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Homologous recombination (HR) is a highly conserved DNA repair mechanism that
protects cells from exogenous and endogenous DNA damage. Breast cancer 1
(BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway
by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM,
RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in
cancer, leading to the accumulation of DNA damage and genomic instability known as
homologous recombination deficiency (HRD). HRD can be caused by chromosomal and
subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor
gene promoters. Deficiency in one or more HR genes increases the risk of many
malignancies. Another conserved mechanism involved in the repair of DNA single-
strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase
(PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more
cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain
unrepaired in HRD. The blockade of both HR and base excision repair pathways is the
basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers
displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers,
their efficacy is limited by the development of resistance. In this review, we summarize the
prevalence of HRD due to mutation, loss of heterozygosity, and promoter
hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic,
non-small cell lung cancer, and prostate cancer. The underlying mechanisms and
strategies to overcome PARPI resistance are also discussed.

Keywords: pathogenic mutation, loss of heterozygosity, promoter hypermethylation, DNA repair genes, hereditary
and familial cancer, PARP inhibitor, base excision repair
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1 INTRODUCTION

Homologous recombination (HR) is one of the major pathways
for the repair of DNA double-strand breaks (DSBs) in eukaryotic
cells. Pathogenic mutations in genes encoding HR-related proteins
are associated with the development of certain malignancies,
including breast, ovarian, and other cancers (1). Normal and
cancer cells rely on multiple DNA damage response pathways
that specifically repair different forms of DNA damage. Key
pathways include homologous recombination repair (HRR),
base excision repair (BER), nucleotide excision repair (NER),
mismatch repair (MMR), nonhomologous end-joining (NHEJ),
translesion synthesis (TLS), and interstrand crosslink (ICL) repair
(2, 3). However, these repair pathways are not equally effective in
DNA repair, and some mechanisms are error-prone. For instance,
non-canonical DNA repair systems such as NHEJ, single-strand
annealing, and TLS are activated when the canonical pathways are
deficient (4, 5). In response to DSBs, cells activate the HRR
pathway, which relies on the undamaged sister chromatid as a
template for repair. Because of this reliance on sister chromatids,
HRR is active during the S and G2 phases of the cell cycle and is a
high fidelity and error-free DNA repair pathway (3). By contrast,
in NHEJ, the break ends are directly ligated without a homologous
template, resulting in an error-prone repair pathway that can
predispose to genetic instability (6, 7).

Genomic scars in relation to HR are caused by chromosomal
and sub chromosomal aberrations. Genomic aberrations arise
frommutation, structural copy number aberrations, or structural
rearrangements. Mutations are substitutions (transversion &
transition) or indel (insertion & deletion) mutations, and can
inactivate tumor suppressor genes (TSGs). Structural copy
number alterations can be copy number gain (leading to allelic
imbalance) or copy number loss [leading to deletion, loss of
heterozygosity (LOH), or haplo-insufficiency (one copy of a gene
is deleted or contain loss of function mutation leading to
insufficient level of proteins)]. Structural rearrangements can
be inversion (paracentric), translocation (reciprocal), or
recombination leading to copy neutral LOH events (8).
Frequent copy number alterations are the hallmarks of
homologous recombination deficiency (HRD) and can occur at
the regional or whole chromosome level. Quantification of large-
scale structural variants is used as an indicator of the HRD
phenotype (presence of HRD in sporadic cancers other than
BRCA1 and 2 inactivation), including telomeric allelic imbalance
(TAI: large allelic imbalances extending to the telomere), large
scale transition (LST: number of transitions between large
regions of different allelic states or chromosomal breaks
between adjacent regions of >10 MB), and LOH (large regions
displaying somatic loss of one haplotype, which can be copy
variable as in deletion or copy neutral LOH). Genes involved in
HR, including tumor suppressor genes, can also be repressed by
aberrant promoter hypermethylation, an epigenetic mechanism
that contributes to HRD (9).

HR is a DNA repair pathway of clinical interest because of the
sensitivity of HRD cells to poly-ADP-ribose polymerase (PARP)
inhibitors (PARPIs) (10). DNA repair targeting therapies exploit
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DNA repair defects in cancer cells to generate synthetic lethality,
and DNA repair defects vary according to cancer type. For
example, approximately 50% of ovarian carcinomas exhibit
dysfunctional HRR, whereas the rate of HRR dysfunction is
lower in other cancer types such as colorectal cancer (CRC)
(<5%) (11, 12). Hereditary mutations in one copy of the BRCA
gene predispose patients to female breast cancer (85% lifetime
risk), ovarian cancer (10%–40%), male breast cancer, pancreatic
cancer (PC), prostate cancer, non-small cell lung cancer
(NSCLC), CRC, and other cancer types. Precancerous cells
deficient in BRCA1 and 2 cannot repair DSBs properly,
resulting in genomic instability that eventually leads to cancer
(8). These tumors are intrinsically sensitive to DNA damage
response inhibitors (PARPIs), which induce synthetic lethality.
Synthetic lethality can arise from the combined inactivation of
HRR genes by (mutation, LOH and promoter hypermethylation)
and PARP inhibition (13). The use of PARPIs in non-BRCA
mutation carrier patients can be expanded to sporadic cancers
that display “BRCAness” (cancers that have defective HR
without germline BRCA1 and 2 mutations). Findings showed
that TSGs with BRCAness phenotypes are often inactivated, for
example, ATM, ATR, PALB2, RAD51, RAD51B, RAD51C,
RAD51D, BARD1, and FANCM among others (14–17).

The use of PARPIs was recently expanded to other cancers in
addition to breast and ovarian cancer, such as prostate and PC
(18). Although PARPIs have shown beneficial effects in many
other cancer types, the frequent development of resistance is
challenging. For instance, in a phase II clinical trial, secondary
resistance mutations were detected in circulating free tumor
DNA in two patients with a germline BRCA2 mutation. These
mutations were predicted to lead to the reversal of a somatic
mutation (19). A comprehensive investigation of the underlying
mechanisms is necessary to design strategies for overcoming
PARPI resistance.

Another challenging issue is the development of effective
biomarkers to identify patients who are more likely to respond
to specific targeted therapy by using companion diagnosis
(CDx). CDx is an in vitro medical device that uses biomarkers
to provide information on the safe and effective use of drugs or
biologicals. FDA-approved CDx includes BRACAnalysis CDx®

and Myriad myChoice® CDx developed by Myriad Genetic
Laboratories, and FoundationOne® CDx [F1CDx] and
FoundationOne® Liquid CDx developed by Foundation
medicine. The HRDetect test utilizes machine learning
algorithm (20).

BRACAnalysis CDx® is an in vitro diagnostic method used
for the detection and classification of DNA sequence variants in
the protein-coding regions, intron or exon boundaries of the
germline BRCA1 and 2 genes from whole blood sample. PCR and
Sanger sequencing are used to detect small insertions and
deletions (indels), and single nucleotide variants (SNVs). Large
deletions and duplications are detected by multiplex PCR. The
test results used as an aid to identify eligible patients for PARPIs
in breast, ovarian, pancreatic and prostate cancers treatment
(21). Myriad myChoice® CDx is NGS-based in vitro diagnostic
test that evaluates the qualitative detection and classification of
June 2022 | Volume 12 | Article 880643
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SNVs, indels and large rearrangements (LRs) in protein-coding
regions and intron/exon boundaries of the BRCA1 and 2 genes,
and determine Genomic Instability Score (GIS) by measuring
[LOH, TAI, and LST] using DNA isolated from formalin-fixed
paraffin-embedded (FFPE) tumor tissue. The test used to select
eligible patients for ovarian cancer with positive HRD status for
the treatment with Zejula® (niraparib) (22).

FoundationOne®CDx (F1CDx) is a qualitative NGS- and
high throughput hybridization-based capture test for the
detection of indels, substitutions and copy number alterations
(CNAs) in 324 genes. It detects gene rearrangements, genomic
signatures including microsatellite instability (MSI), tumor
mutational burden (TMB) and positive HRD status (somatic
BRCA-positive and/or LOH high) using DNA isolated from
FFPE tumor tissue. It provides definite information for the
identification of eligible patients for specific treatments of
different class using specific biomarkers for many solid
tumors (23).

FoundationOne® Liquid CDx is a qualitative NGS based test,
which can identify indels, and substitutions in 311 genes,
rearrangements in 4 genes and CNAs in 3 genes. It utilizes
circulating cell-free DNA (cfDNA) isolated from plasma-driven
peripheral whole blood collected in anti-coagulants. The test
identifies patients that can benefit from different targeted
treatments for NSCLC, breast, ovarian and prostate cancers
based on specific biomarkers detected in each cancer. Negative
result does not rule out the presence of an alteration in the
patient’s tumor, in this case patients can opt for another tumor
tissue-based CDx. The test analytical accuracy is not well
demonstrated in all genes e.g., the test does not detect
heterozygous deletions, and copy number losses/homozygous
deletion in ATM (24).

HRDetect is a whole genome sequencing (WGS)-based
classifier of HRD that can predict BRCA1 and 2 deficiency
based on six mutational signatures (the HRD index [LOH +
TAI + LST], microhomology-mediated indels, base-substitution
signature 3 and 8, and rearrangement signature 3 and 5). It can
also identify HRD in sporadic cancers (BRCAness) with and
without any single detectable defect in HR genes (20, 25).
HRDetect was shown highly sensitive method as compared to
other HRD detection CDxs (20), but require clinical validation in
independent set to avoid overfitting issue.

In this review, we did not classify mutation and
hypermethylation data as bi-allelic or mono-allelic inactivation.
Oftentimes, cases of pathogenic mutation in tumor suppressor
genes lead to bi-allelic inactivation. Whole-exome sequencing
analysis of breast cancer cases by Mutter et al. (26) revealed that
89% of bi-allelic inactivation results in HRD, whereas in cases of
mono-allelic inactivation significant association existed between
RAD51 functional status and LST. In a study by Li et al. (27)
mono-allelic germline pathogenic mutation of PALB2 had
predisposed to a high-risk breast cancer development,
underscoring the role of PALB2 in HR repair. Moreover,
protein-truncating variants and rare missense variants of DNA
repair genes were significantly associated with the risk of breast
cancer (16). Many findings confirmed the importance of haplo-
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insufficiency in tissue and gene specific manner; for instance,
PTEN hypermorphic mice expressing 80% normal levels of
PTEN protein was sufficient to predispose for different cancers
development (28). Mono-allelic inactivation of TSGs (e.g., p53
and PTEN) leads to the inability to perform normal cellular
functions which contributed to cancer development (29).

Here, we investigated the potential implications of pathogenic
mutations, LOH, and promoter hypermethylation of HR-related
genes using recent data in ovarian, breast, colorectal, pancreatic,
non-small cell lung, and prostate cancers. Additionally, the
mechanisms underlying PARPI resistance and possible
strategies to overcome PARPI resistance are discussed.

1.1 BRCA1 and BRCA2 in Homologous
Recombination Repair
BRCA1 and 2 interacts with a number of other DNA repair
proteins to form a complex system for DNA damage repair,
including ATM, RAD51, PALB2, MRE11A, RAD50, NBN, and
the Fanconi anemia proteins (30). BRCA1 and BRCA2 are
potential biomarkers for HRD in ovarian and breast cancer. In
the presence of DNA DSBs, BRCA1 and 2 collaborate with other
HR proteins to maintain the breaks. For instance, ATM is
specifically activated in response to DSBs and is essential for
phosphorylating many proteins involved in controlling cell cycle
checkpoints and DNA repair. Three proteins are involved in
recruiting ATM to DSBs, meiotic recombination 11 (MRE11A),
RAD50, and NBS1 or MRN complex. Cells deficient in ATM and
NBS1 are thus sensitive to PARPIs, similar to BRCA1- and
BRCA2-deficient cells (7, 31). Germline pathogenic mutations of
BRCA1 and BRCA2 suppress the HR mechanism and cause
hereditary breast and ovarian cancer (HBOC) syndrome (32,
33). The functions of 35 HR-related genes are described briefly in
Supplementary Table S1.

1. 2 Interaction Between FANC and
BRCA Genes in Homologous
Recombination Repair
Fanconi anemia (FA) is a clinically and genetically
heterogeneous syndrome involving bone marrow failure
(BMF), developmental/congenital abnormalities that may affect
all organ systems (renal dysplasia, craniofacial malformations,
endocrine dysfunction, developmental delay, VACTERL
association, radial ray malformations, osteoporosis, progressive
BMF, skin abnormalities, short stature, cardiac defects, decreased
fertility, and genitourinary and gastrointestinal malformations),
and cancer predisposition (34). This review focused only on the
role of five FA genes in cancer predisposition. FA is a congenital
defect that results from loss of function of any of 21 genes, which
indicates their essential role in maintaining the chromosomal
stability of hematopoietic stem cells. The main cause of FA
Complementation Group (FANC) gene abnormality is mutation
(95%). The unique clinical phenotype associated with FANC
gene mutations implies that proteins encoded by these genes
function in a common cellular pathway. This pathway, known as
the FA/BRCA DNA repair pathway (Figure 1), preserves
genomic homeostasis in response to specific types of DNA
June 2022 | Volume 12 | Article 880643
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damage (35). The FA pathway serves to remove ICLs and shares
components, such as BRCA2 and PALB2, with the HR and NER
pathways (2).

The main genome housekeeping function of the FA pathway
in the DNA damage response necessitates multifactorial
activation of HR. Cells use the error-prone NHEJ repair
mechanism when FA-based repair systems are deficient, which
may negatively affect genomic stability (36). In response to DNA
damage caused by radiation, tobacco smoke, alcohol, or reactive
oxygen species among others, FA proteins and three other
Fanconi-associated proteins (FAAP100, FAAP24, and
FAAP20) are activated by DNA damage response sensors such
as ATM, ATR, and cell cycle check point (CHK1) to arrest the
cell cycle, forming the FA core complex (group I) (34). The
assembled FA core complex (group I) binds to the ubiquitin-
conjugating enzyme UBE2T via the FANCL subunit and
activates the FANCD2-FANCI complex (group II FA complex)
through mono-ubiquitination and phosphorylation of FANCD2/
FANCI (2). The ubiquitinated FANCD2-FANCI complex
translocates to sites of DNA damage, associates with
chromatin, and co-localizes with/recruits the downstream FA
effector proteins (group III FA complex) including FANCD1/
BRCA2, FANCN/PALB2, and FANCJ/BRIP1. Then, the group
III FA complex perform HR-dependent DNA repair by
interacting with BRCA1 (Figure 1) (35, 37).
Frontiers in Oncology | www.frontiersin.org 4
2 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN OVARIAN CANCER

The International Agency for Research on Cancer (IARC) (38)
reports that ovarian cancer is the 8th and 9th cause of incidence
and mortality worldwide in females, respectively. In 2020, the
incidence and mortality of ovarian cancer were estimated at 3.4%
(313,959 of all cancer types) and 4.68% (207,252 of all cancer
types), respectively. Approximately 75% of epithelial ovarian
cancer patients are diagnosed with advanced disease, which is
curable in only a minority of cases, resulting in a modest 5-year
survival rate of 20–30% (39). According to the cancer genome
atlas (TCGA), high grade serous ovarian cancers (HGSOCs) are
characterized by frequent genetic and epigenetic alterations of
HR pathway genes, most commonly BRCA1 and BRCA2. In
addition, approximately 50% of patients with HGSOC exhibit
genetic and epigenetic alterations in the FANC-BRCA (Figure 1)
pathway (11). Germline mutations in the BRCA1 and BRCA2
genes are well-known mechanisms of HRD, and loss of BRCA1
or BRCA2 thus poses a significant risk to genome integrity,
leading not only to cancer predisposition, but also affecting the
sensitivity to DNA-damaging agents and thus therapeutic
approaches (40). Pathogenic variants of BRCA1 and BRCA2
only explain the genetic cause of approximately 10% of
hereditary breast and ovarian cancers (transmitted to
FIGURE 1 | Process of FA complex formation and DNA interstrand cross-linking maintenance through the interaction of FANC and BRCA genes.
June 2022 | Volume 12 | Article 880643
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offspring), underscoring the clinical importance of testing other
DNA repair genes (41). Findings showed that BRCA1 and 2
inactivation frequently led to higher HRD score in ovarian and
breast cancers. This high HRD score has positive prognostic
significance for platinum and PARPI therapy. In unclassified
ovarian cancer patients who undertook germline BRCA1 and 2
test, 19% (44/235) were carriers of germline mutations, and
somatic mutation test was done on 28 specimens, 42.9% (9/21)
and 28.6% (2/7) were found to be BRCA1 and 2 positives,
respectively (42). In another study by Pennington et al. (43),
among 367 ovarian carcinomas tested for somatic mutation,
2.5% (19/367) and 1.63% (6/367) were positive for BRCA1 and 2,
respectively. These carriers of somatic mutation have shown a
positive impact on overall survival and platinum responsiveness
as germline BRCA1 and 2 mutation carriers. Other factors such
as germline and somatic mutations in HR genes (Table 1) and
epigenetic alterations (promoter hypermethylation) are
implicated in HRD (84).
3 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN BREAST CANCER

Breast cancer is the most common cancer among women and
ranks first and fifth among causes of incidence and mortality,
respectively, compared with all other cancers in both sexes in
2020 worldwide. According to the IARC (38), an estimated
2,261,419 (11.72% of all cancer types) new incidences and
684,996 (6.88% of all cancer types) deaths from breast cancer
were recorded worldwide in 2020. Similar to ovarian cancer,
DNA repair pathways are frequently anomalous in breast cancer,
leading to the accumulation of DNA damage and genomic
instability. The BRCA1 and BRCA2 genes are associated with
hereditary breast and ovarian cancer (85). BRCA1 and BRCA2
play a significant role in DNA repair, especially as components of
the FANC/BRCA DNA damage response pathway (Figure 1).
This DNA repair pathway is a highly conserved system involved
in the DSB response via HR and in the BER pathway for the
repair of DNA single-strand breaks (SSBs) (9). The PARP
enzyme plays a decisive role in this pathway and is critical for
resolving the stalled replication forks. Inhibition of PARP during
the base excision process requires BRCA-dependent HRR to
resolve it. Targeting HR-related genes (Table 2) has potential for
destabilizing tumor genomic integrity (13). Clinical trials
confirmed that HRD is necessary for the sensitivity to DNA-
damaging agents (e.g., cisplatin) and PARPIs (106).

Although BRCA1 and BRCA2 have been studied extensively,
other genes are also involved in the occurrence of breast cancer.
In 3,388 breast cancer patients who underwent genetic testing for
25 genes, nearly half of the pathogenic variants were in the
BRCA1 (24%) and BRCA2 (24.5%) genes. The remaining 51.5%
of pathogenic variants were detected in other genes tested
including CHEK2 (11.7%), ATM (9.7%), PALB2 (9.3%), and
Lynch syndrome genes (7%); other genes accounted for the
remaining 13.8%. The same study showed that pathogenic
mutations in BRCA1, PALB2, BARD1, BRIP1, and RAD51C are
Frontiers in Oncology | www.frontiersin.org 5
significantly more prevalent than those of other genes in triple
negative breast cancer (TNBC) (85). In a study by Lang et al.
(144) using NGS based sequencing, the prevalence of somatic
BRCA1 and 2 mutation in sporadic breast cancer cases which
carries germline-BRCA (gBRCA) mutations was 3.5% (15/416).
Among these, 1.9% (8/416) and 1.7% (7/416) were BRCA1 and 2,
respectively. In the same study, somatic BRCA mutation in
gBRCA-negative cases was not detected; indicating somatic
BRCA mutation in gBRCA-negative cases is rare. The
prevalence of pathogenic mutations, LOH, and promoter
hypermethylation in breast cancer is summarized in Table 2
based on recently published data.
4 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN COLORECTAL CANCER

CRC is the third most common cancer worldwide. In 2020 alone,
the incidence of CRC was estimated at 1,931,590 (10% of all
other cancers) worldwide, and it is the second most common
cause of cancer-related deaths 935,173 (9.39% of all other
cancers) in both sexes after lung cancer (38). Most CRC
occurrences are sporadic and are not related to genetic
predisposition or family history; however, 20–30% of patients
with CRC have a positive family history, and 5% of these tumors
arise from genetic predisposition (145). Mutation is a frequent
event in CRC. According to TCGA (146), 16% of colorectal
carcinomas are hyper-mutated; of these, 75% have high
microsatellite instability, typically with hypermethylation and
MLH1 silencing, and 25% have somatic mismatch repair gene
and polymerase ϵ (POLE) mutations. The prevalence of
mutations in APC, TP53, SMAD4, and PIK3CA was also
reported, as well as KRAS mutations. Recurrent copy number
alterations (e.g., ERBB2 amplification), chromosomal
translocations, such as the fusion of NAV2 and the WNT
pathway member TCF7L1, and biallelic inactivation of APC
were among the common features leading to LOH in CRC.
These and other findings confirmed the differences in both
oncogenes and tumor suppressor genes involved in CRC
compared with those in breast and ovarian cancers. However,
a recent study from Japan revealed moderate genomic alterations
in DNA repair genes including BRCA2, ATM, and NBN in CRC
patients (147). High penetrance genes in HBOC differ from those
in CRC; high penetrance genes in CRC are APC, MLH1, MSH2,
MSH2/MUTYH, SMAD4, MAP, and APC/PMS2; moderate
penetrance genes are MSH6 and PMS2; and low penetrance
genes are APC p.I1307K and MUTYH mono-allelic (148).

The methylation profile of CRC differs from that of other
cancers; it is characterized by global hypomethylation and
promoter-specific DNA hypermethylation. At the whole
genome level, CRC has 10–40% lower levels of absolute
methylation than normal colonic tissue (149, 150). Global
DNA hypomethylation, which is accompanied by genomic
instability and tumor initiation, is primarily due to loss of
methylation within repetitive elements such as long
interspersed nuclear element-1 (LINE-1) and Arthrobacter
June 2022 | Volume 12 | Article 880643
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TABLE 1 | Prevalence of mutation, LOH, and promoter hypermethylation in ovarian cancer.

Genes Mutation [%(proportion)] LOH [%(proportion)] Promoter Methylation [%
(proportion)]

BRCA1 12.2% (31/255) (44); 5% (15/300) (45);
18% (60/333) (46); 15.5% (81/523) (47);

16.5% (26/158) (48)

88% (36/41) (49); 44% (4/9) (50); 67% (6/9)
(50);

81.5% (123/151) (51); 60% (60/100) (52);
97% (30/31) (53); 10.13% (16/158) (48)

20% (22/112) (54); 14% (2/
14) (50); 14% (5/35) (55);

9.6% (32/332) (56); 14% (38/
257) (57);

35% (15/42) (58); 9.34% (45/
482) (59); 73.7% (56/76) (60)

BRCA2 9.8% (25/255) (44); 2% (6/300) (45);
3.3% (11/333) (46); 5.5% (29/523) (47);

5.06% (8/158) (48)

58% (24/41) (49); 50% (3/6) (50); 67% (4/6)]
(50); 68.9% (104/151) (51); 73% (75/103) (52);

53% (16.5/31) (53); 0.63% (1/158) (48)

21% (3/14) (50);
44% (22/50) (61)

RAD50 7.7% (29/380) (62); 60% (12/20) (63);
2.94% (2/68) (64); 0.63% (1/158) (48)

0.63% (1/158) (48) –

RAD51 0.3% (1/316) (11) 2% (10/489) (11) –

RAD51B 2.1% (3/142) (65); 0.06% (2/3.429) (66) 0.8% (4/489) (11) –

RAD51C 0.7% (1/141) (67); 2.5% (13/523) (47);
0.41% (14/3,429) (66)

97% (30/31) (53); 0.5 (2/429) (68) 1.45% (7/482) (59); 2.7% (9/
332) (69);

2.67% (14/524) (70); 3% (9/
316) (11)

RAD51D 1.3% (1/77) (67); 2.6% (10/380) (62);
0.35% (12/3429) (66)

0.7% (3/429) (68); 1.2% (6/489) (11) –

PALB2 3% (9/299) (71); 3.03% (2/66) (72);
0.6% (2/333) (46); 0.63% (12/1915) (73);

2.9% (2/69) (74); 1.1% (6/523) (47);
1.9% (3/158) (48)

0.23% (1/429) (75); 0.7% (3/429) (68);
10.8% (17/158) (48)

3.08% (4/130) (76)

FANCA 4.35% (1/23) (45) 56.45% (17.5/31) (53); 1.16% (1/86) (77);
0.7% (3/429) (75)

–

FANCD2 0.3% (1/316) (11) 32.25% (10/31) (53); 0.23% (1/429) (75) –

FANCF 0.3% (1/300) (45) 0.2% (1/572) (78) 32.14% (36/112) (79);13.2%
(7/53) (80)

FANCI 0.6% (92/300) (45) 1.16% (1/86) (77) –

FANCM 4.35% (1/23) (45); 2.1% (5/235) (81);
0.96% (5/523) (47)

0.2% (1/489) (11) –

NBN/
NBS1

1.8% (6/333) (46); 0.28% (9/3236) (82);
0.42% (1/235) (81); 0.38% (2/523) (47)

0.6% (3/489) (11) –

BARD1 0.12% (4/3,236) (82); 1.6% (4/255) (83);
0.63% (1/158) (48)

0.63% (1/158) (48) –

ATM 1.78% (7/392) (121); 0.3% (1/333) (46); 16.7% (8/48) (292); 0.82% (3/367
(43); 3.2% (5/158) (48)

29% (9/31) (53); 1.86% (8/429) (75);
1.9% (3/158) (48)

–

ATR 6% (3/50) (293); 69.7% (23/33) (294);; 4.8% (12/141) (295) 29% (9/31) (53) (75); –

MRE11A 5.92% (17/287) (296); 0.4% (2/523) (47); 0.22% (1/466) (297) –

BRIP1 7.7% (29/380) (62); 1.47% (1/68) (64); 0.4% (2/523) (47);
1.7% (8/466) (297); 0.52% (1/192) (131); 0.63% (1/158) (48)

0.7% (3/429) (68); 1.3% (2/158) (48) –

ERCC1 2.6% 10/380) (62); 0.2% (1/523) (78) 0.4% (2/489) (11) –

CHEK2 20.3% (77/380) (62); 45% (9/20) (63); 1.47% (1/68) (64);
4.2% (12/287) (296); 0.4% (2/523) (47); 1.72% (10/581) (298); 0.43% (2/

466) (297); 0.52% (1/192) (131); 0.63% (1/158) (48)

10% (1/10) (298); 7.6% (12/158) (48) –

EMSY 3.8% (14/380) (62); 8% (25/316) (11); 1.5% (8/523) (78) 0.2% (1/489) (11) –

TP53 1.47% (1/68) (64); 3.83% (11/287) (296); 0.3% (2/581) (298); 1.04% (2/
192) (131); 96% (312/316) (11); 57% (90/158) (48); 71.3% (375/523) (78)

0.63% (1/158) (78) –

STK11 4.2% (12/287) (296); 1.3% (2/158) (48) 1.6% (8/489) (11) –

PTEN 5.23% (15/287) (296); 0.43% (2/466) (297);
11.4% (18/158) (48)

6.7% (21/316) (11); 1.9% (3/158) (48); 6.1%
(30/489) (11)

16.9% (21/124) (299)

CDH1 7.32% (21/287) (296); 0.52% (1/192) (131) 2.3% (11/489) (11) –

BLM 0.4% (9/2561) (300); 1.27% (4/316) (11) 0.6% (3/489) (11) –

RBBP8 1.04% (2/192) (131); 0.32% (1/316) (11); 1.9% (3/158) (48) 0.2% (1/489) (11) –

CDK12 2.9% (9/316) (11); 4% (21/523) (11) 0.4% (2/489) (11) –

TP53BP1 1.27% (4/316) (11); 0.8% (4/523) (78) 1.4% (7/489) (11) –

XRCC1 0.6% (2/316) (11); 0.8% (4/523) (78) 0.4% (2/489) (11) –

MAD2L2/
REV7

0.3% (1/316) (11) 0.3% (2/572) (78) –

XRCC5/
Ku80

0.2% (1/523) (78) – –

(Continued)
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luteus restriction endonucleases (Alu), and it is supposed to
contribute to CRC initiation by enhancing genomic instability.
On the other hand, genes methylated in CRC are established
tumor suppressor genes, and 50% of these are also methylated in
the normal colonic epithelium. As a result, methylation in CRC
can have three phenotypes according to the CpG-island
methylator phenotype (CIMP), i.e., CIMP-high, CIMP-low,
and non-CIMP tumors (151). Similar to breast and ovarian
cancers, the prevalence of mutation, LOH, and promoter
hypermethylation in 35 HR-related genes is described based on
recently published data (Table 3).
Frontiers in Oncology | www.frontiersin.org 7
5 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN PANCREATIC CANCER

Pancreatic cancer (PC) is one of the most devastating types of
cancer. PC has a low 5-year survival rate of 9%, and the
development of new therapeutics is urgent. The global
incidence and mortality of PC in 2020 were 2.6% (495,773 of
all cancer types) and 4.68% (466,003 of all cancer types),
respectively. PC is the 12th and 6th leading cause of cancer-
related incidence and deaths in the world, respectively (38).
Although most PC cases occur sporadically, familial (individual
TABLE 1 | Continued

Genes Mutation [%(proportion)] LOH [%(proportion)] Promoter Methylation [%
(proportion)]

XRCC6/
Ku70

0.3% (1/316) (11); 0.8% (4/523) (78) 0.2% (1/489) (11) –

SLFN11 0.6% (3/523) (78) 0.8% (4/489) (11) 39% (16/41) (209)
June 2022
“–” no report found, “LOH” loss of heterozygosity.
TABLE 2 | Prevalence of mutation, LOH, and promoter hypermethylation in breast cancer.

Genes Mutation [%(proportion)] LOH [%(proportion)] Methylation [%(proportion)]

BRCA1 5% (15/300) (45); 16.67% (20/120) (86); 7.07% (7/99) (87);
10.6% (409/3,844) (88); 7.35% (201/2733) (89);
9.7% (97/999) (90); 14.7% (118/802) (91)

17.1% (12/70) (92); 44% (16/36)
(50);
6.8% (10/147) (93); 41.6% (69/
166) (94)

63.9% (46/72) and 27.5% (22/80) (95);
13.33% (8/60) (96)

BRCA2 2% (6/300) (45); 5.83% (7/120) (86); 11.11% (11/99) (87);
5.2% (157/3,024) (88); 5.01% (137/2733) (89);
3.5% (35/999) (90); 1.1% (9/802) (91)

14.3% (10/70) (92); 50% (4/20)
(50);
31.3% (52/166) (94); 93% (27/29)
(97)

69.4% (50/72) and 12.5% (10/80) (95);
15.52% (9/58) (96)

RAD50 1.03% (1/97) (98) 32.4% (44/136) (99) –

RAD51 0.2% (2/999) (100) 55% (20/36) (101); 24.41% (31/
127
) (102); 29.4% (40/136) (99)

5.26% (2/38) (96)

RAD51B 1.41% (2/142) (65) 47.1% (64/136) (99) –

RAD51C 1.41% (2/142) (65); 5.25% (15/286) (103); 0.53% (23/4309)
(104)

0.13% (1/770) (68); 33.8% (46/
136) (99)

8% (4/50) (96); 14.46% (23/159) (105);
3.64% (2/55) (106)

RAD51D 0.1% (1/894) (107) 36.8% (50/136) (99) –

PALB2 5.7% (404/7093) (108); 5.9% (34/571) (104); 3.4% (33/972)
(109); 0.8% (241/30,025) (110); 1.2% (11/937) (111)

2.66% (2/77) (112); 0.72% (7/
972) (109); 0.13% (7/770) (68);
14.7% (20/136) (99)

16.7% (8/48) (96); 4.6% (6/130) (76);
95.35% (41/43) (113)

FANCA 0.4% (1/255) (44); 0.81% (1.124) (114) 60.3% (82/136) (99) –

FANCD2 1.01% (1/99) (87); 1.2% (3/247) (115); 0.9% (2/216) (116) 22.1% (30/136) (99) 60% (71/118) (117)
FANCF 0.5% (4/817) (118); 0.9% (2/216) (116) 17.7% (24/136) (99) 4.04% (4/99) (119); 0.8% (91/120) (120)
FANCI 0.4% (1/255) (44); 0.26% (1/392) (121), 2.32% (28/1207) (41);

1.01% (1/99) (87); 5.52% (9/163) (122); 0.81% (1.124) (114)
0.3% (2/816) (118) –

FANCM 0.4% (1/255) (44); 1.5% (6/392) (121); 7.97% (13/163) (122);
0.81% (1.124) (114); 1.4% (6/427) (123); 0.7% (2/286) (124);
1.03% (16/1547) (125)

0.8% (6/770) (68); 35.3% (48/
136) (99)

2.33% (1/43) (113); 2.7% (113)

NBN/
NBS1

1.74% (59/3388) (85); 1.03% (1/97) (126); 0.22% (8/3617)
(104); 0.16% (14/8612) (127); 1.2% (53/4566) (128); 1.7% (4/
235) (129)

3.33% (1/30) (130); 1.5% (2/136)
(99)

8.93% (5/56) (96)

BARD1 2% (68/3,388) (85); 0.2% (7/3,667) (104); 0.52% (1/192) (131);
0.18% (52/28,536) (110); 1.67% (2/120) (132); 0.53% (5/937)
(111); 0.33% (7/2134) (133)

0.3% (1/330) (134) 10.34% (6/58) (96)

ATM 7.1% (5/70) (92); 2.42% (3/124) (114); 1.56% (3/192) (131);
4.6% (55/1207) (41); 1.5% (81/5589) (135);
0.98% (329/33409) (85); 0.94% (274/29229) (110);
0.4% (30/7,657) (136); 5% (3/60) (137)

67% (14/23) (138); 40% (298/
745) (138); 19% (13/70) (92);
0.4% (3/770) (68);
48.5% (66/136) (99)

13.79% (8/58) (96); 91.4% (174/190) (139); 53.2%
(33/62) (140); 97.4% (223/229) (141); 81% (102/126)
(142); 58% (29/51) (143);
25.58% (11/43) (113)
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having two or more first-degree relatives diagnosed with PC) and
hereditary syndrome PC account for 10% of cases. Hereditary
cancer syndromes associated with increased risk of PC include
Lynch syndrome, familial adenomatous polyposis, Peutz-Jeghers
syndrome, atypical multiple mole melanoma, and familial and
hereditary breast and ovarian cancer syndrome. Hereditary
cancer syndrome accounts for 3% of PC cases, whereas familial
PC accounts for 4–10% of cases (171, 172). Familial PC includes
individuals with two or more affected first-degree relatives with
PC excluding patients with hereditary syndrome. The risk of PC
increases with the number of affected first-degree relatives. A
study of 838 families including 5,179 individuals showed that the
relative PC risk was 4.5 [95% confidence interval (CI): 0.5–16.3)
among 1,253 cases with one affected first-degree relative, 6.4
(95% CI: 1.8–16.4) among 634 cases with two affected first-
degree relatives, and 32 (95% CI: 10.4–74.7) in 106 cases with
three or more affected first-degree relatives (173).
Frontiers in Oncology | www.frontiersin.org 8
The specific hereditary pancreatic susceptibility genes are
PRSS1, SPINK1, GGT1, CTRC, and CFTR, and mutations in
these genes cause early onset PC. However, mutations in these
genes are rare and account for a small proportion of PC cases,
although the cumulative risk at 70 years age reaches 7–40% with
early onset PC (174). Familial PC susceptibility genes include
BRCA2, ATM, PALB2, CDKN2A, PRSS1, STK11, MLH1, and
MSH2 (175). Recent findings showed the association of PC with
genetic alterations in BRCA2, BRCA1, ATM, CHECK2, PALB2,
FANCC, and CDKN2A genes (176–178). Mutations in BRCA2
are among the most common genetic mutations involved in
familial pancreatic ductal carcinoma. BRCA mutation
predisposes to PC, and PC more frequently affects BRCA2
mutation carriers than BRCA1 carriers. Among 204 BRCA
mutation carriers with PC, 42.7% (87/204) had BRCA1
mutations and 57.3% (117/204) had BRCA2 mutations (179).
The preva lence of mutat ion , LOH, and promoter
TABLE 3 | Prevalence of mutation, LOH, and promoter hypermethylation in colorectal cancer.

Genes Mutation [%(proportion)] LOH [%(proportion)] Methylation [%(proportion)]

BRCA1 0.29% (16/5481) (152); 0.28% (3/1058) (153);
0.4% (2/450) (148); 4% (25/619) (154); 3.2% (17/534) (78)

— —

BRCA2 0.34% (5/1474) (152); 0.76% (8/1058) (153);
0.9% (4/450) (148); 6.8% (40/619) (154); 7.1% (38/534) (78)

0.2% (1/592) (78) 10.6% (8/78) (155)

RAD50 3.2% (18/619) (154) 0.5% (3/592) (78) —

RAD51 0.5% (3/619) (154) 1.7% (10/592) (78) —

RAD51B 0.8% (5/619) (154) 0.5% (3/592) (78) —

RAD51C 0.08% (1/1260) (156); 0.8% (5/619) (154) – —

RAD51D 1% (6/619) (154) 0.2% (1/592) (78) —

PALB2 0.44% (3/680) (12); 0.19% (2/1058) (153);
0.4% (2/450) (148); 2.6% (16/619) (154);

0.3 (3/592) (78) —

FANCA 3.1% (19/619) (154) 0.7% (4/592) (78) —

FANCD2 2% (1/50) (157); 4% (25/619) (154) — —

FANCF 1.3% (8/619 (154) 0.2% (1/592) (78) —

FANCI 2.1% (13/619) (154) 0.2% (1/592) (78) —

FANCM 2% (1/50) (158); 5% (31/619) (154) 2% (1/50) (158) —

NBN/NBS1 0.2% (2/1058) (153); 3.2% (20/619) (154) — —

BARD1 0.1% (1/1058) (153); 2.33% (1/43) (159);
0.08% (1/1260) (153); 1.1% (7/619) (154)

— —

ATM 0.74% (5/680) (12); 0.95% (10/1058) (153);
0.9% (4/450) (148); 10.3% (64/619) (154)

0.74% (5/680) (12);
2.33% (1/43) (159)

16.67% (13/78) (155)

ATR 18.8% (9/48) (160); 4.5% (34/619) (154) — —

MRE11A 0.3% (3/1006) (161); 2.6% (16/619) (154) 0.2% (1/592) (78) —

BRIP1 0.16% (2/1260) (156); 2.6% (16/619 (154) — —

XRCC1 1.8% (11/619) (154) — —

CHEK2 0.23% (1/430) (162); 0.4% (5/1260) (156);
2.65% (4/151) (163); 5.8% (36/619) (154)

0.5% (3/592) (78) —

EMSY 3.2% (20/619) (154); — —

TP53 0.23% (1/430) (162); 0.1% (1/1058) (153);
0.66% (1/151) (163); 51.7% (320/619) (154)

1.4% (8/292) (78) —

STK11 0.08% (1/1260) (156); 0.8% (5/619) (154) 0.5% (3/292) (78) —

PTEN 60% (87/146) (164); 8.2% (51/619) (154) 23% (6/26) (164) 11.86% (10 (165) (164)
CDH1 1.33% (2/151) (163); 2.9% (18/619) (154) 0.2% (1/592) (78) 17.7% (3/17) (166); 87% (53/61) (167)
CDK12 5.2% (32/619) (154) — —

BLM 1.62% (3/185) (168); 1.9% (12/619) (154) 50% (1/2) (168) —

TP53BP1 6.3% (5/124) (169); 6.5% (40/619) (154) 1.5% (9/592) (78) —

ERCC1 0.8% (5/619) (154) 28.3% (43/152) (158) —

RBBP8 1.6% (6/619) (154) 0.2% (1/592) (78) —

MAD2L2/REV7 1% (6/619) (154) 0.5% (3/592) (78) —

XRCC5/Ku80 1.4% (9/619) (154) — —

XRCC6/Ku70 2.1% (13/619) (154) — —

SLFN11 2.4% (15/619) (154) 0.2% (1/592) (78) 55.47% (71/128) (170)
Jun
“
—
” no report found, “LOH” loss of heterozygosity.
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hypermethylation of 35 HR genes is described according to
recently published data in PC (Table 4).
6 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN NON-SMALL CELL LUNG
CARCINOMA

Lung cancer is the leading cause of cancer-related morbidity and
mortality in both genders worldwide. According to the IARC, the
estimated number of incidences and deaths from lung cancer was
2,206,771 (11.44%) and 1,796,144 (18.04%) of all cancers
worldwide in 2020, respectively (38). The majority of lung
cancer cases are associated with smoking or the use of different
tobacco products, although other factors such as asbestos, air
pollution, radon gas exposure, and chronic infection also
contribute to lung carcinogenesis (194). Inherited and acquired
mechanisms of lung cancer susceptibility have been proposed,
although they are rare. For instance, germline T790M mutation
predisposes to a unique hereditary lung cancer syndrome that
affects never-smokers and accounts for 31% of the estimated
risks for lung cancer in never-smoker carriers (195, 196). Lung
cancer is highly invasive, rapidly metastasizing, and broadly
categorized into two histological groups, small-cell lung
carcinomas (SCLCs) and NSCLCs, which grow and spread
differently. NSCLCs account for 87% of cases and can be
subdivided into three or four subtypes (adenocarcinoma,
squamous cell carcinoma, large cell carcinoma, and
undifferentiated NSCLCs), whereas SCLCs account for 12% of
lung cancer cases (194).

Generally, lung adenocarcinoma is characterized by recurrent
aberrations in multiple key pathways, including activation of RTK/
RAS/RAF; activation of PI3K-mTOR; alterations of p53, cell cycle
regulators, and the oxidative stress pathway; and mutation of
various chromatin and RNA splicing factors. The research
network of TCGA demonstrated the activation of oncogenes
including KRAS (32%), EGFR (11%), MET (7%), BRAF (7%),
MDM2 (8%), CDK4 (7%), PIK3C4 (4%), and CCND1 (4%) and
the inactivation of tumor suppressor genes such as TP53 (46%),
CDKN2A (43%), KEAP1 (19%), STK11 (17%), NF1 (11%), ATM
(9%), RBM10 (9%), ARID1 (7%), ARID2 (7%), and RB1 (7%) in
lung cancer (197). Analysis of DNA repair genes associated with
squamous cell carcinoma showed a correlation between pathogenic
mutations of DNA repair genes and tumor mutation burden.
Among DNA repair genes BRCA1 and BRCA2 showed the
greatest mutation frequency and the tumor burden increased in
correlation with the number of affected DNA repair genes (198). A
study analyzing mutations in the BRCA 1 and 2 genes in different
cancers showed that BRCA mutation is associated with increased
incidence of non-breast and ovarian cancers in first- and second-
degree relatives of high-risk breast cancer patients. Among 337
BRCA mutation carriers, the second highest BRCA mutation rate
was recorded in lung cancer [8.8% (33/337)] after stomach cancer
[13.8% (52/337)] (199). In this review, we displayed the prevalence
of mutation, LOH, and promoter hypermethylation of 35 HR genes
in NSCLC (Table 5).
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7 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN PROSTATE CANCER

Prostate cancer is the most prevalent cancer in men next to lung
cancer, according to the IARC in 2020 (38), it ranked 2nd and 5th

in its incidence and mortality among men, respectively. The
estimated number of incidences and deaths from prostate cancer
in 2020 were 1,414,259 (14.05%) and 375,304 (6.79%) worldwide,
respectively. Prostate cancer is characterized by a high degree of
heritability, and genetic components contribute significantly to
disease incidence (210). A large cohort study conducted in the
Nordic region that analyzed the different cancer heritability risks
in monozygotic and dizygotic twins identified a risk of prostate
cancer of 57% (95% CI: 51–63), which was higher than that of
other cancer types such as ovarian cancer at 39% (95% CI: 23–
55) and breast cancer at 31% (95% CI: 11–51) (210). Although
the high rate of heritability of prostate cancer has been
demonstrated in patients with a positive family history,
candidate genes that contribute to prostate cancer heritability
have not been identified except HOXB13 (211). Recurrent
mutation of the HOXB13 gene at G84E was identified in many
families. The HOXB13 G84E allele accounts for approximately
5% of hereditary prostate cancer (211). A study including 2,443
prostate cancer families of European descent detected at least one
HOXB13 G84E mutation carrier, among 112 prostate cancer
families (4.6%) (212). Moreover, a study conducted in unrelated
subjects of European descent revealed, HOXB13 G84E mutation
was detected in 1.4% (72/5083) and 0.07% (1/1401) of
participants with- and without prostate cancer, respectively
(P<0.05) (213). Another study comprising 9,012 men
diagnosed with different cancers showed a rate of 0.54% (49/
9012) of HOXB13 G84E mutation carriers, of whom 1.4% (19/
1362) were positive for prostate cancer compared with 0.4%(23/
5,898) of HOXB13 G84E mutation carriers without prostate
cancer (p < 0.05) (214). Prostate cancer has a genetic origin in
<5% of cases, and this risk becomes higher when high penetrance
genes such as HOXB13 are involved (215). Recent gene linkage
studies identified additional prostate cancer susceptibility genes
such as HPC1, HPC2/ELAC2, MSR1, BRCA1, BRCA2, and
BRIP1 (216).

An estimated 20% of patients with prostate cancer have a
positive family history, which can be attributed not only to
shared genes, but also to a shared pattern of exposure to
environmental carcinogens and common lifestyle habits
(216). Additional challenges in the management of prostate
cancer include its genetic heterogeneity and a high rate of
sporadic cases; many common genetic variants are associated
with prostate cancer, explaining the familial clustering of the
disease rather than hereditary causes (211). The importance of
both germline and somatic alterations in DNA repair genes is
suggested by the fact that carriers of mutations in these genes
are at a high risk of developing aggressive or metastatic
prostate cancer (211). Deleterious mutations of BRCA1 and
BRCA2 are associated with increased risk of prostate cancer and
experienced very aggressive course of the disease (215). However,
studies focusing on families with only prostate cancer failed to
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TABLE 4 | Prevalence of mutation, LOH, and promoter hypermethylation in pancreatic cancer.

Gene Mutation [%(proportion)] LOH [%(proportion)] Methylation [%(pro-
portion)]

BRCA1 42.7% (87/204) (179); 2.4% (1/42) (180); 0.3% (1/332) (181);
2.4% (15/615) (177); 0.6% (18/3,030) (178);
1.34% (4/298) (176); 0.4% (3/854) (182); 1.3% (5/456) (183)

20% (10/50) (177); 50% (2/4)
(184);
2% (2/100) (185)

8.3% (1/12) (186);
70.6% (12/17) (186);
34.3% (12/35) (186);
60.3% (35/58) (186);
46% (22/48) (187)

BRCA2 57.3% (117/204) (179); 26.2% (11/42) (180); 2.11% (7/332) (181); 5.7% (35/615) (177); 1.9%
(59/3,030) (178); 1.34% (4/298) (176);
1.41% (12/854) (182); 5.56% (3/54) (188); 0.8% (5/638) (189);
2.1 (8/456) (183)

40% (20/50) (177); 75% (3/4)
(184);
6% (6/100) (185)

—

RAD50 0.32% (2/615) (177) 3.7% (4/109) (115); 0.32% (2/
615) (177); 0.6% (1/183) (78)

—

RAD51 — 0.9% (1/109) (115) —

RAD51B — 1.8% (2/109) (115) —

RAD51C 0.1% (3/3030) (178) 0.1% (3/3030) (178);
0.34% (1/289) (190); 2.8% (3/
109) (115)

—

RAD51D 0.16% (1/615) (177) —

PALB2 2.4% (1/42) (180); 0.16% (1/615) (177); 0.4% (12/3030) (178); 0.34% (1/298) (176); 0.23% (2/
854) (182); 3.7% (2/54) (188);
0.8% (5/638) (191)

0.16% (1/615) (177);
2% (2/100) (185)

—

FANCA 0.3% (1/456) (183) — —

FANCD2 1% (4/456) (183) 3.7% (4/109) (115) —

FANCF 2.8 (3/109) (192) 0.9% (1/109) (115) —

FANCI — — —

FANCM 0.47% (3/638) (191); 1.8% (7/456) (183); 1.8% (7/456) (183) 2.8% (3/109) (115) —

NBN/
NBS1

0.16% (1/615) (177); 0.13% (4/3030) (178) 0.9% (1/109) (115) —

BARD1 0.16% (1/615) (177); 0.13% (4/3030) (178); 0.34% (1/298) (176) 0.49% (1/615) (177); 0.9% (1/
109) (115)

—

ATM 0.3% (1/332) (181); 1.8% (11/615) (177); 2.28% (69/3030) (178); 3.36% (10/298) (176); 1.17%
(10/854) (182); 3.7% (2/54) (188); 2.98% (19/638) (191); 3.7% (14/456) (183)

72.73% (8/11) (177); 5% (5/100)
(185); 4.6% (5/109) (115)

—

ATR 0.5% (2/456) (183); 0.9% (1/109) (192) 1.8% (2/109) (115) —

MRE11A 0.07% (2/3030) (178) 0.9% (1/109) (115) —

BRIP1 0.17% (5/3030) (178); 1.04% (3/289) (190) 0.34% (1/289) (190); 2.8% (3/
109) (115)

—

XRCC1 0.6% (1/179) (78) — —

CHEK2 2.28% (14/615) (177); 1.09% (33/3030) (178);
1.68% (5/298) (176)

1.95% (12/615) (177); 2.8% (3/
109) (115)

—

EMSY 0.5% (2/456) (183); 0.9% (1/109) (192) — —

TP53 89.8% (344/456) (183); 50.5% (55/109) (192);
0.35% (1/289) (190); 0.2% (6/3030) (178)

0.34 (1/289) (190); 5.5% (6/109)
(115)

—

STK11 0.16% (1/615) (177) 4.6% (5/109) (115) —

PTEN 0.3% (1/456) (183); 0.9% (1/109) (192) 0.6% (1/183) (78); 1.8% (2/109)
(115)

–

CDH1 0.03% (1/3030) (178); 0.8% (3/456) (183) — 10.5% (6/57) (186);
50% (1/2) (166);
38% (19/50) (193)

CDK12 0.5% (2/456) (183) — —

BLM 0.49% (3/615) (177) 0.33% (2/615) (177); 1.8% (2/
109) (115)

—

TP53BP1 0.5% (2/456) (183); 0.9% (1/109) (192) — —

ERCC1 0.6% (1/179) (78) 0.9% (1/109) (115) —

RBBP8 0.9% (1/109) (192) 2.8% (3/109) (115) —

MAD2L2/
REV7

— 1.1% (2/183) (78) —

XRCC5/
Ku80

0.6% (1/179) (78) 1.8% (2/109) (115) —

XRCC6/
Ku70

0.3% (1/456) (183); 0.6% (1/179) (78) — —

SLFN11 — —
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identify a significant number of BRCA1 or BRCA2 mutations,
indicating their minimal role in hereditary prostate cancer
predisposition (211). A comprehensive genomic analysis of 1,013
prostate cancer patients revealed the indispensable role of
alterations in DNA repair genes (78). Here, the prevalence of
mutation, LOH, and promoter hypermethylation in 35 DNA
repair genes in prostate cancer was described based on recently
published data (Table 6).
Frontiers in Oncology | www.frontiersin.org 11
8 POLY (ADP-RIBOSE) POLYMERASE
INHIBITOR RESISTANCE MECHANISM

8.1 The Role of PARP in DNA Repair
BER, HR, NHEJ, and micro homology-mediated end-joining
(MMEJ) repair SSBs and DSBs. PARP1 is involved in all DNA
repair mechanisms. SSBs are primarily repaired by BER (high
fidelity DNA repair) using PARP1. DSBs are repaired by three
TABLE 5 | Prevalence of mutation, LOH, and promoter hypermethylation in NSCLC.

Genes Mutation [%(proportion)] LOH [%(proportion)] Methylation [%(proportion)]

BRCA1 4.5% (8/178) (198); 2.9% (7/240) (200); 4.2% (48/1114) (201) 0.15% (1/655) (68); 0.2% (2/1114) (201) 3.8% (6/158) (202)
BRCA2 3.9% (7/178) (198); 3.9% (9/240) (200); 5.2 (60/1114) (201) 0.3% (2/655) (68); 0.36% (4/1114) (201) —

RAD50 1.1% (2/178) (198); 11.11% (2/18) (203);
0.8% (2/240) (200); 1.7% (19/1114) (201)

0.6% (7/1114) (201) —

RAD51 0.56% (1/178) (198); 0.4% (1/240) (200); 0.3% (4/1114) (201) 1.2% (14/1114) (201) —

RAD51B 5.56% (1/18) (203); 0.8% (2/240) (200); 0.8% (9/1114) (201) 0.2% (2/1114) (201) —

RAD51C 0.4% (1/240) (200); 1% (11/1114) (201) 0.09% (1/114) (201) —

RAD51D 0.4% (1/240) (200); 0.6% (7/1114) (201) 0.4% (5/1114) (201) —

PALB2 2.25% (4/178) (198); 1.7% (4/240) (200);
2.3% (26/1114) (201)

0.09% (1/1114) (201) —

FANCA 2.25% (4/178) (198); 11.11% (2/18) (203); 2.5% (6/240) (200);
1.5% (17/1114) (201)

1.1% (12/1114) (201) —

FANCD2 1.2% (14/1114) (201) 0.3% (3/1114) (201) —

FANCF 0.9% (9/1114) (201) 0.15% (1/655) (68); 0.2% (2/1114) (201) 14% (22/126) (202)
FANCI 1.8% (19/1114) (201) — —

FANCM 5.6% (64/1114) (201) 0.5% (6/1114) (201) —

NBN/NBS1 3.75% (17/453) (204); 1.7% (4/240) (200); 1.4% (16/1114)
(201)

— —

BARD1 1.1% (2/178) (198); 3.9% (9/240) (200); 1.9% (22/1114) (201) 0.36% (4/1114) (201) —

ATM 4.5% (8/178) (198); 5.56% (1/18) (203); 7.9% (19/240) (200);
7.6% (87/1114) (201); 11.9% (12/101) (205)

0.61% (4/655) (68) —

ATR 5.6% (10/178) (198); 5.56% (1/18) (203); 3.3% (8/240) (200);
4.5% (52/1114) (201)

0.2% (2/1114) (201) —

MRE11A 1.7% (4/240) (200); 1.6% (18/1114) (201) 0.15% (1/655) (68); 0.27% (3/1114) (201) —

BRIP1 4.6% (11/240) (200); 2.5% (28/1114) (201) 0.5% (3/655) (68) —

XRCC1 1% (11/1114) (201) — —

CHEK2 1.7% (3/178) (198); 1.3% (3/240) (200); 1.9% (22/1114) (201); 0.09 (1/1114) (201) —

EMSY 2.8% (32/1114) (201) 0.2% (2/1114) (201) —

TP53 66.7% (4/6) (206); 20% (46/230) (197); 39.4% (20/1078)
(205);
27.8% (5/18) (203); 59.2% (150/240) (200); 67.7% (775/1114)
(201)

0.9% (10/1114) (201) —

STK11 7.4% (17/230) (197); 1.8% (20/1078) (205); 27.8% (5/18)
(203);
23.3% (56/240) (200); 9.7% (111/1114) (201)

65% (80/124) and 11% (7/62) (207); 0.4% (5/1114)
(201)

—

PTEN 1.8% (20/1078) (205); 3.3% (8/240) (200); 5.9% (67/1114)
(201)

3.1% (36/1114) (201) —

CDH1 1.3% (3/240) (200); 1.8% (20/1114) (201) 0.09% (1/1114) (201) 20% (4/20) (166);
48% (11/23) and 76% (32/42)
(208)

CDK12 11.11% (2/18) (203); 1.3% (3/240) (200); 3.2% (37/1114)
(201)

0.09% (1/1114) (201) —

BLM 2.9% (7/240) (200); 1.8% (20/1114) (201) — —

TP53BP1 2.9% (7/240) (200); 2.6% (30/1114) (201) 1.4% (16/1114) (201) —

ERCC1 0.2% (2/1114) (201) — —

RBBP8 1.1% (12/1114) (201) — —

MAD2L2/
REV7

0.3% (3/1114) (201) 0.27% (3/1114) (201) —

XRCC5/Ku80 1.6% (18/1114) (201) 0.36% (4/1114) (201) —

XRCC6/Ku70 1.3% (15/1114) (201) 0.09% (1/1114) (201) —

SLFN11 2.3% (26/1114) (201) 0.3% (3/1114) (201) 13.6% (3/22) (209)
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TABLE 6 | Prevalence of mutation, LOH, and promoter hypermethylation in prostate cancer.

Genes Mutation [%(proportion)] LOH [%(proportion)] Methylation [%
(proportion)]

BRCA1 0.6% (6/1013) (38); 0.3% (3/494) (78); 1.2% (4/333) (217);
1% (5/504) (218); 1.8% (8/444) (219)

1.3% (13/1013) (38); 1.2% (6/489) (78); 25-75% (220)

BRCA2 2.9% (6/1013) (38); 1.6% (8/494) (78); 2.7% (9/333) (217); 5.2%
(26/504) (218); 8.3% (37/444) (219)

2.5% (25/1013) (38); 3.5% (17/489) (78); 0.6% (2/333) (217);
3% (15/501) (218); 2.9% (13/444) (219)

—

RAD50 0.4% (4/1013) (38); 0.2% (1/494) (78); 0.6% (3/504) (218); 0.7%
(3/444) (219)

1.2% (12/1013) (38); 0.8% (4/489) (78); 1.2% (4/333) (217);
0.4% (2/501) (218); 1.1% (5/444) (219)

—

RAD51 0.1% (1/1013) (38); 0.2% (1/494) (78); 0.8% (4/489) (78); 1.8% (6/333) (217); 0.4% (2/501) (218);
1.4% (6/444) (219)

—

RAD51B 0.6% (3/494) (78) 0.6% (3/489) (78); 1.2% (4/333) (217); 0.4% (2/501) (218);
1.1% (5/444) (219)

—

RAD51C 0.2% (1/504) (218) 1.3% (13/1013) (38); 0.6% (3/489) (78); 0.3% (1/333) (217);
0.5% (2/444) (219)

—

RAD51D 0.3% (1/333) (217); 0.2% (1/504) (218); 0.7% (3/444) (219) 0.6% (6/1013) (38); 0.6% (3/489) (78); 1.2% (4/333) (217);
0.2% (1/444) (219)

—

PALB2 1% (10/1013) (38); 0.6% (3/494) (78); 0.3% (1/333) (217);
1.2% (6/504) (218); 1.4% (6/444) (219)

0.3% (1/333) (217); 0.6% (3/501) (218); 0.2% (1/444) (219) —

FANCA 0.3% (3/1013) (38); 0.3% (1/333) (217);
0.6% (3/504) (218); 0.9% (4/444) (219)

2% (20/1013) (38); 4.7% (23/489) (78); 7.8% (26/333) (217);
2.4% (12/501) (218); 0.2% (1/444) (219)

—

FANCD2 0.3% (3/1013) (38); 0.4% (2/494) (78); 0.3% (1/333) (217); 0.7%
(3/444) (219)

1.5% (15/1013) (38); 2% (10/489) (78); 0.6% (2/333) (217);
1.1% (5/444) (219)

—

FANCF 0.2% (2/1013) (38); 0.2% (1/494) (78); 0.3% (1/333) (217); 0.5%
(2/444) (219)

0.5% (2/444) (219) —

FANCI 0.3% (3/1013) (38); 0.4% (2/494) (78); 0.3% (1/333) (217); 0.7% (3/444) (219) —

FANCM 0.6% (6/1013) (38); 0.4% (2/494) (78); 0.3% (1/333) (217); 1.6%
(7/444) (219)

0.2% (489) (78) —

NBN/
NBS1

0.6% (6/1013) (38); 0.6%(3/494) (78); 0.3% (1/333) (217);
0.4% (2/504) (218); 0.7% (3/444) (219)

0.2% (2/1013) (38); 0.4% (2/489) (78); 0.2% (1/444) (219) —

BARD1 0.6% (6/1013) (38); 0.8% (4/494) (78); 0.6% (3/504) (218); 0.9%
(4/444) (219)

0.5% (5/1013) (38); 0.2% (1/489) (78); 0.3% (1/333) (217);
0.2% (1/501) (218); 0.9% (4/444) (219)

—

ATM 3.8% (38/1013) (38); 4.3% (21/494) (78);
3.9% (13/333) (217); 3.6% (18/504) (218);

6.1% (27/444) (219)

0.8% (8/1013) (38); 1.2% (6/489) (78); 2.1% (7/333) (217);
1.2% (6/501) (218); 1.6% (7/444) (219)

—

ATR 1% (10/1013) (38); 1% (5/494) (78); 1.4% (7/504) (218);
1.4% (7/444) (219)

0.5% (5/1013) (38); 0.4% (2/489) (78);
0.3% (1/333) (217); 0.2% (1/444) (219)

—

MRE11A 0.5% (5/1013) (38); 0.6% (3/504) (218); 0.9% (4/444) (219) 0.7% (7/1013) (38); 0.4% (2/489) (78);
0.6% (2/333) (217); 0.2% (1/501) (218)

—

BRIP1 0.6% (6/1013) (38); 0.6% (3/494) (78);
0.4% (2/504) (218); 0.9% (4/444) (219)

– —

ERCC1 0.3% (3/1013) (38); 0.2% (1/494) (78); 0.5% (2/444) (219) 0.2% (1/489) (78); 0.3% (1/333) (217); 0.7% (3/444) (219) —

CHEK2 0.4% (4/1013) (38); 0.4% (2/504) (218); 1.4% (6/444) (219) 1.2% (12/1013) (38); 1.4% (7/489) (78); 3% (10/333) (217);
0.4% (2/501) (218); 1.4% (6/444) (219)

—

EMSY 0.8% (8/1013) (38); 0.4% (2/494) (78); 0.3% (1/333) (217);
1.1% (5/444) (219)

0.4% (4/1013) (38); 0.2% (1.444) (219) —

TP53 18.7% (189/1013) (38); 12.3% (61/494) (78);
6.9% (23/333) (217); 33.5% (169/504) (218);

36.7% (163/444) (219)

2% (20/1013) (38); 4.3% (21/489) (78); 0.6% (2/333) (217);
1.8% (9/501) (218); 3.4% (15/444) (219)

—

STK11 0.2% (2/1013) (38); 0.2% (1/494) (78); 0.4% (2/504) (218);
0.2% (1/444) (219)

3.4% (34/1013) (38); 0.2% (1/501) (218);
2.9% (13/444) (219)

—

PTEN 4.3% (44/1013) (38); 5.5% (27/494) (78); 2.7% (9/333) (217);
6% (30/504) (218); 6.3% (28/444) (219)

12.2% (124/1013) (38); 17.4% (85/489) (78); 15%(50/333)
(217); 12.4% (62/501) (218);

25.7% (114/444) (219)

7.8% (221)

CDH1 0.9% (9/1013) (38); 0.8% (4/494) (78); 0.6% (2/333) (217);
1.2% (6/504) (218); 0.9% (4/444) (219)

1.7% (17/1013) (38); 2.9% (14/489) (78);
4.5% (15/333) (217); 0.4% (2/501) (218); 2% (9/444) (219)

69% (70/101)
(222);

61% (49/81) (223);
27% (27/101)

(224)
BLM 0.2% (2/1013) (38); 0.4% (2/504) (218); 0.5% (2/444) (219) 0.1% (1/1013) (38); 0.7% (3/444) (219) —

RBBP8 0.2% (2/1013) (38); 0.2% (1/444) (219) – —

CDK12 3.3% (33/1013) (38); 2.2% (12/494) (78); 1.8% (6/333) (217);
5.6% (28/504) (218); 5.9% (26/444) (219)

0.7% (7/1013) (38); 0.4% (2/489) (78); 0.6% (2/333) (217);
0.4% (2/501) (218); 0.5% (2/444) (219)

—

TP53BP1 0.9% (9/1013) (38); 1.4% (7/494) (78); 0.9% (3/333) (217);
0.5% (2/444) (219)

1.7% (17/1013) (38); 0.8% (4/489) (78); 1.8% (6/333) (217);
1.4% (6/444) (219)

—

(Continued)
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mechanisms: HR, NHEJ, and MMEJ. HRR (high fidelity DNA
repair mechanism) of DSBs is performed by recruiting BRCA1
and 2, RAD51, the MRN complex, and ATM, here PARP1
contributes to HR by recruiting MRE11 and NBS1 or by
ribosylating BRCA. NHEJ (error-prone DNA repair
mechanism) repair of DSBs involves the recruitment of Ku70,
Ku80, and DNA-dependent protein kinase catalytic subunit
(PKcs); PARP1 prevents the binding of Ku proteins to free
DNA ends (first step of NHEJ) and thus inhibits NHEJ. MMEJ
(error-prone DNA repair mechanism) repairs DSBs by recruiting
Flap Structure-Specific Endonuclease-1 and NBN; PARP1
prevents binding of Ku proteins and directs DSBs to an
alternate end-joining (MMEJ) repair pathway (225–227).

8.2 Mechanisms of PARP Inhibition
In the presence of SSBs, PARP1 binds to the SSB site and undergoes
poly (ADP- ribosyl) ation, an important step for PARP1 activation;
then, the poly(ADP-ribosyl)ated PARP1 recruits the DNA repair
complexes BARD1-BRCA1 and MRN, which restore the integrity
ofDNAthroughahighfidelityDNArepairmechanism, resulting in
cell survival. Inhibition of PARP by PARPIs drive to change the
repair mechanism from SSBs to DSBs. PARPIs bind to PARP1 and
inhibit its poly (ADP-ribosyl) ation as well as inhibiting BER. In
addition, PARPIs prevent the release of PARP from the polymer
form, thereby inhibiting the recruitment and binding of DNA
damage repair proteins (PARP trapping), which further
aggravates the inhibition of BER. Once BER is inhibited by
PARPI, SSBs are converted into DSBs, forcing cells to opt for
HRR. However, HR can only be used if cells are HR-proficient. HR
defects (mutation, LOH, and hypermethylation) in HR-related
genes such as BRCA1 and 2, RAD51 and its paralogs (RAD51B,
RAD51C, and RAD51D), FA genes, PALB2, the MRN complex,
BARD1,ATM,ATR, and BRIP1 cause cells to becomeHR-deficient
and unable to repair DSBs. This causes the persistence of DNA
DSBs, which leads to genomic instability and cell death. Cells need
to activate alternative DNA repair mechanisms such as NHEJ and
MMEJ, the only remaining repair mechanisms. Thus, cells are
forced to use the two error-prone DSB repair mechanisms, which
results in genomic instability and cell death (225–227). PARP1 and
PARP2are constitutively expressedenzymes that peakduring the S-
phase of the cell cycle and are activated by binding toDNAdamage
sites. PARPIs are particularly effective in the treatment ofhigh grade
ovarian andbreast cancerswithHRdefects, which are characterized
Frontiers in Oncology | www.frontiersin.org 13
by frequent replication of tumor cells, and PARP expression and
DNAdamage recognition are highest during S-phase.However, the
use of PARPIs is not limited to these two cancers. The concept of
synthetic lethality or the BRCAness phenotype is wider, and most
cancers with HR repair defects benefit from PARPI treatment
including pancreatic and prostate cancers (227).

8.3 Mechanisms of Resistance to
PARP Inhibitors
Despite the introduction of new drugs, the emergence of resistance
toPARPIs remains a limiting factor (227, 228). Severalmechanisms
of PARPI resistance have been identified, including restoration of
HRR proficiency, switching to alternate repair mechanisms such as
NHEJ, replication fork stabilization, drug efflux, decreased PARP
expression and binding, secondary mutations in HR-related genes
and RAD51, regulation by microRNAs, phosphorylation of PARP
by c-MET, loss of end resection regulation by 53BP1, epigenetic
reversion of methylated promoters, and mutations in the shielding
complex among others (Figure 2).

8.3.1 Restoration of Homologous Recombination
Proficiency
HR proficiency can be restored directly by reverse mutation of
BRCA1 and BRCA2 mutants (229). Reverse mutation might be
elicited by genomic instability due to BRCA loss. In addition, the
presence of hypomorphic (partial loss of gene function) BRCA1
mutation leads to selection of cells with restored BRCA function,
which confer resistance to PARPIs (230). In a recent study of high-
grade ovarian carcinoma,BRCA reversionmutationwas identified in
18% (2/11) and 13% (5/38) of pretreatment cell-free DNA extracts
from platinum refractory and resistant cancers, respectively,
compared with 2% (1/48) of platinum-sensitive cancers (p < 0.05)
(231). Patients without BRCA reversion mutation detected in
pretreatment circulation cell-free DNA extracts had significantly
(p < 0.05) longer progression free survival than those with
reversion mutation after treatment with rucaparib (9 versus 1.8
months), which decreased the clinical benefit from rucaparib (231).
Although genetic reversion of BRCA1 and BRCA2 is one of the
underlying mechanisms, it does not explain PARPI resistance in all
cases. For example, loss of REV7 (MAD2L2) re-establishes CTIP-
dependent end resection ofDSBs inBRCA1-deficient cells, leading to
HR restoration and PARPI resistance (232).
TABLE 6 | Continued

Genes Mutation [%(proportion)] LOH [%(proportion)] Methylation [%
(proportion)]

XRCC1 0.2% (2/1013) (38); 0.3% (1/333) (217); 0.5% (2/444) (219) 0.8% (4/489) (78); 1.5% (5/333) (217); 1.4% (6/444) (219) –

MAD2L2/
REV7

0.1% (1/1013) (38); 0.2% (1/494) (78); 0.6% (6/1013) (38); 0.2% (1/489) (78); 0.3% (1/333) (217);
0.5% (2/444) (219)

—

XRCC5/
Ku80

0.2% (2/1013) (38); 0.2% (1/494) (78); 0.3% (1/333) (217);
0.2% (1/444) (219)

0.5% (5/1013) (38); 0.4% (2.489) (78); 1.2% (4/333) (217);
0.2% (1/444) (219)

—

XRCC6/
Ku70

0.5% (5/1013) (38); 0.6% (4/494) (78); 0.3% (1/333) (217); 0.2%(1/
444) (219)

0.2% (1/489) (78); 0.6% (2/333) (217); 0.7% (3/444) (219) —

SLFN11 0.3% (3/1013) (38); 0.2% (1/494) (78); 0.6% (2/333) (217);
0.2% (1/444)

0.4% (2/489) (78); 0.9% (3/333) (217); 0.2% (1/444) (219) —
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Secondary somatic mutations that restore BRCA1/2 in
carcinomas from women with germline BRCA1/2 mutations
predict the resistance to platinum and PARPIs. In cohorts of
64 primary and 46 recurrent ovarian carcinoma patients,
secondary somatic mutation was detected in 3.1% (2/64) of
primary carcinomas and in 28.3% (13/46) of secondary
carcinomas (p < 0.05) due to secondary mutations in BRCA1/
2. In the same study, 46.2% (12/26) of the platinum resistance
recurrence cases had secondary mutations that restored BRCA1/
2 function compared with 5.3% (1/19) of platinum-sensitive
recurrence cases (p < 0.05) (165). Furthermore, the reversion
mutations were not only detected in BRCA1/2, but also in other
HRR pathway genes including RAD51C, RAD51D, and PALB2
in ovarian, prostate, and breast carcinomas as a mechanism of
acquired resistance to platinum-based chemotherapies and
PARPIs. Therefore, primary mutations of HR genes cause
sensitivity to platinum and PARPI therapy, whereas secondary
mutations cause resistance (231, 233). BRCA2 reversion
mutations confer resistance to olaparib and talazoparib in
prostate cancer patients. Analysis of circulating cell-free DNA
provides information on reversion mutation heterogeneity that
Frontiers in Oncology | www.frontiersin.org 14
is not distinct from that of single solid tumor biopsy, as well as
potential indications for monitoring the emergence of PARPI
resistance (234).

8.3.2 RING Domain-Deficient BRCA1 and Intragenic
Deletion in BRCA2
High expression levels of RING domain-deficient BRCA1
proteins promote cisplatin and PARPI resistance by reducing
the DNA repair capacity of BRCA1 in breast cancer cell lines.
The BRCA1 185delAG hypomorphic allele, a common inherited
mutation located close to the protein translation start site,
produces a shortened and nonfunctional peptide. In contrast to
the full length BRCA1, the translation start site for the RING
domain-deficient BRCA1 protein is located downstream of the
frameshift mutation at the BRCA1-Met-297 codon and does not
require interaction with BARD1 for stability unlike the full
length BRCA1. Functionally, the RING domain-deficient
BRCA1 supports RAD51 foci formation, which increases HRR
and confers partial PARPI and cisplatin resistance (235). A
recent case control association study and functional analysis of
BRCA2 identified a hypomorphic missense variant (Y3035S)
FIGURE 2 | Mechanisms of resistance to PARP inhibitors according to mechanisms of PARPI in DNA repair.
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associated with a moderate risk of breast cancer. However, the
role of this hypomorphic missense variant in the resistance to
PARPIs and cisplatin remains to be investigated (236). Another
study identified new BRCA2 isoforms that are expressed in
resistant cell lines as a result of intragenic deletion of the
c.6174delT mutation and restoration of the open reading
frame. Reconstitution of BRCA2-deficient cells with these
reverting BRCA2 alleles made resistant to PARPI and HR
proficient (237). This finding indicates that resistance to
PARPIs can arise by intragenic deletion mutations in BRCA2.

8.3.3 Epigenetic Reversion of Methylated Promoters
Epigenetic silencing of the promoter region of tumor suppressor
genes is one of the mechanisms underlying HRD. For instance,
BRCA1 promoter methylation is an important somatic driver in
high grade serious ovarian carcinoma (238, 239). A patient with
BRCA1 promoter methylation who was initially sensitive to PARPIs
became resistant after loss of BRCA1 promoter methylation in the
relapsed sample, and the gene was expressed at comparable levels to
those in HR-proficient tumors (238). In the same study, analysis of
the global methylation status of the primary and reverted samples
revealed loss of BRCA1 promoter methylation. Another study
showed BRCA1 promoter demethylation in therapy-resistant
patients and patient-derived xenograft (PDX) tumors. Among 103
TNBC patients, 26 (25.24%) showed BRCA1 promoter methylation
before treatment. Of these, 17 showed pathologic complete response
and nine showed partial/no response; the three partial responders
underwent post-treatment surgery. Post-treatment BRCA1
promoter methylation was 2.66-fold lower than that in
pretreatment samples, and the mRNA expression of BRCA1
increased by 12–28-fold. Loss of BRCA1 promoter methylation
was observed in 69.6% (16/23) of therapy-resistant PDX tumors
with BRCA1 re-expression (240).

8.3.4 Switch to Alternate Repair Mechanisms
As discussed earlier, DNA DSBs in homologous recombination-
deficient cancer cells can be repaired by alternative DNA repair
mechanisms such as NHEJ and MMEJ. Thus, the shift from the
canonical DNA repair mechanism to alternate repair mechanisms
can affect the therapeutic efficacy of PARPIs (228). NHEJ functions
throughout the cell cycle, and defects in NHEJ contribute to
genomic instability and are associated with the development of
chemo-resistance. NHEJ is crucial for determining the sensitivity to
PARPIs, as confirmed recently (241). For example, ovarian cancer
cells with a 40% deficiency in the NHEJ DSB repair pathway are
resistant to PARP inhibition irrespective of HR status. Only NHEJ-
competent and HRD cells are sensitive to the PARPI rucaparib,
confirming the resistance observed in HRD tumors (241). Therefore
defects in NHEJ, the lack of error-prone repair results in resistance
to PARPIs. The role of NHEJ in PARPI resistance is related to the
error proneness of NHEJ. The errors in repair cause lethal defects in
DNA, and the absence of HR results in apoptosis, which is required
for PARPI sensitivity (242).

8.3.5 Replication Fork Stabilization
HR-deficient cells are susceptible to replication fork
degradation and are sensitive to PARPIs. However, cancer
Frontiers in Oncology | www.frontiersin.org 15
cells possess a mechanism to protect against replication fork
degradation known as fork stabilization. Replication fork
stabilization is a compensatory mechanism that protects the
replication fork, which results in PARPI resistance in the
absence of HR competency (105). Another mechanism to
stabilize the replication fork is ATR activation in response to
SSBs. In this mechanism, CHK1 is phosphorylated by ATR, and
activated CHK1 phosphorylates WEE1 and inactivates the
sCDC25A and CDC25C phosphatases. Activated WEE1
activates CDK1 and CDK2 to promote G1/S and G2/M cell
cycle arrest (243, 244). Another mechanism of replication fork
protection was identified by Meghani et al. (245). In this
mechanism, miR-493-5p overexpression protects the
replication fork from nuclease degradation, subsequently
inducing PARPI and platinum resistance in BRCA2-mutated
carcinomas. In addition, Pax2 transactivation domain-
interacting protein (PTIP), which forms nuclear foci for
DSBs, can destabilize the MRE11 nuclease installed
replication forks. By contrast, loss of PTIP stabilizes nascent
DNA strands by blocking degradation in BRCA1/2 deficient
cells, a mechanism that rescues the stalled replication fork and
causes PARPI and cisplatin resistance (246).

8.3.6 Decreased PARP Expression and Binding
Deletion of PARP1 using CRISPR/Cas9 gene editing tools in two
ovarian cancer cells (one with BRCA1 mutation and one with
BRCA1 promoter methylation) shows >90% reduction of PARP1
expression in BRCA1 mutant and promoter methylated cells as
measured by immunofluorescence and western blot analysis.
Therefore, loss of PARP1 by different mechanisms (e.g.,
mutation) results in resistance to PARPIs (247). Although
BRCA1 mutant and promoter methylated ovarian cancer cells
are synthetically lethal with PARPI, the loss of the target (PARP)
results in PARPI resistance. Point mutations that interfere with
the PARP1 DNA binding zinc-finger domains cause PARPI
resistance and affect PARP1 trapping. PARP1 p.R591C
mutation (c.1771C>T) was detected in ovarian cancer patient
who showed resistant to olaparib (248). Other mutations that
occur outside of the zinc-finger domain of PARP1 also reduce
PARP trapping.

8.3.7 Efflux Pump P-Glycoprotein
The multidrug efflux pump P-glycoprotein (Pgp) contributes
markedly to chemotherapy resistance by increasing rate of drug
efflux. Long-term administration of PARPIs causes selective
pressure-induced PARPI resistance mediated by the
upregulation of a gene-encoding efflux pump. Pgp recognizes
and transports a variety of chemical substrates with hydrophobic
in nature (249). The expression of abcb1a and abcb1b, encoding
murine Pgp were increased by 2 to 15 fold in 73.3% (11/15) of
mice treated with AZD2281 (currently, Olaparib) (249).
Upregulation of Pgp expression is considered a mechanism of
resistance in BRCA1 and BRCA2 mutant cancers treated with
PARPIs (250). Upregulation of multidrug resistance gene 1
increases the expression of Pgp and the rate of drug efflux,
which decreases the therapeutic effect of PARPIs (251).
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8.3.8 Loss of End Resection Regulation by 53BP1
and Mutation in the Shieldin Complex
The 53BP1 is an important regulator of the cellular response to
DSBs, and it suppresses HR by stimulating NHEJ of the distal
DNA end. Deletion of 53BP1 converts processing of damaged
DNA ends into recombination of single-stranded DNA
competent for HR. Loss of 53BP1 partially restores the error-
free HR and reduces the sensitivity of BRCA1 mutant tumors to
PARPIs (7, 252). 53BP1 is crucial for the control of DSB repair,
as its presence promotes NHEJ and its loss promotes HR.
Inhibiting 5′ end resection is necessary for HRD, and 53BP1
uses Rif1 to impair 5′ end resection. Rif1 inhibits end resection
by recruiting CtIP, BLM, and Exo1, which restricts buildup of
BRCA1/BARD1 complexes at sites of DNA damage. These
mechanisms underlie the effect of 53BP1 on inducing
chromosomal aberrations in BRCA1-deficient cells. Therefore,
loss of 53BP1 favors HR and thus leads to PARPI resistance
(253, 254).

The 53BP1 effector complex (shieldin) includes SHLD1,
SHLD2, SHLD3, and REV7. Shieldin functions as a
downstream effector of 53BP1-RIF1 in preventive DNA DSB
repair, whereas deletion of the shieldin complex confers
resistance to PARPIs in BRCA1-deficient cells. Binding of
single-stranded DNA by SHLD2 is critical for shieldin function
(255). BRCA1 mutant cancers show minimal resection of DSBs,
which renders them deficient in homology-directed repair and
sensitive to inhibitors of PARP1. In BRCA1 mutants, the
resection of DSBs is inhibited by 53BP1, RIF1, and the shieldin
complex, and loss/deletion of these factors reduces sensitivity to
PARP1 inhibitors (256). Mutations in genes that encode shieldin
subunits also cause resistance to PARPIs in BRCA1-deficient
cells and tumors, resulting in restoration of HR (257). Silencing
of shieldin components increases end resection, as extreme
resection would make DNA ends unsuitable for repair by
NHEJ; this may explain the defective NHEJ in shieldin-
depleted cells. Downregulation of 53BP1, as well as that of
REV7, confers resistance to PARPIs in BRCA1 mutant cells.
An experiment in BRCA1-deficient and shieldin complex
knockout cells confirmed the important role of the shieldin
complex in controlling PARPI (olaparib) sensitivity. BRCA1-
depleted cells are highly sensitive to olaparib; however,
simultaneous depletion of shieldin components rescues cell
viability similar to the effects of depletion of BRCA1 and
53BP1 (258). Therefore, loss of 53BP1, RIF1, and shieldin
components is sufficient to bypass the HR function of BRCA1
and confer PARPI resistance.

8.3.9 Overexpression of MicroRNAs
Overexpression of miR-622 is implicated in the development of
resistance to PARPIs and cisplatin by restoring HR and
impairing NHEJ in BRCA1-deficient ovarian cancer. miR-622
suppresses NHEJ by downregulating the Ku complex, thus
promoting HR-mediated repair of DNA DSBs in the S-phase
of the cell cycle. In addition, overexpression of miRNA-622 in
HGSOC patients is correlated with worse survival after platinum
chemotherapy, associating miRNA-mediated resistance by
Frontiers in Oncology | www.frontiersin.org 16
rescuing HRR (259). Overexpression of miR-493-5p induces
resistance to platinum and PARPIs in BRCA2 mutant patient-
derived cells by targeting DNA repair pathways involved in
genomic stability. MiR-493-5p induces resistance by
downregulating R-loop processing genes, which increases the
R-loop and decreases the single-strand repair pathway, and by
downregulating nucleases, which protects the replication fork.
HRR is not restored in relation to miR-493-5p mediated cisplatin
and PARPI resistance. Overexpression of miR-493-5p is
negatively correlated with disease-free survival, especially in
BRCA2 mutant patients and specifically in platinum resistant
or refractory disease (245).

8.3.10 Phosphorylation of PARP by C-Met
Phosphorylation of PARP1 at Tyr907 by the receptor tyrosine
kinase c-Met causes PARPI resistance. The phosphorylation of
PARP1 by c-Met (pY907) enhances PARP1 enzymatic activity
and decreases binding to PARPI, resulting in resistance of cancer
cells to PARPIs. PARPIs and c-Met inhibitors act synergistically
in suppressing the growth of breast and lung cancer cells in vitro
and in a xenograft model. Detection of pY907 is an indicator of
PARPI resistance in combination with a poor response to
PARPIs and high c-Met expression (260). PARPIs are
commonly used for the treatment of ovarian and breast
cancers. A recent study investigating the therapeutic efficacy of
PARPIs against hepatocellular carcinoma (HCC) showed
discouraging results. The mechanisms underlying the poor
efficacy of PARPIs in HCC involve the formation of EGFR and
MET heterodimer that interacts with and phosphorylates Y907
of PARP1 in the nucleus, which contributes to PARPI resistance.
However, inhibition of both c-Met and EGFR sensitizes HCC
cells to PARPIs, although both EGFR and c-Met are usually
overexpressed in HCC (261). The use of c-Met and EGFR
inhibitors in combination with PARPIs is a potential strategy
for the treatment of HCC.

8.3.11 Overexpression of C-Myc
Overexpression of c-Myc increases cisplatin and PARPI
resistance by reducing the production of the c-Myc inhibitor
BIN1 (bridging integrator 1) which restores the intrinsic PARP-1
activity. Suppression of BIN1 releases the automodification
domain of PARP1, which increases its intrinsic catalytic
activity for DNA repair, thereby increasing resistance to
PARPIs and cisplatin. Conversely, inhibition of c-Myc
increases BIN1 abundance, which decreases PARP1 activity
and reverses cisplatin and PARPI resistance (262). Myc
amplification is accompanied by the upregulation of several
DNA repair genes, including RAD21, RAD54L, and RAD51, in
both breast and ovarian cancer. RAD51 is the third most
significant DNA repair gene associated with Myc expression in
TNBC tumor samples. c-Myc regulates PARPI resistance by
upregulating RAD51 paralogs, which are important in HRR of
damaged DNA. A recent study using TNBC cell lines confirmed
that PARPI-resistant cells have increased RAD51 foci, whereas
PARPI-sensitive cells show impaired RAD51 foci independent of
BRCA mutation status. In the same study, pharmacological
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inhibition of c-Myc by dinaciclib reversed the resistance to
PARPIs, confirming the induction of synthetic lethality and the
role of c-Myc in drug resistance (263). RAD51C-deficient cancer
cells are sensitive to the PARPI olaparib and undergo cell death
by inducing G2/M cell cycle arrest and apoptosis. By contrast,
silencing of RAD51C in resistant cancer cell lines increases the
sensitivity to olaparib and decreases RAD51 foci (264).

8.3.12 Loss of SLFN11
High SLFN11 expression is associated with the response to
DNA-damaging agents and the overall survival of patients with
colorectal and ovarian cancer (265). Conversely, SLFN11
inactivation is a determinant of PARPI resistance. Cells that
express SLFN11 are more sensitive to talazoparib and olaparib
than cells with low SLFN11 expression. Genomic analysis
confirmed the high correlation between treatment response
and SLFN11, which is considered a biomarker of the response
to PARPI treatment (266). PDXs and SCLC cell lines treated with
cisplatin/PARPIs show down-regulation of SLFN11 associated
with therapeutic resistance. This was confirmed by silencing
SLFN11, which reduced the in vitro sensitivity to cisplatin and
PARPIs as well as drug-induced DNA damage (267). SLFN11
was identified as a relevant predictive biomarker of sensitivity to
PARPI monotherapy in SCLC, and loss of SLFN11 confers
resistance to PARPIs. SCLC cell lines were treated with the
PARPIs olaparib, rucaparib, and veliparib, and gene expression
and the HRD genomic scar score were analyzed. SLFN11 was
correlated with the response to olaparib, rucaparib, and veliparib
treatment but not to the HRD genomic score scar. An in vivo
PDX model and immunohistochemical staining confirmed that
loss of SLNF11 confers resistance to PARPIs (268).

8.3.13 Loss of XRCC5 (Ku80) and XRCC6 (Ku70)
Loss of PARP activity leads to accumulation of SSBs, which are
converted to DSBs by the cellular replication and/or
transcription machinery. These DSBs can be repaired by HR in
BRCA-proficient cells, whereas they accumulate in BRCA-
deficient cells leading to cell death. NHEJ is initiated when free
DNA ends are bound by XRCC5/Ku80 and XRCC6/Ku70
through the catalytic subunit of DNA-dependent protein
kinases (DNA-PKcs). The DNA-PKc complex phosphorylates
downstream targets and activates the DNA damage response,
thereby initiating NHEJ (269). The NHEJ-mediated repair of
DNA DSBs requires the formation of a Ku70/Ku80/DNA-PKc
complex at the DSB sites. Simultaneous loss of HR and PARP1
activity results in deregulated/increased NHEJ activity, which
increases the activation of DNA-PKcs leading to increased
genomic instability (resulting from this error-prone pathway)
(270). PARP1 plays a crucial role in suppressing NHEJ, which
serves as a target of PARPI-induced lethality in HR-deficient
cells. Conversely, inhibition or loss of multiple components of
NHEJ such as XRCC5/Ku80, XRCC6/Ku70, and DNA-PK
confer HR-deficient cells resistance to PARPIs by reducing
NHEJ activity (242, 261). The activity of the error-prone NHEJ
DSB repair pathway that causes genomic instability is required
for PARPI sensitivity.
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8.4 Strategies to Overcome PARP Inhibitor
Resistance
Although PARPIs are likely to be beneficial for a large fraction of
ovarian and breast cancer patients, the development of PARPI
resistance brings challenges to their utility. As mentioned in this
review, there are many mechanisms that can reverse HR
deficiency to HR proficiency. Many strategies have been
designed to reverse PARPI resistance (13, 105). For instance,
replication fork stabilization is a compensatory mechanism for
PARPI resistance. Cell cycle checkpoint (ATR, CHK1, WEE1)
proteins that contribute to replication fork stabilization may be
potential targets for combination therapy with PARPI by
limiting the time for tumor cells to repair damaged DNA. The
three proteins, ATR1, CHK1 and WEE1, play different roles in
replication fork stabilization, indicating that different
combination regimen may be effective for combating
resistance. For example, ATR inhibitor AZD6738 sensitized
BRCA2 mutant, BRCA2 reversion mutation, and BRCA1 wild-
type ovarian cancer cells to olaparib more effectively than the
CHK1 inhibitor MK8776 (271). WEE1 may have a critical role in
cell cycle arrest compared to ATR and CHK1 because WEE1 is
required to maintain ATR and CHK1 activity (243). WEE1
inhibitor AZD1775 had synergistic effect with olaparib in
TNBC cells (272). Even inhibition of ATR, CHK1 and WEE1
proteins effectively abrogated G2 arrest, but not sufficient to
overcome PARPI resistance caused by other mechanisms such as
HR pathway.

Many strategies have been designed to selectively convert HR-
proficient cells to HR-deficient status. The combined use of
PARPIs with CDK1 inhibitors induces HRD in HR-proficient
cells by inhibiting the phosphorylation of BRCA1 by CDK1. The
reduction of CDK1 compromises the capacity of cells to repair
DNA using HR because BRCA1-deficient cells do not efficiently
form RAD51 foci (an essential component of HRR). In addition
to checkpoint activation, CDK1-mediated phosphorylation of
BRCA1 is required for HR (273). The PI3K/AKT/mTOR
pathway is aberrantly dysregulated in certain cancers such as
TNBC; therefore, direct inhibition of the PI3K/AKT/mTOR
pathway in combination with PARPIs could be an effective
strategy to overcome PARPI resistance. Under normal
conditions, PI3K stabilizes and conserves DSB repair by
interacting with the HR complex (274). mTOR inhibitors and
PARPIs show strong synergism when used in combination, as
indicated by the effect of mTOR inhibitors on suppressing HRR
in BRCA-proficient TNBC cell lines (275). The combined use of
PARPIs with histone deacetylase inhibitors (HDIs) can sensitize
cancer cells to PARPIs because HDIs block the deacetylation of
heatshock protein 90 (HSP90), which leads to the degradation of
several proteins such as BRCA1, RAD52, ATR, and CHK1.
Direct inactivation of HSP90 is another approach to the
induction of BRCAness (276, 277).

Another mechanism to induce BRCAness is the combined use
of PARP and EGFR inhibitors, which alters the DSB repair
capacity and activates the intrinsic pathway of apoptosis. In vitro
and in vivo findings show that inhibition of EGFR1 and 2 induces
a transient DNA repair deficit and alters the interaction of EGFR
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with BRCA1 by increasing cytosolic BRCA1 and EGFR, pulling
them away from their nuclear DNA repair substrates (277, 278).
Another study showed that ATM depletion sensitizes breast
cancer cell lines to the PARPI olaparib (279). PARPIs in
combination with androgen receptor inhibitors promote DNA
damage-induced cell death, which inhibits prostate cancer cell
proliferation and the growth of tumor xenografts in mice,
suggesting a potentially effective treatment combination for
androgen-expressing breast cancers (280).

Recently, Johnson et al. (281) reported that BRCA-mutant
TNBC cells with acquired PARPI resistance are resensitized to
PARP inhibition by dinaciclib, a potent CDK12 inhibitor that
disrupts HR. In BRCA-mutated cancer, de novo resistance to
PARPIs is caused by residual HR. In addition, dinaciclib
compromises HR repair and sensitizes BRCA wild-type TBNC
cells to PARP inhibition. This study also showed that dinaciclib
amplifies the response to PARPIs in HR-deficient cancers. MYC
inhibitors induce PARPI sensitivity. The downstream oncogenic
role of MYC relies on its heterodimerization with the basic loop
helix protein MAX, which is essential in causing the
transcriptional initiation of targets. For instance, the small
molecule 10058-F4 inhibits MYC-MAX binding (282),
resulting in the supression of RAD51 in MDA-MB-231 and
SUM149 cell lines (263). CDK12 inhibitor dinaciclib which
downregulates MYC expression resensitizes PARPI-resistant
cells to PARP inhibition when used in combination with
niraparib; the synergistic effect was observed in BRCA wild-
type and mutant TNBC cell lines in associtaion with the down-
regulation of the HR gene RAD51 (263). This finding indicates
that targeting the c-Myc oncogene could be an effective strategy
to induce synthetic lethality and reverse PARPI resistance in
MYC-driven cancers.

Recent preclinical and clinical studies demonstrated that the
efficacy of PARPI could be enhanced in combination with
immune checkpoint inhibitors (ICIs) via a synergistic effect. In
cancers with defective DNA repair, such as HRD, accumulated
DNA damage by PARPI leaded to high tumor mutational burden
resulting in neoantigen formation and an increased anti-cancer
immune response (283, 284). In addition, these DNA damages
might increase the exposure of double-strand DNA (dsDNA) in
the cytoplasm and activate the stimulator of interferon genes
(STING) pathway which upregulates cytokines like type I
interferon, thereby promoting immune response and recruiting
tumor-infiltrating lymphocytes (TILs), especially CD8+ T cells
(285, 286). PARPI also increases PD-L1 expression, a biomarker
for ICI response, through the STING pathway (287), the ATM-
ATR-CHK1 pathway (288), and inactivation of glycogen
synthase kinase 3-beta (GSK3b) (289). Upregulation of PD-L1
may be a resistance mechanism of PARPI. For these reasons,
subsequent immune checkpoint blockade could sensitize PARPI-
treated tumor regression. Clinical trials investigating combined
regimen of PARPI and ICIs such as anti-PD1 (BGB-A317,
nivolumab, pembrol izumab, TSR-042) , ant i -PD-L1
(atezolizumab, avelumab, durvalumab), and anti-CTLA4
(ipilimumab, tremelimumab) demonstrated promising results
in patient outcomes in solid tumors (290, 291).
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9 CONCLUSION

HRR is the guardian of the genome because of its role in
repairing DSBs with high fidelity. Defects in HR due to
mutation, LOH, and promoter hypermethylation of certain HR
genes result in HRD, which confers sensitivity to DNA-
damaging agents and PARPIs. This review demonstrated that
HRD is higher in ovarian and breast cancers than in other cancer
types such as CRC, PC, NSCLC, and prostate cancer. HRD is not
limited to BRCA1 and 2, and comprises many DNA repair genes.
The fundamental vulnerability of HRD has led to the design of a
wide range of HRD-directed therapies. DNA repair targeted
therapies exploit DNA repair defects because HR-deficient
tumors are intrinsically sensitive to PARPIs. This highlights
the concept of synthetic lethality associated with the
concurrent inactivation of two or more HRR genes. The use of
PARPIs in non-BRCA mutation carriers can be expanded to
sporadic cancers that display DNA repair defects. PARPIs are
essential for the treatment of ovarian and breast cancers.
Recently, FDA approved olaparib for the treatment of prostate
and pancreatic cancers characterized by HRD. However, the
benefits of PARPIs are limited by the development of resistance,
especially when used as monotherapy. Many mechanisms of
resistance to PARPI have been identified in HR-deficient cancers,
which are challenges to overcome. Numerous preclinical and
clinical studies revealed that combination therapy of PARPI with
targeted chemotherapy or ICIs improved the efficacy by
overcoming PARPI resistance. Understanding the mechanisms
of PARPIs resistance will be useful for designing strategies to
overcome PARPI resistance as summarized in this review. Based
on accumulated research, more potential PARPIs and more
effective combined regimens targeting HR-deficient cancers
would be developed in the future.
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