two subpopulations (i.e., A–B or B–A)
will be similar. As the population becomes more structured
due to less migration, the probability of an individual from
population A having siblings in population B and vice versa
would decrease. This method is expected to be especially use-
ful in the case of weak structure due to a high migration rate,
where FST and other methods have little power.

Once we identified the numbers of sibships that occurred
within- and between-subpopulations we used a permuta-
tion test to determine whether this was significantly different
from the null expectation that the sibship distributions were
simply random with respect to subpopulation identity. We
did this by permuting (500 times) the identity of the sub-
population from which the individuals were sampled and
recalculating the number of sibships within- and between-
subpopulations. Using this approach, we took the P-value
to be the proportion of the resampled within-subpopulation
sibship frequency estimates that were greater than the ob-
served within-subpopulation sibship frequency.

Results

All four methods produce qualitatively similar results. They
all show that as structure develops, for example, with an in-
creasing number of generations, the significance of the tests
for genetic structure increases (i.e., the P-value of the tests
tend to decline). When migration rate (i.e., gene flow) be-
tween the subpopulations is low, this decline in P-value (i.e.,
an increase in the significance of genetic structuring) is very
rapid, but when migration rates are high, significant struc-
turing does not occur (Fig. 1). The five relatedness measures
that we estimated produce almost identical results, and we
therefore, only present one of them, Wang’s (2002) estimator.

Furthermore, increasing the amount of information in
the dataset by increasing allelic diversity tends to increase

Figure 1. The effect of increasing levels of migration on the significance (P-values) of tests for genetic structure using four different methods. The
numbers of loci and alleles were both fixed at 10. The symbols indicate the probability of migration of individuals in the simulations (0 = circles,
0.04 = triangles, 0.1 = crosses, 0.2 = squares). Each point represents the mean of P-values across replicates.

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 1051
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Figure 2. The effect of the number of alleles on significance of tests for genetic structure using four different methods, under three different migration
conditions. The top row shows data from simulations with low levels of migration (probability of migration of 0.04); the middle and bottom rows
show data from simulations where individuals have probabilities of migration of 0.1 and 0.2, respectively. The symbols indicate indicates the number
of alleles (5 = circles, 10 = triangles, 20 = crosses) at each of 10 loci.

the power, and therefore, the significance of the test results
(Fig. 2).

The correlation between the P-values of the four methods
was high, with Pearson’s correlation coefficients ranging from
0.76 to 0.94. Nevertheless, it was apparent that the assignment
method tended to perform consistently poorly compared to
the other three methods (Fig. 3). If pairs of methods are
equally effective, then the points in Figure 3 should fall close
to the 1:1 line, because the P-values would tend to be similar.
If one method performs relatively poorly, then the P-values

of the poor performer would tend to be higher than those of
the better performer, and the points would fall away from the
1:1 line. This is the case for the assignment test where the P-
values of the tests for significant structure tended to be higher
than those produced by the other three methods (Fig. 3).

Discussion

Our results show that all four of our selected methods for
detecting genetic structure behave in a qualitatively similar
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Figure 3. The association between the P-values produced by the four methods. The symbols used for the points indicate the number of generations
that have elapsed (1–10 = open circles, 11–20 = crosses, 21–30 = asterisks, 31–40 = filled triangles, 41–50 = filled circles). The plot includes points
from simulations with 5, 10, and 20 alleles.

way: as time elapses, and the number of generations increases,
the statistical significance of the population structure also
increases (i.e., the P-value decreases). It is therefore apparent
that the method chosen to detect structure is not necessarily
particularly important if the scale of the study is fairly broad
and fine-scale patterns are not considered.

However, based on its obtained levels of statistical signifi-
cance compared to the other three methods, the assignment

method performed relatively poorly. This finding is simi-
lar to Nutt’s (2008) analysis, which found that assignment
testing was of limited use in detecting fine-scale dispersal
patterns. Therefore, based on these and our current find-
ings, we recommend that the assignment method should be
avoided when attempting to detect finer-scale patterns. We
note, however, that Lee (2007) found that assignment meth-
ods tended to outperform the FST-based methods for their

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 1053
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dataset. Their conclusion is not generalized because it is based
on a single dataset. In our simulations, it is also possible that
assignment methods outperform the FST-based method for
a particular replicate dataset, although on an average they
perform poorly. Another important factor is the computing
time involved in conducting these analyses. The times for
most of these methods is trivial, however, computation times
for the sibship analysis can be relatively long, and unpre-
dictable. This should not be much of a hindrance for most
applications, but when repeated analyses as in a simulation
study are required it may become problematic.

Our simulations captured a simple situation, where ev-
ery individual in the population is equally likely to produce
offspring. These circumstances are rather unlikely in wild an-
imals and our results must be interpreted with a degree of
caution because other mating characteristics could produce
different results. For example, where mating is nonrandomly
distributed across the population, and a small number of in-
dividuals dominate reproduction, sibships will be large. In
such a case, we would expect the sibship method to outper-
form the other methods.

Furthermore, allele frequencies for each population were
calculated from the genotypes of individuals sampled from
within the population, and may thus include immigrants.
Therefore, allele frequencies are potentially misspecified
when migration causes a change in the allele frequencies from
one generation to another. Therefore, any method that relies
heavily on an estimate of allele frequencies, such as the as-
signment method, may be inaccurate when gene flow is high.
In addition, using highly polymorphic markers with a greater
number of alleles may not necessarily improve the accuracy of
the analysis because, as the number of alleles increases, allele
frequencies become more sensitive to gene flow. This notion
is supported by Figure 2, which shows that the assignment
method becomes less powerful with more alleles per marker
when the migration rate is high. It is technically possible to
use the multilocus genotype information to identify and re-
move immigrants from the analysis (Rannala and Mountain
1997). This procedure would improve the accuracy of allele
frequency estimates and therefore the estimation of genetic
structure. The degree of improvement that can be obtained
with this approach deserves further investigation.
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Additional Supporting Information may be found online on
Wiley Online Library.

Figure S1. Comparison of FST derived from our simulated
data from a two population system with a fixed migration
rate, and with those expected from theoretical predictions.
The red curves represent the theoretical predictions, and the
green points/lines represent the outcome of our simulations.
The three different curves (from the top to the bottom) rep-
resent three different levels of migration rate 0, 0.0025, and
0.01.
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