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The unfolded protein response (UPR) is a complex element, destined to protect the

cells against a diverse variety of extracellular and intracellular challenges. UPR activation

devises highly efficient responses to counteract cellular threats. If those activities fail, it

will dictate cellular execution. The current work focuses on the role of UPR in pulmonary

function, by immersing into the highly interrelated network that operates toward the

endothelial barrier function. A highly sophisticated UPR manipulation shall reveal new

therapeutic possibilities against inflammatory lung disease, such as acute lung injury and

acute respiratory distress syndrome.
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UNFOLDED PROTEIN RESPONSE

The ribosomes of the endoplasmic reticulum (ER) produce secretory proteins, which are
consequently subjected to modifications by cellular chaperones. The excessive abundance of
misfolded proteins in the intracellular niche induces ER stress (1), which in turn induces the
activation of the unfolded protein response (UPR) (2). This molecular machinery is in charge of
protein synthesis, trafficking, and folding able to promote both cell survival and death (3). In the
case of mild ER stress, UPR initiates survival responses (4). Upon severe circumstances, it will
execute the cells by triggering lethal mechanisms (5–7).

Protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and the
inositol-requiring enzyme-1α (IRE1α) are the major components of the UPR (8, 9). The binding
immunoglobulin protein (BiP) is a member of the heat shock protein (HSP) 70, and it is destined
to assist in the maturation and folding of nascent proteins (10). When those proteins bind to the
BiP, they are inactive. Indeed, the release of this protein will capacitate UPR (11).

Our genome encodes for IRE1α and IRE1β. IRE1α is expressed ubiquitously, and it is essential
for mice. IRE1α knockout mice exhibit embryonic lethality. On the contrary, IRE1β knockout
mice are viable (12–14). IRE1 associates with BiP when there is no evident ER stress. Upon
situations of such stress, BiP will relocate from IRE1 to the misfolded ER protein and will initiate
auto-phosphorylation and dimerization (15). Consequently, IRE1α will cleave the X-box binding
protein-1 (XBP1). This modification produces XBP1S, which is considered the active XBP1 form,
strongly involved in ER membrane biogenesis, folding, and secretion (16).

PERK is structurally related to IRE1α and exists as a monomer under unstressed conditions
(17). In the ER, the excessive abundance of proteins which are not folded correctly activates
PERK via dimerization and auto-phosphorylation (18). Thismodification will phosphorylate (I) the
eukaryotic translation initiation factor 2-alpha (elf2a) and (II) the nuclear factor erythroid 2-related
factor 2 (nrf2). All those events will activate ATF4 and nrf2 (19). PERKmay also be activated by tau
accumulation (20).
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ATF6 is a type 2 transmembrane transcription factor. ER stress
initiates the release of BiP from ATF6 (9), which in turn will be
cleaved by serine protease site-1, as well as by metalloprotease
site-2. Those modifications will result in its activation (21). It
has been reported that ATF6 isoforms are essential for life in
certain organisms. Silencing of ATF6α and ATF6β has been
shown to be associated with lethal outcomes in nonhuman
vertebrates. Moreover, genetic manipulations of the ATF6 cause
crucial problems in the human eye, associated with dysfunctions
in neuroretina and blindness (22).

UPR is considered a promising target for cardiovascular
disease therapy. There are two different strategies to employ
UPR toward the development of new drugs. The first method
suggests to activate the adaptive pathway of UPR, so as to
counteract ER stress. The second one indicates to suppress
the proapoptotic components of UPR to promote cell survival
(23). The current knowledge regarding the exact interrelations
between the UPR components is incomplete, and it is speculated
that such investigations may help utilize the UPR-mediated
survival mechanisms to oppose cardiovascular disease (16, 24).
In the following sections of our manuscript, we will refer to the
role of UPR in both lung disease and health, in order to seed light
to those events.

UPR INDUCTION PROMOTES LUNG

DISEASE

In pulmonary fibrosis, IRE1a kinase/RNase suppression exerts
anti-fibrotic effects in the lungs. The exposure of murine lungs
to bleomycin caused ER stress, as reflected in the activation of
IRE1a and the consequent development of pulmonary fibrosis.
The small-molecule IRE1α kinase-inhibiting RNase attenuator
(KIRA) 7 and 8 prevented lung fibrosis; thus, those observations
revealed that IRE1α is probably a therapeutic target for lung
fibrosis (25).

The activation of PERK has been associated with lung
fibroblast differentiation due to endothelin 1 (ET-1) or thrombin.
In WI-38 human cells, which are embryonic lung fibroblasts,
ET-1 and thrombin induced the expression of the UPR markers
PERK and BiP. Moreover, they augmented the levels of α-smooth
muscle actin (α-SMA) and collagen (I, IV) and activated the c-
Jun N-terminal kinase (JNK). Those effects were diminished by
PERK knockdown. Similar observations were observed in an in
vivo study of bleomycin-induced pulmonary fibrosis (26).

Inhibition of the IRE1α signaling pathway blocked ER
expansion via the XBP-1-dependent pathway, as well as the
activation of myofibroblasts by the tumor growth factor β.
Moreover, it lessened the fibrosis in both the liver and the skin,
reverted the fibrotic effects in myofibroblasts, and affected the
suppressive effects of miR-150 in α-SMA expression (27).

The lungs of patients with idiopathic pulmonary fibrosis
are subjected to increased ER stress, and investigations aimed
to examine whether ER stress causes lung fibrosis (28).
The surfactant protein C (L188Q SFTPC), which appears in
interstitial pneumonia, was employed in those studies. This
mutated protein induced ER stress, since the expression of

BiP and XBP1 was increased. The intra-tracheal injection of
bleomycin in the L188Q SFTPC-expressing mice resulted in
lung fibrosis. Since those mice demonstrated increased apoptotic
death of the alveolar epithelial cells, as well as fibrotic lungs, it was
assumed that ER stress may cause lung fibrosis (11). Interestingly,
the pulmonary UPR is activated due to a plethora of parameters
with associated lung fibrosis. Among those factors are infections
with viruses, as well as aging (29).

Idiopathic pulmonary fibrosis (IPF) is characterized by
elevated levels of GRP78. Cells were exposed to TGF-β1 to
evaluate the effects of ER stress in the α-smooth muscle actin
and collagen type I expression in the fibroblasts. This growth
factor elevated the expression of three different ER stressmarkers,
namely, GRP78, XBP-1, and ATF6α. Moreover, it exerted similar
effects in the expression of α-SMA and collagen type I (30).

Chronic obstructive pulmonary disease (COPD) and chronic
bronchitis are characterized by increased oxidative stress (31).
Inflammatory processes, apoptotic phenomena, and autophagy
aremajor factors in the devastations due to COPD (32). Although
PERK induction has been strongly involved in the development
of COPD, it appears that the involvement of IRE1 and ATF6
toward those events has not been delineated yet (33).

The lungs of individuals exposed to the smoke of cigarettes, as
well as those of COPD patients, express elevated BiP levels. Thus,
it was proposed that pulmonary BiP secretion may explain the
increase in serum BiP of COPD patients. Researchers measured
BiP levels in the bronchoalveolar lavage fluid (BALF) of chronic
and nonsmokers. It was revealed that BiP was increased in the
case of smokers and that the human airway epithelial cells of the
smokers secreted BiP compared to healthy individuals. Thus, it
was suggested that BiP expression in the lungs may serve as a
marker of lung injury due to smoke (34).

Inhibition of ATF6 activation opposes the development
of PAH. ATF6 activation causes upregulation of the neurite
outgrowth inhibitor (Nogo), a protein responsible for ER
maintenance. Nogo induction causes ER disruption to inhibit
key calcium-sensitive enzymes involved in the progression of
pulmonary hypertension (PH). Mice lacking Nogo appear to
be phenotypically normal but are resistant to hypoxia-induced
PAH (35).

Endothelial cell (EC) inflammation and barrier dysfunction
are critical events in the pathogenesis of acute lung injury (ALI)
and acute respiratory distress syndrome (36). Preconditioning
of human pulmonary artery endothelial cells (HPAEC) to ER
stress alleviated EC inflammation. BiP silencing inhibited NF-κB
activation. Moreover, pre-exposure to SubAB resulted in lessened
expression of several inflammatory mediators. Interestingly,
BiP suppression resulted in the restoration of endothelial
permeability. Those findings suggest the important role of BiP
in the NF-κB-mediated endothelial inflammation (37).

A significant risk factor for ARDS development is obesity. It
has been shown that in obese mice, there is significant endothelial
dysfunction in the lungs. Those obese rodents exert an enhanced
susceptibility to LPS-induced lung damage. Moreover, they
present increased ER stress in their lung cells, similar to those
changes due to exposure to tunicamycin. ER stress reduction
protected those obese mice against LPS-induced ALI (38).
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Increased ER stress levels due to MAPK induction have
been involved in the development of cystic fibrosis (CF). This
atypical UPR activation was not associated with the PERK-eIF2α
induction. However, the CF cells exerted a hyper-inflammatory
phenotype. Salubrinal, a selective elF2a inhibitor, weakened the
inflammatory responses due to flagellin (immune activator) and
Pseudomonas aeruginosa. Moreover, the abundance of IL-6 was
dependent on the activation of the p38 MAPK pathway (39).

ER stress contributes to the development of bronchial
asthma by regulating NF-κB activation. The ER stress markers
in peripheral blood mononuclear cell and BALF fluid from
asthmatic patients were elevated compared to that of healthy
individuals. In mice, the chemical chaperone 4-phenylbutyric
acid, which alleviates ER stress, counteracted the translocation of
NF-κ? Moreover, it reduced the levels of inflammatory cytokines
and dendritic cell infiltration (40).

In malignant tissues, it is not certain whether UPR suppresses
tumor growth or protects tumor cells by facilitating adaptive
survival responses (41, 42). In cases of breast cancer, UPR
activation appears to be protective and has been associated with
anti-estrogen resistance. On the other hand, hyperactivation
of the anticipatory UPR pathway in cancers converts it from
cytoprotective to cytotoxic (23). In conclusion, the previously
mentioned studies support the deteriorating role of UPR
induction in the lungs and support the concept that effective
inhibition of ER stress may serve as a promising therapeutic
strategy toward lung disease.

UPR INDUCTION PROMOTES LUNG

HEALTH

In the porcine reproductive and respiratory syndrome, IRE1α
activities due to ER stress were associated with TNF-α
production. Indeed, PERK suppressed this growth factor and
protected against heart failure and lung remodeling (43).
PERK KO mice were used to test the effects of experimental
induced lung fibrosis. TAC (transverse aortic constriction)-
induced congestive heart failure (CHF) caused an increase in
FM small arteries in all groups. However, the number of those
arteries was larger in the PERK KO mice than in the control
mice. Furthermore, both wild-type and PERK KOmice exhibited
a significant decrease in NM small arteries. However, the number
of NM small arteries was lower in PERK KO. Thus, the TAC-
induced lung fibrosis was exacerbated in the lungs of PERK KO
animals (44).

In knock-in mice that express a mutant BiP, it was revealed
that this protein plays a critical role in the surfactant of
the lungs. The expression of this mutant BiP in newborns
resulted in respiratory failure. Indeed, UPR failure to increase
lung susceptibility to hypoxia and ischemia leads to neonatal
respiratory failure, indicating that the UPR of alveolar cells is
crucial for normal ER function and overload due to regular
growth and development (45).

CHOP induction due to double-stranded RNA-activated
protein kinase (PKR) suppresses lung injury due to hyperoxia.
MLE-12 cells (lung epithelial cells) were exposed to hyperoxic

conditions, which in turn elevated both CHOP expression
and PKR activation. Interestingly, PKR suppression reduced
the hyperoxia-induced CHOP expression. Moreover, hyperoxia
induced both lung PKR phosphorylation and CHOP. Mice that
did not express CHOP (CHOP KO mice) presented respiratory
dysfunction due to lung edema and increased endothelial
permeability. Thus, this study supported the protective role of
CHOP in the hyperoxia-induced lung dysfunction (1).

Newborns with respiratory stress, when exposed to hyperoxic
conditions, are susceptible to the development of lung injury
and bronchopulmonary dysplasia. ERp57 is an ER thiol
oxidoreductase, which is recruited to substrates through its
association with calnexin and calreticulin. Both are molecular
chaperones. Calnexin retains unfolded or unassembled N-linked
glycoproteins in the ER. Calreticulin participates in various
cellular processes, and it was first identified as a Ca2+-binding
protein. Knockdown of ERp57 was associated with an increase
in BiP expression levels and protects against apoptosis due to
tunicamycin and hyperoxia (46).

Rhinovirus (RV) infection may result in CF. Studies detected
an induction of BiP and CHOP in CF lungs after RV
infection. UPR induction after treatment with pharmacologic
UPR inducers prior to RV infection protected the cells against cell
death. Hence, it was suggested that UPR induction may control
respiratory virus replication (47).

DnaJ 4 (ERdj4) is a BiP cochaperone. It removes misfolded
proteins from the ER lumen when the cells are exposed to
increased levels of toxic factors. A mutated form of ERdj4, which
is not functional, caused the death of mice. Those fatalities
occurred because of hypoglycemia, associated with abnormal
growth. The animals that did not die exerted levels of constitutive
ER stress in several tissues, including the lungs. Those studies
suggested the important role of BiP in lung survival (48).

GHRH antagonists are UPR inducers and have been recently
shown to support endothelial barrier function by suppressing
major inflammatory pathways (i.e., ERK1/2, JAK2/STAT3) (49)
as well as by deactivating cofilin (50). The GHRH antagonist
MIA-602 inhibited fibrosis and inflammation in mice subjected
to bleomycin. All the animals inflicted with bleomycin were
severely inflamed and presented respiratory abnormalities.
Remarkably, the GHRH antagonist MIA-602 counteracted those
effects both in vivo and in vitro and suppressed the abundance
of major inflammatory markers. That antagonist has also
prominently suppressed multiple inflammatory genes (51).

It was recently shown in lung cells that P53 opposes the
LPS-inflicted lung endothelial barrier dysfunction, by mediating
the RhoA/Rac signaling (36, 52, 53). UPR modulation in lung
cells affected P53 expression levels in a positive manner (54).
UPR induction elevated the P53 expression levels, while UPR
suppressors reduced them. Thus, it was speculated that P53
possibly protects the lung vasculature against ALI/ARDS, at least
in part, by inducing UPR (55). Furthermore, the inhibition of
Hsp90 has been shown to induce UPR (56). Those compounds
induce P53, which in turn orchestrates robust anti-inflammatory
responses (57–59).

Remarkably, UPR exerts a protective role in other tissues than
lungs. Norartocarpin (NOR) induced the activity and stability of
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Nrf2, which has been shown to alleviate pathological outcomes
of ER stress. Those effects ware associated with the manipulation
of the following molecular pathways, which are crucial for
cellular existence and survival: ERK1/2, phosphatidylinositol-
4,5-bisphosphate 3-kinase, protein kinase C, and PERK. The
latter kinase, as previously mentioned, is an essential component
of the UPR (60).

IRE1 has been shown to mediate the protective effects
of LPS on myocardial ischemia–reperfusion injury. The LPS
was administered in low doses. Rodents (rats) and cells were
pretreated with a low dose of LPS prior to myocardial I/R injury.
Unexpectedly, the administration of LPS at low doses did not
harm the cells and did not significantly affect the animals. Indeed,
it attenuated myocardial apoptosis. Proteins closely associated
with IRE1were increased during I/R injury. Such proteins are BiP,
phospho-ASK1, and phospho-JNK. However, those effects were
reduced by the LPS treatment (14).

The crucial role of CHOP against inflammation was reflected
in the fact that CHOP deficiency in mice (CHOP KO) resulted
in more significant kidney injury due to LPS, as compared
to the wild-type animals. Those effects were associated with
increased inflammation responses. Moreover, those LPS-inflicted
animals contained a higher amount of renal neutrophil infiltrates
compared to the wild-type counteracts. In the kidneys of those
mice, increased NF-κB activation and significant upregulation
of pro-inflammatory genes were detected. Moreover, LPS
treatment elevated the CHOP expression levels in wild-type mice
(glomeruli, podocytes). Thus, the authors speculated that the
increased CHOP in the kidneys of mice may be protective against
AKI and oppose inflammation (61).

It was recently reported that the noncanonical mitochondrial
UPR impairs placental oxidative phosphorylation in early-
onset preeclampsia. Thus, understanding mitochondrial stress
may provide new insights regarding that pathology (62). The
beneficial activities of GHRH antagonists in breast and prostate
experimental models of disease have been associated with the
induction of UPR and P53 (50, 55).

CONCLUSIONS

The role of UPR in the lungs is diverse. Based on the previously
referenced literature, it is evident that UPRmay protect the lungs

against human diseases or potentiate the intensity of various
pathologies. In our opinion, the majority of the researchers are
focused on the pathophysiological outcomes of UPR activation
in lung microvasculature. Thus, most of the studies are targeted
toward the suppression of UPR activation or alternatively
aim to induce severe ER responses, which inevitably cause
cell death.

In a similar fashion, P53 can kill the cells upon intense
environmental and extracellular factors (36, 63), but its
mild induction delivers protective effects against lung
hyperpermeability (58). An increased production of reactive
oxygen species may either promote lung pathologies or
kill the cancer cells (64). Based on recent observations,
we feel that the delineation of UPR signaling in the
lungs may reveal new therapeutic possibilities toward
lung disease and reveal new targets for lung disease,
including ALI/ARDS (56, 65, 66). Experimental murine
models of ALI/ARDS with endothelial specific mutations
in control of the activation/deactivation of UPR branches
shall be used to investigate the unexplored depths of
the UPR universe and reveal potential therapies against
respiratory dysfunctions.
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