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While it is universally accepted that the brain makes predictions, there is little agreement
about how this is accomplished and under which conditions. Accurate prediction
requires neural circuits to learn and store spatiotemporal patterns observed in the natural
environment, but it is not obvious how such information should be stored, or encoded.
Information theory provides a mathematical formalism that can be used to measure
the efficiency and utility of different coding schemes for data transfer and storage. This
theory shows that codes become efficient when they remove predictable, redundant
spatial and temporal information. Efficient coding has been used to understand retinal
computations and may also be relevant to understanding more complicated temporal
processing in visual cortex. However, the literature on efficient coding in cortex is varied
and can be confusing since the same terms are used to mean different things in
different experimental and theoretical contexts. In this work, we attempt to provide a
clear summary of the theoretical relationship between efficient coding and temporal
prediction, and review evidence that efficient coding principles explain computations
in the retina. We then apply the same framework to computations occurring in early
visuocortical areas, arguing that data from rodents is largely consistent with the
predictions of this model. Finally, we review and respond to criticisms of efficient coding
and suggest ways that this theory might be used to design future experiments, with
particular focus on understanding the extent to which neural circuits make predictions
from efficient representations of environmental statistics.

Keywords: efficient coding, predictive coding, time, temporal representations, visual cortex

INTRODUCTION

An interesting feature of the human mind is how it tricks us into thinking complex tasks are simple.
One semi-apocryphal illustration of this was Marvin Minsky asking an undergraduate to program a
computer to “describe what it saw” through a camera, over the course of a single summer. Minsky’s
wild underestimate of how hard this would be stemmed from an intuition that it can’t be terribly
hard to do something so effortless. Similarly, our innate understanding of time as the inescapable
dimension along which life proceeds seems effortless. Surely, the mechanistic underpinnings of
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this ability should be easy to describe? Not quite. It is not
even easy to define what “time” is. Though multiple research
groups have made important theoretical and experimental
contributions to understanding time in the brain (Mauk and
Buonomano, 2004; Buonomano and Laje, 2010; Allman et al.,
2014; Eichenbaum, 2014; Merchant et al., 2014, 2015; Tucci
et al., 2014; Finnerty et al., 2015; Petter et al., 2018; Wang et al.,
2018; Balasubramaniam et al., 2021), neuroscience provides few
satisfying answers to the big questions of how time is explicitly
represented in cortex, how temporal relationships are stored in
memories, and how memories of temporal relationships are used
to make predictions.

The ability to make accurate predictions confers clear
competitive advantages. Accurately extrapolating the trajectory
of a moving object to predict its future state, for example,
is very useful for both prey capture and predator evasion.
An interesting idea is that prediction might emerge as a
natural consequence of resource optimization, thus providing
dual benefits for adaptive behavior and energy efficiency. The
concept of efficient coding from information theory describes
how to achieve such resource optimization for data storage
or transmission (Shannon, 1948; Cover and Thomas, 2006b;
Stone, 2018). When data are extended in space or time,
efficient coding suggests that a predictive coding scheme can
be used to compress information and save energy (Elias,
1955). Though these ideas were inspired by problems in
telecommunications engineering, they have found significant
application in biology.

Efficient coding was first introduced to neuroscience by
Attneave (1954) and Barlow (1961), who argued that retinal
circuits use efficient coding to transform light patterns into
the neural code transmitted through the optic nerve. The basic
concept has evolved through the years and been used to explain
a wide variety of experimental results across the visual system
(Srinivasan et al., 1982; Atick and Redlich, 1992; Dong and
Atick, 1995; Dan et al., 1996; Olshausen and Field, 1996; Meister
and Berry, 1999; Doi et al., 2012; Pitkow and Meister, 2012).
Many basic functional properties of the retina are likely the
result of efficient coding, for example the unequal distribution
of ON and OFF ganglion cell types (Balasubramanian and
Sterling, 2009). Srinivasan et al. (1982) were the first to show that
retinal ganglion cells (RGCs) effectively act as linear predictive
coders. Extending this notion, Ocko et al. (2018) provided a
plausible explanation for the existence of multiple ganglion cell
subtypes. Efficient coding may also provide a framework to
explain how the evolution and plasticity of cortical circuitry
is shaped by natural environmental statistics (Olshausen and
Field, 1996; Bell and Sejnowski, 1997; Rao and Ballard, 1999;
Wiskott and Sejnowski, 2002; Jehee et al., 2006; Creutzig and
Sprekeler, 2008). For example, Olshausen and Field (1996, 1997)
created a spatial efficient coding model that mimics primary
visual cortex (V1) receptive fields when trained on natural scenes.
Rao and Ballard (1999) famously introduced a hierarchical
predictive coding model to explain the classical and extra-
classical receptive field properties of V1 neurons. Related models
have since been suggested to provide a general framework for
understanding cortical function (Friston, 2005; Bastos et al., 2012;

Spratling, 2017; Whittington and Bogacz, 2019; Millidge et al.,
2021).

Overall, there is a rich literature on both efficient and
predictive coding. In the visual system, however, much of
the experimental and theoretical focus has been in the spatial
domain. This may reflect the inherent “spatial-ness” of vision
as a sensory modality, but we argue that time is also
fundamental, even beyond motion processing. In addition, the
notion of predictive coding has become somewhat restrictive in
its potential instantiations in neural circuitry, e.g., prediction
and predictive coding may still be relevant to understanding
cortical function even if hierarchical predictive coding is the
inappropriate model. To that end, this review begins with a
primer on efficient coding wherein we explicitly derive the
close relationship between efficient and predictive coding. Next,
we review evidence for efficient coding in the retina and
dorsal lateral geniculate nucleus (dLGN). We then move to
later visual areas, with particular emphasis on how efficient
coding principles in visual cortex may underlie a variety
of time-dependent computational tasks, including visual flow
processing, spatiotemporal sequence learning, and adaptation. In
the end, we hope to clarify the sometimes confusing relationship
between efficient and predictive coding, and discuss ways in
which these theories may guide experiments and provide clues
about how the nervous system codes temporal relationships to
make predictions.

EFFICIENT CODING PRIMER

Efficient coding is a concept from information theory describing
how data can be transmitted or stored with minimal use of
energy, time, and resources. Pioneered in the 1920s–1950s by
Harry Nyquist, Ralph Hartley, and Claude Shannon of Bell
Telephone Labs, information theory provided a quantitative
framework to analyze then emergent telecommunications
technology and help their employer save money on telegram and
telephone transmission. The goal was to design a system capable
of reliable message transmission and storage.

As a concrete example, consider constructing a message
from a four-letter alphabet, θ = {A, B, C, D}. There are 410

possible 10-letter messages, a typical example of which might
be BACAAABDAA. If we assume that each letter appears
independently within a message according to the following
probabilities:

P (A) =
1
2
, P (B) =

1
4
, P (C) =

1
6
, P (D) =

1
12

then certain messages are much more likely to occur than
others (DDDDDDDDDD is very unlikely, for example). It
makes intuitive sense to choose an encoding scheme that
takes advantage of this non-uniformity. With this in mind,
Shannon introduced the idea of entropy to quantify the average
number of symbols required to store or send any such message
(Shannon, 1948; Cover and Thomas, 2006c). In his formulation,
information is simply I (X) = −log2 (P (X)) bits, which is the
number of binary digits required to store a message that occurs
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with probability P (X). Due to its inverse relationship with
probability, information is a measure of epistemic surprise
relative to expectation, and entropy is just the expectation of the
information:

H (θ) , E [I (X)]

The average total amount of information in a message of N
symbols is simply NH (θ). In our example,

H (θ) = −
∑

x∈{A,B,C,D}

P (X = x) log2 (P (X = x)) = 1.73 bits

Shannon’s source coding theorem proves that the entropy
defines the minimum possible number of bits that can be used
to represent one symbol from our messages without losing
information. For this value of entropy, the average information in
a 10-symbol message would be 17.3 bits. If we had assumed that
all letters were equally likely, then entropy would be 2 bits and
the average 10-symbol message would be 20 bits. As this example
demonstrates, the source coding theorem implies that data from
different distributions can be stored with differing amounts of
information. The question is how to design an encoding scheme
that takes advantage of this theorem, and minimizes the number
of bits utilized.

According to the source coding theorem, an encoding scheme
is efficient if messages are, on average, transmitted with a number
of bits approaching the entropy of the source (Shannon, 1948;
Barlow, 1961; Atick, 1992; Cover and Thomas, 2006a; Sterling
and Laughlin, 2015). Efficient codes specify messages using the
minimum possible number of bits and do so by removing
predictable information.

To get a sense of what this means in practice, consider
representing our symbol alphabet using a simple binary encoding
scheme:

A 00

B 01

C 10

D 11

Transmitting a letter/symbol with this scheme requires 2
bits, which is more than the theoretical minimum of 1.73 bits
implied by the source coding theorem. What exactly makes this
code inefficient? The answer is redundancy: messages transmitted
with this code are, on average, predictable. To see this, consider
transmitting a 0 for the first bit. Since P (A) = 1

2 and P (B) = 1
4 ,

the probability that the second bit will also be a zero is 2/3. A more
efficient code would reduce such redundancies.

Formally, Shannon redundancy is given by Atick (1992):

R = 1−
H (θ)

C

where C = 2 bits is the average message length in our
encoding scheme. The redundancy is always between 0 and 1,

with a perfectly efficient code having H (θ) = C and R = 0. In this
case, C = 2 and H (θ) = 1.73, so R = 0.135.

Consider an alternative 3-bit encoding scheme:

A 0

B 10

C 110

D 111

Intuition might suggest that adding an extra bit will decrease
efficiency, but this is incorrect when we consider the underlying
message-generating process. While C and D both require 3 bits
to transmit, this relative increase in message length might be
compensated by the fact that the most common symbol, A,
requires only 1 bit. For the entire 3-bit scheme:

C = P (A)×
(
1 bit

)
+ P (B)

×
(
2 bits

)
+ (P (C)+ P (D))×

(
3 bits

)
= 1.75 bits

The redundancy is now R = 0.011, an order of magnitude
smaller than the 2-bit scheme. As long as the statistics remain
stationary, this 3-bit scheme represents a very efficient code to
transmit our messages and illustrates the fundamental principle
of efficient coding: use relatively fewer symbols to encode
prevalent/expected messages and relatively more symbols to encode
rare/unexpected messages (Cover and Thomas, 2006a).

Our example also demonstrates the principle that deviations
from uniformity decrease entropy (1.73 bits is less than the
2 bits of a uniform distribution). As more complex statistical
dependences are added to the source, entropy often drops even
more. Consider for example a Markov chain with the following
transition probability matrix, T:

A B C D

A 0.1 0.7 0.1 0.1

B 0.1 0.1 0.7 0.1

C 0.1 0.1 0.1 0.7

D 0.7 0.1 0.1 0.1

The transition matrix provides conditional probabilities such
as P (B | A) = 0.7. This Markov chain generates sequences
that tend to repeat the pattern ABCD, so neighboring
message elements are no longer statistically independent
(P (AB) 6= P (A) P (B)). According to the mathematics of
Markov chains, the asymptotic probability of element occurrence,
π, solves the equation π = πT. Thus, π is the left eigenvector
of the transition matrix, whose corresponding eigenvalue is 1. In
this case,

π (X) =


0.25, X = A
0.25, X = B
0.25, X = C
0.25, X = D
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This is known as the stationary distribution of the Markov
chain, representing how often we expect each symbol to occur
regardless of its position within the message. For Markov chains,
the so-called entropy rate becomes (Cover and Thomas, 2006d):

H (θ) , −
∑

x∈{A,B,C,D}

π(X = x)

∑
y∈{A,B,C,D}

P
(
Y = y|X = x

)
log2

(
P
(
Y = y|X = x

))
For the present example:

H (θ) = 1.357 bits

This represents a significant reduction in entropy compared
to the 2 bits of a 4-symbol uniform distribution, brought
about by the statistical dependence between neighboring message
elements. A is now predictive of B, and B of C, etc. despite each
letter being equally likely overall.

An efficient code for this Markov distribution might look like
this:

A B C D

A 10 0 110 111

B 111 10 0 110

C 110 111 10 0

D 0 110 111 10

If the previous symbol was an A and we receive a 0, the
encoding matrix tells us that the second symbol must be B.
After that, we get another 0, so C. Here is an example sequence
generated by this Markov process and its corresponding binary
representation (assuming all messages start with A):

(A) BCBCDBABCCDCDA
00111001101110010011100

In the absence of noise, we can perfectly reconstruct the
original message from its binary counterpart. The average, long-
run per-symbol message length is:

C = P (A | A)× 2+ P (B | A)× 1+ P (C | A)

×3+ P (D | A)× 3 = 1.5 bits

Redundancy is therefore R = 0.096. There is still some room
for improvement, but this predictive coding scheme is much
more efficient than schemes that ignore the statistical dependence
between neighboring elements (Elias, 1955; Huang and Rao,
2011; Spratling, 2017). As before, an efficient code uses more
information to represent unexpected events, but inclusion of an
ordinal (or temporal) relationship changes our interpretation.
Now, our efficient code uses more information (more bits) to
represent prediction errors relative to expectation: when D comes
after C, we expect that and use only 1 bit. We do not expect A to
follow C and use correspondingly more bits (3) when this occurs.

This is precisely the predictive coding algorithm as originally
proposed for efficient transmission of telecommunications data
(Elias, 1955). Figure 1 shows how predictive coding might
be used to efficiently transfer information, including in a
neural environment.

To conclude, it is worth noting that efficient coding is
perfectly valid in the presence of internal noise, such as when
bits randomly flip during transmission. If the original encoding
scheme is optimal but bits flip randomly during transmission,
then information is lost at the receiving end. This is no longer
an efficient code by definition, so to account for noise, efficient
codes ultimately represent a trade-off between minimizing the
average message length and preserving redundancy to be robust
to noise (Atick, 1992; Atick and Redlich, 1992; van Hateren,
1992; Dong and Atick, 1995; Simoncelli, 2003). Efficient coding
is therefore typically formalized as a maximization of mutual
information between sensory inputs and neural responses, rather
than a minimization of redundancy (Doi et al., 2012). This
encourages neural codes that have low redundancy, but also
high discriminability of different stimuli with low trial-to-trial
variability for the same stimulus. Many authors include an
additional energy or metabolic constraint to encourage some
form of sparseness in the ultimate solution (Olshausen and Field,
1996; Chalk et al., 2018; Ocko et al., 2018).

Lessons for Predictive Coding in the
Nervous System
Lessons from this primer relevant to understanding temporal
processing in the nervous system are: (1) Predictive coding
is a direct consequence of efficient coding, particularly when
applied to sequential or autocorrelated data. (2) A code that is
efficient for one statistical distribution is inefficient for other
distributions, implying that neural codes should be optimized
for the natural environment and ought to adapt to changing
environmental statistics to maintain efficiency. (3) To efficiently
encode sequential data, it is necessary to learn sequence order
and, if extended into the temporal domain, timing as well.
Prediction emerges naturally as a consequence of efficient coding
without requiring a separate representational framework.

The theory suggests that significant energy savings are
possible. To achieve this, however, requires knowledge of
the distribution of sensory inputs, ideally even the joint
distribution of inputs and motor outputs. But, the process
of learning the relevant distributions often falls beyond
the purview of traditional efficient coding theory. Neural
structures supporting efficient coding can, in principle, develop
generationally through evolution (Zador, 2019) or within
a lifetime through unsupervised or self-supervised learning
algorithms (Oja, 2002; Hosoya et al., 2005; van den Oord
et al., 2018; Bakhtiari et al., 2021; Zhuang et al., 2021). It
should be noted that there is some terminological ambiguity
around the phrase “predictive coding,” which often refers
to specific unsupervised learning algorithms, premised on
various assumptions about neural structure and function (Rao
and Ballard, 1999; Friston, 2005; Huang and Rao, 2011;
Spratling, 2017; Whittington and Bogacz, 2019; Grossberg, 2021;
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FIGURE 1 | (A) This cartoon illustrates how data can be efficiently transferred between a source and receiver by using a predictive coder to first remove and then
recover redundant information. Ideally, and in the absence of internal noise, data transmitted between source and receiver is fully compressed with no redundancy or
predictability. While this diagram is based on efficient coding theory as formalized for data transfer and storage in telecommunication systems, the same principles
may apply to neural circuits as well. (B) A simple model illustrating how a predictive coder could be implemented by a neural circuit. Output neurons (green) receive
excitatory inputs and a delayed inhibitory input transformed by a weight matrix A (orange-to-green connections). Neurons at the output transmit the residual
difference between the current input, xt, and the predicted input, Ax( t−1).

Millidge et al., 2021). These do not necessarily comport with
Shannon’s efficient coding formalism. Further adding to the
ambiguity, predictive processing is often described as a general
principle of cortical function, encompassing development,
learning, and efficient neural encoding (Wiskott and Sejnowski,
2002; Bialek et al., 2007; Palmer et al., 2015; Keller and Mrsic-
Flogel, 2018; Singer et al., 2018; Bakhtiari et al., 2021). Here,
we generally refer to predictive coding as a way to encode
and compress data from certain distributions, rather than as a
learning algorithm. To see how efficient coding relates to nervous
system function, we now summarize how the concept has served
our understanding of the retina.

EFFICIENT CODING IN RETINA AND
THALAMUS

From an information-theoretic perspective, neural coding in
retinal photoreceptors is inefficient because the statistics of
natural visual scenes create activity patterns that are highly
correlated in space and time. Any code that simply recapitulates
this structure would be inefficient in space, energy, and resource
utilization (Landauer, 1976; Balasubramanian and Sterling, 2009;
Sterling and Laughlin, 2015). Such inefficiency would then be
exacerbated by spiking RGCs, because spikes are particularly
expensive in terms of energy consumption, and higher average
firing rates require increasingly greater axonal volumes (Laughlin
et al., 1998; Attwell and Laughlin, 2001; Balasubramanian et al.,
2001; Laughlin, 2001; Perge et al., 2009). Space leaving the retina
is very limited (in humans, there are two orders of magnitude
fewer axons in the optic nerve, 106, than there are photoreceptors,
108), so a more efficient representation is advantageous. Attneave
(1954) and Barlow (1961, 1989) were the first to recognize this
and apply Shannon’s theory to neuroscience. Barlow proposed
that RGCs encode and transmit visual information using a simple
efficient coding heuristic: reduce redundancy by generating fewer
action potentials for expected visual inputs and more spikes for
unexpected ones. The efficient code is actually created via filtering

operations in retinal circuits, which throttle firing rates and
decrease redundancy by removing many of the input correlations
imparted by natural scene statistics (Atick and Redlich, 1992;
Meister and Berry, 1999; Pitkow and Meister, 2012).

Barlow’s hypothesis appears to be approximately correct (see
Meister and Berry, 1999; Balasubramanian and Sterling, 2009;
Huang and Rao, 2011 for reviews). RGCs are effectively linear
predictive coders (Elias, 1955; Srinivasan et al., 1982; Meister
and Berry, 1999; Huang and Rao, 2011; Doi et al., 2012)
with receptive fields resembling those predicted by efficient
coding models (Atick and Redlich, 1992; Doi et al., 2012; Ocko
et al., 2018). In the temporal domain, linear RGC receptive
field filters are biphasic and compute the difference between
recent past and present. Spatially, RGCs have a difference-of-
Gaussians organization that compares luminance between center
and surround regions. In both cases, RGCs can be understood
to predict correlations, responding minimally when they are
present (e.g., when luminance patterns are constant in time
or uniform across the spatial extent of the receptive field)
and responding maximally to expectation violations (e.g., when
luminance changes rapidly in space or time). These retinal filters
have even been shown to adapt over rapid timescales to more
efficiently encode visual information from novel distributions
(Hosoya et al., 2005). Beyond the retina, relay neurons in the
dLGN continue this process, especially in the temporal domain
(Saul and Humphrey, 1990; Hartveit, 1992; Dong and Atick, 1995;
Dan et al., 1996) where whitening occurs in a manner consistent
with the efficient coding hypothesis (Dong and Atick, 1995; Dan
et al., 1996). For example, the efficient coding model of Dong and
Atick explains the existence of lagged and non-lagged dLGN relay
neurons, as observed in physiological data (Hartveit, 1992).

Despite this evidence, it is not clear that the same principles are
sufficient to explain the early visual system in all its complexity.
One common critique is that information theory derives from
the general principle that all information is created equal. In the
real world, some sources of information are more relevant to
an organism than others. Frogs, for example, are better served
by a visual system evolutionarily tuned to detect and locate flies
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than by an abstract requirement to efficiently compress all visual
information equally.

Several groups have proposed variations on efficient coding
that call for more nuanced perspectives by taking messy biological
imperatives and constraints into account. Balasubramanian
and Sterling (2009) and Sterling and Laughlin (2015), for
example, argue that it is advantageous to minimize per-bit
computational costs, even while acknowledging that some
information sources may be relatively privileged due to their
ethological importance. These researchers and others have gone
to great lengths to measure the computational cost of information
transmission in terms of quantities like axonal volume and ATP
consumption. Their more holistic approach leads to a variety of
predictions regarding the structure and function of the retina
that are well-supported by empirical data (Borghuis et al., 2008;
Balasubramanian and Sterling, 2009; Perge et al., 2009; Gjorgjieva
et al., 2014).

Another variation, proposed by Zhao et al. (2012), Teulière
et al. (2015), Lelais et al. (2019), and Eckmann et al. (2020)
takes the name of active efficient coding and is built around
an interesting observation: since environmental statistics are
partially governed by the animal’s own behavior, changing
behavior can make a neural code more or less efficient. This
idea leads to a variety of empirical predictions regarding the
relationship between sensation and action. Teulière et al. (2015)
have shown, for example, that both vergence and smooth pursuit
eye movements can be learned de novo in artificial systems that
optimize coding efficiency by simultaneously adjusting both the
neural representation and eye movements (Zhao et al., 2012;
Lelais et al., 2019).

Finally, and particularly relevant to our focus on time, is
a hypothesis proposed by Bialek et al. (2007). Efficient codes
compress data down to Shannon’s source coding limit. Beyond
that limit, rate-distortion theory provides a principled way to
select certain information for deletion. Inspired by this idea
and a related framework known as the information bottleneck
(Tishby et al., 2000), Bialek et al. suggested that sensory systems
preferentially delete information about the past. They reasoned
that predictive information (about the future) is uniquely
useful for action and decision-making, and should therefore be
prioritized. Such predictive information, which is inconsistent
with traditional models of visual processing, has been observed
in the early visual system of various species (Palmer et al., 2015;
Salisbury and Palmer, 2015; Sachdeva et al., 2021; Wang et al.,
2021).

While the retina and dLGN provide some of the best support
for the idea that neural circuits are shaped by environmental
statistics to efficiently encode information, there is evidence that
similar considerations may hold in other visual areas as well.

EFFICIENT CODING IN PRIMARY VISUAL
CORTEX

Information sources that exhibit statistical dependences across
space and time can be compressed by efficient encoding schemes.
In the visual system, part of this process occurs in the retina

and dLGN, which perform spatial and temporal decorrelation
relative to the statistical structure of natural visual inputs
(Srinivasan et al., 1982; Dong and Atick, 1995; Dan et al., 1996;
Hosoya et al., 2005; Huang and Rao, 2011; Pitkow and Meister,
2012). However, temporal decorrelation appears limited to brief
timescales, on the order of ∼30–300 ms, and processing is
largely linear, subtracting the mean and removing pairwise
correlations (though see, for example, Palmer et al., 2015 for
more complex processing in the retina). Longer-timescale and
higher-order correlations present in natural visual inputs survive
the initial processing stages. This suggests that information
reaching V1 is still inefficiently encoded. Regardless of the
ultimate computational goal or task, an inefficient representation
is in general more energetically costly and more difficult for
downstream regions to process, as argued by Barlow (1990). V1
may therefore construct a more efficient representation, acting
on longer timescales and reducing higher-order correlations.
Examples of higher-order correlations in natural vision are edges
in the spatial domain (representing correlations between spatially
adjacent center-surround receptive fields) and brief trajectories in
the temporal domain [which V1 can rapidly learn to predict (Xu
et al., 2012)]. Canonical V1 receptive fields can be understood to
operate on both forms of correlation in an efficient coding sense.
“Edge detectors” in V1 eliminate spatial correlations found in
natural scenes by integrating information across multiple dLGN
inputs (Olshausen and Field, 1996; Bell and Sejnowski, 1997).
V1 neurons with “space-time inseparable,” or direction-selective
receptive fields, similarly eliminate higher-order correlations
associated with motion trajectories.

Predictive coding models consistent with efficient coding have
been used to explain both classical and extra-classical receptive
field properties of V1 neurons, especially in the spatial domain
(Spratling, 2010; Huang and Rao, 2011; Keller and Mrsic-Flogel,
2018). The well-known Rao and Ballard (1999) hierarchical
predictive coding model learns V1-like receptive fields when
trained on natural scenes, showing both classical Gabor-like
spatial structure and extra-classical effects like end stopping
(neural firing evoked by elongated bars increases with bar length
up to some critical length, beyond which firing rapidly decreases).
Cells with this property were originally called hypercomplex
by Hubel and Wiesel (1965), but are now termed end stopped
(Gilbert, 1977). Such contextual effects are often consistent with
efficient coding models but difficult to reconcile with strictly
feedforward models of visual processing (Schwartz et al., 2007;
Huang and Rao, 2011; Carandini and Heeger, 2012; but see
Priebe and Ferster, 2012 for an alternative explanation of some
contextual effects).

In the following sections, we review evidence for temporal
efficient coding in V1, especially focusing on data from rodents.

Visual Flow
Visual flow caused by self-motion is responsible for large
amounts of neural activity in the early visual system. Given
the canonical properties of neurons in V1 (acting as edge
detectors . . . responding to increments or decrements of light
but not generally to steady-state luminance sources . . . showing
direction selectivity), an animal’s natural motion through the
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FIGURE 2 | Movement in the direction shown causes objects in the visual
field to progress along predictable trajectories. Right: A tree that is in the
distance at time t1 becomes larger and moves toward the right at later time
points. Efficient coding suggests that the visual response resulting from this
expected apparent motion in visual space ought to be relatively small. Left: If
this progression were scrambled in time, the resulting “unexpected optic flow”
would cause the same visual images to produce relatively larger neural
responses signifying an expectation violation.

environment, along with associated body and head-orienting
movements, ought to evoke significant firing. In addition to
the purely visual information evoked by such behaviors, body
movements associated with locomotion and head orienting
also evoke activity in rodent V1 (Vinck et al., 2015; Stringer
et al., 2019; Guitchounts et al., 2020; Parker et al., 2022). This
activity persists even in the dark, and may represent corollary
discharge signals from motor areas or perhaps even predictions
of the sensory consequences of movement (Lappe et al., 1999;
Shadmehr et al., 2010; Leinweber et al., 2017; Sawtell, 2017). The
predictable spatiotemporal correlations created by visual flow,
head movements, and locomotion therefore make these strong
candidates for efficient predictive coding.

There are at least two different ways in which efficient
coding may shape cortical responses to natural visual flow.
The first is by forming compressed representations of flow-
like inputs by eliminating statistically predictable dependences
between neighboring moments in time (as in our example
discussing efficient encoding of Markov chains). Second, though
related, external motion relative to the animal creates an
unexpected visual input with respect to locally predicted visual
flow. In both cases, efficient representations would be expected
to generate relatively larger responses when unexpected flow
patterns violate spatiotemporal predictions (Figure 2). Even
if the system does not take advantage of such a mechanism
to conserve energy, it could still benefit from knowing the
distribution of flow signals, which necessarily involves some
ability to predict the future.

A series of papers by Keller and colleagues has extensively
studied visual flow in the context of predictive coding (Keller
et al., 2012; Zmarz and Keller, 2016; Attinger et al., 2017;
Leinweber et al., 2017; Jordan and Keller, 2020). They first looked
at dense, topographically organized projections from secondary
motor cortex to V1 layer 2/3, finding functional evidence for

corollary discharge and visual flow feedback transmitted to V1
(Leinweber et al., 2017). They also discovered mismatch receptive
fields in V1, which seemed to signal prediction errors relative
to the expected visual flow: about 10–20% of recorded neurons
were tuned to the properties of visual flow perturbations, for
example video playback halts during active, coupled locomotion
(Zmarz and Keller, 2016). In the latter study, mice were
trained to navigate a virtual reality environment, with their
movement on a spherical treadmill controlling motion in the
environment. This closed-loop coupling between the animal’s
motion and its perceptual experience were crucial to the
generation of mismatch signals (Keller et al., 2012; Vasilevskaya
et al., 2022).

A more recent paper questioned these results, however,
arguing that mismatch signals could be explained by canonical
V1 response properties such as locomotion gain, and orientation
or direction selectivity (Muzzu and Saleem, 2021). The authors
presented mice with visual-flow-mimicking drifting gratings that
randomly halted. A subset of neurons responded robustly to
the perturbations. Responses were enhanced by locomotion and
congruent with the neurons’ orientation selectivity. Muzzu and
Saleem also reasoned that a mouse’s tendency to move forward
would, under efficient coding, establish a preference for front-to-
back optic flow, but they found no such preference. While this
result is interesting and suggestive of further experimentation, it
is not necessarily conclusive. Most importantly, the experiment
was performed in open loop with drifting gratings, quite distinct
from closed-loop natural visual flow inputs. Predictive and
efficient coding models predict that violations of expected visual
flow will generate mismatch or error signals, based on the
statistics of the natural environment. It is very difficult to know
how the system ought to respond to non-natural visual flow
inputs, especially when those are decoupled from the animal’s
movement. As argued in a recent rebuttal to the Muzzu and
Saleem paper from the Keller lab (Vasilevskaya et al., 2022),
closed-loop coupling between locomotion and visual flow is
crucial: responses to coupled perturbations (termed mismatches)
were at least twice as large as responses during yoked open-
loop perturbations (after controlling for locomotion speed). This
difference between closed- and open-loop perturbations was
absent in mice raised in an environment with no visuomotor
coupling (Attinger et al., 2017). Furthermore, visual inputs
during complex behaviors, for example rearing and turns, occur
in all directions and so a preference for front-to-back visual flow
is not necessarily expected.

As this example suggests, tests of efficient and predictive
coding should be performed with stimuli matched to the animal’s
natural environment, for example with a mouse freely exploring
a nest or grassy field, or after sufficient training for the system
to have learned the statistics of an unnatural environment
(assuming such learning is possible). Indeed, a recent large-scale
survey of neural activity across the mouse visual system showed
substantial differences in neural tuning properties and overall
activity in response to different types of visual input (De Vries
et al., 2020). Many cells were unresponsive to entire classes of
visual stimuli, such as natural scenes, while responding robustly
to other classes, like drifting gratings. A related example comes
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from a study in Michael Stryker’s lab (Dyballa et al., 2018).
Dyballa et al. analyzed the responses of V1 neurons to flow-
like videos designed to imitate a mouse’s motion through grass
and found robust visual responsiveness to spatial frequencies as
high as about 1.5 cycles per degree, significantly greater than
traditional visual acuity estimates of ∼0.5 cycles per degree
measured using sinusoidal gratings (Porciatti et al., 1999; Prusky
et al., 2000; Niell and Stryker, 2008). This difference may
represent an in-vivo demonstration of the principle that codes
are efficient only for the statistical environment to which they
are matched. For future studies of efficient coding, experiments
like those performed in the Keller and Stryker labs may
provide a good compromise between experimental tractability
and naturalistic stimuli/behavior.

Sequential Visual Data
Real-world information streams exhibit both ordinal and
temporal statistical dependences. A dancer might observe the
continuous sequence of body movements required to perform
a routine, or a driver might learn the discrete order and timing
of turns along a route. Natural data streams contain both order
and precise timing information. Any accurate model of these
streams must describe how often different elements occur, what
order they follow, and when they occur relative to each other.
If the resulting codes are efficient, unexpected stimuli should
evoke excess activity, or prediction errors, relative to expected
stimuli. Depending on the nature of the encoding, prediction
errors could be elicited by unexpected elements introduced to a
sequence, expected elements rearranged within the sequence or
omitted altogether, or expected elements presented at unexpected
times. The literature contains a variety of terms describing
these effects, including surprise-related enhancement, mismatch
negativity, and prediction error. Ideally, responses would scale as
the log of event probability, −log[P (X)] (Shannon, 1948; Cover
and Thomas, 2006a; Stone, 2018), though this will ultimately
depend on the details of the nervous system’s model of its natural
environment and the ability of a non-negative, discrete signal
(spikes) to encode probabilities. Note that contrived experimental
sequential stimuli may evoke prediction errors, but only if the
system has previously learned the frequency, order, and/or timing
of those sequences.

Experimental sequences of discrete stimuli are usually
designed to be predictable, sometimes obeying a Markov chain,
and have provided evidence to support efficient coding models.
Vinken et al. (2017) recorded single-unit responses in rat V1 and
latero-intermediate area (LI) to random sequences of standard
(90%) and oddball (10%) images. In this experiment, sequence
order was irrelevant, so the thing to be learned was element
frequency. In both areas, responses to standard elements were
suppressed in a manner consistent with known adaptation
mechanisms, but oddball elements drove significantly greater
responses than control elements only in area LI. This effect
was difficult to explain through adaptation. No such oddball
response was observed in a similar experiment performed in
monkey inferotemporal (IT) cortex (Kaliukhovich and Vogels,
2014). However, both studies exposed animals to sequences
only during individual recording sessions. When monkeys were

passively exposed to sequences containing ordinal information
for much longer periods of time, there was evidence in IT for an
enhanced response to order-violating stimuli (Meyer and Olson,
2011; Muckli et al., 2020). In other sensory modalities, especially
audition, similar effects have been observed (Rubin et al., 2016;
Heilbron and Chait, 2018; Maheu et al., 2019; Denham and
Winkler, 2020). Given the more strictly temporal nature of
auditory information, models in that modality may provide a
source of inspiration for studies of visual temporal processing.

Many related studies have shown evidence for cortical novelty
responses across brain regions, with wide variation in the
effort to control for adaptation (Kato et al., 2015; Makino and
Komiyama, 2015; Garrett et al., 2020; Poort et al., 2021; Schulz
et al., 2021; Homann et al., 2022; Montgomery et al., 2022).
In most cases, consistent with efficient coding, novel stimuli
evoke more spiking activity than familiar. However, some studies
have reported that familiar drive larger responses than novel
stimuli. An example of this was seen in V1, where Gavornik
and Bear (2014) repeatedly presented mice with a sequence of
rapidly flashed sinusoidal gratings. Over a learning period of
5 days, the magnitude of visually evoked potentials increased
dramatically in response to the trained sequence. Sequences
violating trained expectations (including novel order, novel
timing, and omitted elements) elicited responses that could be
interpreted as error signals, but these were smaller than responses
to the trained sequence. This result could reflect the fact that
local field potentials largely represent synaptic currents in the
dendrites (e.g., inputs) rather than neural spiking (e.g., outputs,
Katzner et al., 2009). In more recent experiments in our lab,
we have found that expectation-violating stimuli tend to elicit
more spiking activity (Price et al., 2022). In addition to this
unsupervised learning paradigm, there is also evidence for timing
information in V1 following reinforcement learning (Shuler
and Bear, 2006; Hangya and Kepecs, 2015; Levy et al., 2017).
Interestingly, there is evidence that both the Gavornik and Bear
sequence learning and Shuler and Bear reward timing paradigms
(Chubykin et al., 2013) require cholinergic signaling, suggesting
that this neurotransmitter may be uniquely required for plasticity
that encodes temporal expectations into cortical circuits.

Other studies have found evidence for ordinal or temporal
information in V1 using continuous-time stimuli (rather than
discrete as above). One recent series of papers on “perceptual
straightening” are particularly relevant to addressing whether the
cortex produces efficient codes of spatiotemporal information
(Hénaff et al., 2019, 2021). The authors argue that prediction
is a fundamental cortical computation, and that it is easier
to make predictions in V1 if the complex pattern of spike
trajectories generated by the retina are “straightened” so that
they evolve according to more-nearly linear dynamics. They
find evidence for straightening in both human psychophysics
experiments and macaque V1 (though the monkey data was
recorded under anesthesia). Another study found that navigation
within a virtual environment creates responses in mouse V1
that are increasingly predictive of upcoming stimuli, such that
omissions of expected stimuli drive high activity (Fiser et al.,
2016). This work ties into recent evidence for a strong functional
relationship between V1 and hippocampus in the mouse, with V1
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showing spatial modulation in virtual environments consistent
with the hippocampal representation of space (Saleem et al.,
2018; Diamanti et al., 2021). Interestingly, the Gavornik and Bear
result was recently shown to require an intact hippocampus for
plasticity induction (Finnie et al., 2021). Overall, these results
blur the distinction between visual coding and memory and
illustrate how difficult it is to establish an experimental paradigm
to test the efficient coding hypothesis in cortex and based on
visual inputs alone.

Adaptation
Adaptation describes the time-varying behavior of neurons as
they adjust their firing properties to changes in environmental
statistics. A classic example is the change in dynamic range of
retinal photoreceptors in response to changes in overall light
intensity (Normann and Perlman, 1979; Carandini and Heeger,
2012). After adapting to a dark environment, photoreceptor
responses saturate at daytime light intensities and are thereby
rendered temporarily unable to transmit information at these
higher intensities (Normann and Perlman, 1979). This is
precisely the behavior predicted by efficient coding, since it allows
neurons to maximize information throughput under changing
conditions. Comparable effects have also been observed in
blowfly H1 neurons under a variety of experimental conditions,
where adaptation provably maximizes information transmission
(Brenner et al., 2000; Fairhall et al., 2001). Adaptation, at least
in the very early visual system, can therefore be understood as a
consequence of efficient coding principles (Barlow and Földiák,
1989; Meister and Berry, 1999; Wainwright, 1999; Weber et al.,
2019).

Natural scenes are non-stationary and dynamic at various
timescales. In context of this review, we are primarily interested
in how patterns in the temporal domain create probabilistic
dependences between different moments in time and how these
can be used to make predictions. Efficient coding suggests
neural circuits should learn these dependences and remove them
from the neural code, creating time-invariant representations
of objects and other environmental features and allowing for
prediction of future states. In this framing, adaptation can be a
confound to tests of efficient or predictive coding.

As a simple illustration, consider an experiment that presents
a sequence of two visual stimuli where each element presentation
is separated by 100 ms, for example AAABABBBBBAAB. Due
to synaptic depression and other known forms of adaptation
(Carandini and Ferster, 1997; Chung et al., 2002; Blitz et al.,
2004), cortical responses to one particular stimulus will often
decrease with repeated presentations, e.g., BBBBB. The response
to A following this run will be greater not only than the
last response to B but also than the average response to A
(which includes diminished responses from runs of A’s). Paired-
pulse-like facilitation may also occur for patterns like AA or
ABA, creating even more complex response profiles. The wide
range of adaptation-like mechanisms observed in neural tissue
therefore present an obvious challenge to tests of efficient and
predictive coding, because the former do not seem to require
knowledge of an underlying probability distribution. At the

FIGURE 3 | Neural adaptation caused by repetition of a single stimulus over a
short period of time can cause neural responses to decrease in magnitude.
Relatively large responses, as when A follows BBBBB, can be interpreted as
signifying either a prediction violation or a simple lack of adaption in the
population of neurons selective for A. Depending on the input statistics, these
responses could be efficient, as expected stimuli (assuming we expect
repeats) are represented with less activity than unexpected stimuli. For this
reason, it is not always clear if adaptation is a confound to studying efficient
temporal coding, a mechanism implementing it, or some mixture of the two.

same time, we know adaptation can serve the principle of
efficient coding, as described above and outlined in an excellent
review (Weber et al., 2019). Adaptation may therefore provide
a mechanistic implementation of efficient coding for certain
stimulus distributions, without the need for any form of long-
term plasticity to encode temporal relationships (see Figure 3).
This may be demonstrated by a recent paper showing that
novel stimuli presented within repeatable sequences evoke excess
activity, as predicted by efficient coding (Homann et al., 2022).
The proposed mechanism, however, was consistent with a
straightforward adaptation model. In certain cases, it is possible
to dissociate predictive coding from adaptation (Tang et al.,
2018), though not all adaptive mechanisms are known or
understood, and empirical predictions for predictive and efficient
coding in cortical circuitry are not as well developed as they have
been in the retina and dLGN.

CRITICISMS

Though efficient coding and information theory are clearly
relevant to neural computation, there is much debate regarding
the extent to which these ideas explain what we see in the
nervous system, especially beyond the retina and dLGN. We
will walk through a point-counterpoint debate that emphasizes
three prominent criticisms of efficient and predictive coding
as theories of cortical function (see Simoncelli, 2003 for a
complementary perspective). (1) The massive expansion in the
number of neurons from dLGN to V1 would appear to increase
redundancy, contrary to the efficient coding hypothesis. (2) There
is functional evidence that contradicts predictive coding theory.
(3) Efficient coding makes very precise, testable predictions in
certain contexts, but, in general, information-theoretic measures
are very difficult, if not impossible, to estimate (Paninski,
2003) making the overall utility of applying efficient coding to
the cortex unclear.

The first criticism is suggestive of the inherent difficulty in
translating information-theoretic ideas to the nervous system.
Unlike a telephone system, where engineers need only concern
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themselves with transferring data efficiently, cortical circuits
must both encode information and operate on it. For computer
hard drives, efficiency is defined by minimizing the average
number of bits utilized while preserving information from known
sources of noise. By comparison, efficiency in the nervous system
might mean minimizing the average number of spikes per second
while preserving information, or maximizing the average number
of bits per molecule of ATP, or maximizing bits per volume
of axon (Laughlin et al., 1998; Balasubramanian and Sterling,
2009; Sterling and Laughlin, 2015; Stone, 2018). In the retina,
Balasubramanian and Sterling (2009) proposed the following
instantiation of efficient coding theory: “Given the information
required for behavior, the retina minimizes its computational
costs.” By precisely measuring the metabolic and computational
costs of information processing under certain conditions, these
researchers and others (Laughlin et al., 1998) have found that
each additional bit of information transmitted along the optic
nerve requires correspondingly more neural resources, space, and
energy, creating a dramatic law of diminishing returns (Perge
et al., 2009). This explains many of the functional properties
of the retina, including its differentiation into multiple parallel
processing streams (Borghuis et al., 2008; Balasubramanian and
Sterling, 2009; Gjorgjieva et al., 2014; Sterling and Laughlin,
2015; Ocko et al., 2018). Overall, such considerations reflect
the subtlety of the problem and the need for very precise
specifications of the theory. In V1, the fact that we find more
neurons than in dLGN does constitute an increase in physical
resources such as space and protein molecules, but it could
well cause a decrement in the average number of spikes or
in the redundancy of messages transmitted beyond V1. The
expansion might also reflect a requirement for additional neural
resources in the cortex as V1 integrates information across
multiple modalities, or reflect cells that are being used for other
cortical functions.

Regarding the second criticism, there are many examples in
the literature that seem to contradict efficient and predictive
coding. One such example comes from a study by Benucci et al.
(2009), where the authors studied neural responses to sequences
of oriented gratings in anesthetized cat visual cortex. Membrane
potentials measured in response to the sequences were highly
predictable from a simple linear model of the responses to
individual gratings. Thus, the temporal context in which the
gratings were displayed was irrelevant. The authors therefore
concluded “spatial and temporal codes in area V1 operate largely
independently.” A more recent study by Solomon et al. looked
at neural responses in awake macaque and human visual cortex
in response to rapidly flashed sequences of sinusoidal gratings
(Solomon et al., 2021). They showed standard sequences on 80%
of trials and deviant sequences on 20%, expecting to observe
prediction errors in response to deviant stimuli. Instead, they
found minimal evidence for prediction errors, with the responses
to deviant and standard stimuli being almost identical.

Both studies establish crucial limitations to efficient and
predictive coding, but do not invalidate the theories. Importantly,
the studies presented sequences of non-natural sinusoidal
grating stimuli within individual recording sessions, leaving
little time for the neural system to learn the new statistics.

Efficient and predictive coding both suggest that expectations
are either evolved or learned relative to the natural visual
environment, so a random sequence of sinusoidal gratings is
always novel/unexpected from that perspective (regardless of
whether it came from a standard or deviant set). There is no
a priori reason to expect the visual system would learn to
differentiate standard from deviant stimuli within a recording
session. The Solomon et al. result therefore might suggest
a limitation to predictive coding: monkeys and humans do
not seem to learn non-natural sequences of stimuli on a
timescale of minutes to hours (though see also Ekman et al.,
2017, which demonstrated anticipatory cue-evoked pre-play of
expected visual trajectories in human V1 after a brief period
of training). Given more exposure time, they may or may not
learn such sequences, depending on the ability of the visual
system to flexibly adapt and modify its internal expectations. The
use of anesthetized cats in Benucci et al. result is particularly
problematic from an interpretive standpoint, since anesthesia
seems to be preferentially disrupt cortical processing (Voss et al.,
2019). The absence of contextual modulation may reveal little
about how the awake brain exploits temporal relationships to
make predictions.

The third criticism is perhaps the most difficult, as
demonstrated by a simple thought experiment. Suppose we
hypothesize that V1 compresses information arriving from dLGN
before sending it to V2 and that we want to test this hypothesis in
the spatial domain. We might devise an experiment to measure
the entropy of dLGN and V1 projection neurons in response
to natural scenes. The summed entropies of all V1-projecting
dLGN neurons is the average “message length” of that population,
likewise for the summed entropies of V1 neurons transmitting to
V2. Formally, our hypothesis would be:

N∑
i = 1

H(Li) >

M∑
j = 1

H(Vj)

I(S; L) ≈ I(S;V)

where H(Li) is the entropy of the i-th dLGN projection neuron
(of N total), H(Vj) is the entropy of the j-th V1 projection
neuron, and I(S; L) is the mutual information between sensory
inputs and the population response in dLGN. Input information
is preserved at the output of V1 but in a compressed form. In
theory, we would need to record from a very large number of
neurons for a very long time to test this hypothesis. Accurate
estimation of the individual entropies is tractable under certain
assumptions, but estimation of the mutual information would
be impossible in any realistic neuroscience experiment due
to the curse of dimensionality (Paninski, 2003). Were we to
include the temporal domain as well, by showing natural movies
for example, neural responses at different timepoints would
no longer be independent. Entropies and mutual information
become exponentially more difficult to estimate. When you begin
to consider the complexity of the circuit, rife with feedback and
interconnections, the problem becomes even more difficult to
specify. Therefore, while it is fairly straightforward to devise
hypotheses around efficient coding, it is difficult to see how
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they will ever be tested. This is a fair criticism, but it is not
unique to this specific theory: there is rarely an easy way to
compare neural data to theory. Further, there are many ways to
test ideas of efficient coding. Most are inconclusive or incomplete
individually, but cumulative evidence supporting the theory can
still accumulate over time.

DISCUSSION

One of the things that makes it so difficult to understand
the brain is the mechanistic overlap between computation and
representation. The conscious percept of a particular thought
or idea or image somehow emerges from the combined activity
of populations of neurons, and it is probably correct to say
that the population activity defines the neural code representing
the idea. This same population, however, participates in the
input-output transformations responsible for computation. In
a real sense, computation and representation are inseparable
aspects of neural activity and there are interpretive dangers
in focusing exclusively on either. Given these challenges, it
is natural to question the extent to which a mathematical
framework developed to help optimize data transfer and storage
in engineered telecommunication systems can provide insight
into brain function. This review has highlighted some of the
difficulties in applying information theory to the visual cortex,
and it seems unlikely that this (or perhaps any) theory will fully
explain the brain’s complex neurobiology.

That said, information theory provides a useful framework to
understand how evolutionary pressure toward efficient resource
utilization can create predictive coding schemes with an intrinsic
role for time. The complex, spatiotemporal distribution of visual
information means that if the brain uses an efficient coding
strategy anywhere, visual areas are an ideal candidate. Natural
visual scenes exhibit autocorrelations that are useful for implying
causality and predicting the future or reconstructing the past.
A key insight is that a drive toward efficiency encourages
temporal relationships to be represented in the neural code.
Efficient coding theory also implies that there ought to be
selective pressure to learn approximate space-time distributions
over natural visual inputs and provides an account of how sensory
data ought to be encoded. In particular, neuroscientists may
expect to find evidence that data is compressed by removal of
predictable spatial and temporal information, thus displaying a
degree of spatial and temporal invariance.

The theory also implies that unexpected or unpredictable
patterns ought to elicit error signals that would most likely be
coded by increased firing rates at either the individual neuron or
population level (e.g., an unexpected stimulus could also increase
the size of the response population). Neurons in the retina,
dLGN, and V1 all show functional properties consistent with this
hypothesis (as reviewed above) and higher visual areas may be
consistent with this theory as well (Jehee et al., 2006; Beyeler et al.,
2016; Piasini et al., 2021). An important thing to note is that
predictions are based on the environmental statistics responsible
for creating the internal model, and it is not clear what to
expect when the system is challenged by inputs with different
statistics. This implies that experiments testing neural coding

in the visual system should either use stimuli with naturalistic
statistics or incorporate a period of training sufficient to encode
new statistics into the neural circuits before looking for evidence
of predictive processing.

Based on the current state of the field, there are many
open questions for future research. In our opinion, one
of the first steps should be to more fully characterize the
visual system’s model of the visual environment. To what
extent does that model incorporate the temporal dimension?
On what timescales? Does the system predict the sensory
consequences of the animal’s behavior (i.e., is it a joint model
of inputs and outputs)? To what extent is the model capable
of incorporating new statistics? It is generally a good idea
to dissociate characterizations of the modeled environmental
distribution from determinations of whether that distribution
is efficiently encoded (not least because there are multiple
possible dimensions along which efficiency could be measured).
Most experimental stimuli include spatiotemporal content that
is distinct from the animal’s normal perceptual experience.
If the visual system cares about both space and time, and
is flexible enough to learn, then presentation of these novel
stimuli ought to induce a learning process. Another important
experimental goal is therefore to characterize the extent to which
the visual system can learn novel distributions, the timescale
over which this learning occurs, and the overlap with known
plasticity mechanisms.

We have focused this review largely on work in the early
rodent visual system, but there is a larger body of literature
relevant to this discussion in other brain regions and model
systems, and other experimental paradigms, that could be
adapted to address the issue; for example, the long-standing
hypothesis that "what" and "where" information are processed in
parallel ventral and dorsal pathways in primates (Ungerleider and
Mishkin, 1982; Goodale and Milner, 1992; Milner and Goodale,
2008). A similar division seems to exist in the mouse visual
system as well (Marshel et al., 2011; Garrett et al., 2014; Bakhtiari
et al., 2021; Siegle et al., 2021). This functional segregation
of space-like and time-like pathways leads to the assumption
that while time is explicitly required in the dorsal stream to
process motion, in the ventral stream it is useful only to
integrate over noisy sensory data. Consequently, many visual
processing models work only on static images. This is especially
true for object recognition but also models of efficient and
predictive coding (Olshausen and Field, 1996; Bell and Sejnowski,
1997; Rao and Ballard, 1999; Riesenhuber and Poggio, 1999;
Carandini et al., 2005; Yamins et al., 2014; Cadena et al., 2019;
Sanchez-Giraldo et al., 2019). There are theoretical arguments,
though, that time could be explicitly used for computations
in the ventral pathway. For example, temporal information
can be explicitly useful for object recognition (Stone, 1998,
1999), or to identify kinetic borders when camouflaged objects
move through the visual environment (Cavanagh and Mather,
1989; Layton and Yazdanbakhsh, 2015). This suggests that
experiments manipulating temporal expectation could be used
in both the ventral and dorsal streams to determine the extent
to which object recognition, localization, border assignment,
etc. rely on efficient spatiotemporal coding principles. Given
the approximate homogeneity of cortical circuits in visual and
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non-visual areas, it is likely that the principles used to encode
visual information will be useful to understand general cortical
processing algorithms as well.
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