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Abstract The identification of reliable biomarkers for
Alzheimer’s disease (AD) remains challenging. Recently, ab-
normal levels of microRNAs (miRNAs) miR-27a, miR-29a,
miR-29b, and miR-125b in cerebrospinal fluid (CSF) of AD
patients were reported. We aimed to confirm the biomarker
potential of these miRNAs for AD diagnosis. Additionally, we
examined the influence of blood contamination on CSF
miRNA levels as potential confounding factor. We studied
expression levels of the four miRNAs by quantitative PCR
in CSF samples of AD patients and non-demented controls,
and in blood-spiked CSF. Levels of miR-29a, but not of the
other three miRNAs, were increased by a factor of 2.2 in CSF
of AD patients. Spiking of small amounts of blood into CSF
revealed that miR-27a and miR-29a, but not miR-125b levels
were strongly influenced by the number of blood cells in the
sample. In conclusion, miR-29a may be a candidate biomarker
for AD, but only when used in cell-free CSF.
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Abbreviations

AR42 Amyloid-342

AD Alzheimer’s disease

AUC Area under the curve

CSF Cerebrospinal fluid

Ct Cycle threshold

GM Geometric mean

miRNAs microRNAs

NINCDS/ National Institute of Neurological and Com-

ADRDA municative Disorders and Stroke/Alzheimer’s
Disease and Related Disorders Association

p-tau Phosphorylated tau

qPCR Quantitative PCR

REL Relative expression level

ROC Receiver operator characteristics

t-tau Total tau

Introduction

Alzheimer’s disease (AD) is the most common form of de-
mentia worldwide. Diagnosis of AD is currently supported by
measurement of total tau (t-tau), phosphorylated tau (p-tau),
and amyloid-(342 (A342) in cerebrospinal fluid (CSF). How-
ever, diagnostic accuracy of this panel of biomarkers has its
limitations [1]. MicroRNAs (miRNAs) have been introduced
as promising novel biomarkers. They are small, non-coding
RNAs that can bind to specific mRNAs and regulate their
expression by translational repression or degradation. Several
miRNAs have been reported to regulate AD-associated pro-
teins in the brain [2—4]. Furthermore, miRNAs appear to be
very stable in body fluids [5-7] and even low concentrations
are detectable by the widely used method of quantitative PCR
(qPCR). Therefore, miRNAs are attractive targets in the
search of novel biomarkers.
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Altered expression of several miRNAs in CSF of AD pa-
tients has been previously reported. In two recent publications,
it was reported that the levels of miR-27a and miR-125b are
lower in CSF of AD patients than in controls [8, 9], whereas
miR-29a and miR-29b levels are higher [9]. We aimed to
confirm the potential of these miRNAs as biomarkers for
AD. We previously showed that miRNA levels in CSF can
be influenced by blood contamination [10]. Therefore, we also
investigated whether traumatic lumbar puncture may influ-
ence CSF levels of these miRNAs. If so, this might influence
outcomes of miRNA expression studies and the reliability of
using these miRNAs as CSF biomarkers for AD.

Methods
Samples

CSF of 18 AD patients and 20 healthy individuals was obtain-
ed at the Radboud University Medical Center, Nijmegen. The
samples had been collected by lumbar puncture in polypro-
pylene tubes, centrifuged, aliquoted, and stored at -80 °C. AD
patients had been diagnosed as probable AD according to the
criteria of the National Institute of Neurological and Commu-
nicative Disorders and Stroke as well as Alzheimer’s Disease
and Related Disorders Association (NINCDS/ADRDA),
based on clinical evaluation, magnetic resonance imaging,
and neuropsychological testing [11]. More recent diagnostic
criteria [12] were not applied, since the patients’ samples were
collected prior to the introduction of these criteria. However,
most AD cases (14/18) had a typical CSF biomarker profile
with abnormal levels of t-tau, p-tau, and A(342. In three cases,
two of these biomarkers were abnormal, and in one case, one
biomarker was abnormal. None of the AD patients had a CSF
biomarker profile compatible with controls. Control subjects
had been assessed for neurological disorders but were either
diagnosed without a neurological disorder or with a systemic
disease without neurological manifestations. CSF samples
were obtained as part of the clinical diagnostic work-up of a
patient. Patients were informed that their data, including CSF,
could be used for further scientific purposes and were given
the option to object against this use, in which case their data
was not used. Only CSF samples with <4 leukocytes/pl and
<200 erythrocytes/ul were selected. Controls and AD patients
were from Western-European (Caucasian) origin, and were
age- and sex-matched. An overview of patient and sample
characteristics is given in Table 1.

Preparation of Blood-Spiked CSF
Fresh whole blood from a healthy individual was spiked into

500 pl aliquots of cell-free CSF to final concentrations of 10
to 20,000 erythrocytes/pl CSF. Cell count was confirmed

Table 1  Group characteristics
AD Control p value®
Number of patients 18 20
Gender (male/female) 8/10 8/12 NS (p=0.78)
Mean age (years) 70.4+9.1 6324123 NS (p=0.05)
MMSE 19.7+£3.2 ND NA
Number of erythrocytes/pl® 17.7449.0  3.0+5.8 NS (p=0.19)
(0—165) 0-21)
Number of leukocytes/ul®  0.6+0.9 0.4+0.6 NS (p=0.39)
0-3) 0-2)
Total protein (mg/L)" 566+156 578+212 NS (p=0.85)

(374 -976) (284 - 971)

All data are expressed as mean+standard deviation

Abbreviations: 4D Alzheimer’s disease, NS not significant, MMSE Mini
Mental State Examination, ND not determined, N4 not applicable

# Gender distribution of AD and control groups were compared using the
chi-square test, all other parameters using a two-tailed ¢ test

® The minimum-maximum range of the number of erythrocytes, leuko-
cytes, and total protein is indicated in parentheses

using flow cytometry. Samples were incubated at room tem-
perature for 3 h, followed by centrifugation to remove cells to
imitate CSF processing in clinical circumstances. Likewise,
the effect of incubation time was examined by applying incu-
bation periods of 0 to 180 min between spiking of 20,000
cells/pl and centrifugation.

RNA Isolation and Quantitative PCR

RNA isolation, reverse transcription, pre-amplification, and
gPCR were performed as previously described by us [10].
Primer sequences of hsa-miR-27a-3p, hsa-miR-29a, hsa-
miR-29b-2-5p, and hsa-miR-125b-5p can be found at http://
appliedbiosystems.com.

Data Analysis

To normalize expression levels of miRNAs, the geometric
mean (GM) of three reference RNAs was used. Those had
similar cycle threshold (Ct) values in the CSF of AD and
control groups. The following formulas were used to calculate
relative expression levels (RELs) and GM: REL=2"2" with
ACt=Ct,,;xva—GM, and GM = \:VCTmiR-l(i'CTmiR-24'CTU6~
Data were analyzed using GraphPad Prism version 5 (La Jolla,
CA, USA). Normally distributed RELs were compared using
a two-tailed ¢ test, and the Mann Whitney U test was used for
non-parametric data. Correlations were determined using
Pearson . Statistical outliers were identified using the Dixons
Q test and the Grubbs test for outliers. P values were consid-
ered significant when p<0.05. Receiver operator characteris-
tics (ROCs) analysis was used to determine the diagnostic
value of miR-29a and miR-125b. Area under the curve
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(AUC) was calculated with 95 % confidence intervals. The
optimal cut-off value was determined using the Youden index
(sensitivity+specificity—1.0) and likelihood ratio (sensitivity/
(1—specificity)).

Results
MiRNA Levels in CSF

We measured miR-27a, miR-29a, miR-29b, and miR-125b
levels in (nearly) cell-free CSF samples of AD patients and
controls. Numbers of leukocytes and erythrocytes and total
protein levels did not differ between groups (Table 1). MiR-
29b could only be detected in five AD and five control sam-
ples and was therefore excluded from further analysis. The
other three miRNAs were detectable in all samples. Mean
miR-27a levels were similar in AD and control samples
(Fig. 1a), but mean miR-29a levels were increased by a factor
of 2.2 in the AD group compared to controls (p=0.0001,
Fig. 1b) and differentiated AD from controls with a sensitivity
of 89 % and a specificity of 70 % (cut-off>3.61; area under
the curve (AUC)=0.87, likelihood ratio=2.96, Youden in-
dex=0.59). Mean miR-125b levels were slightly increased
in AD (p=0.025, Fig. 1c) and differentiated between AD
and controls with a sensitivity of 78 % and a specificity of
60 % (cut-off>3.64; AUC=0.71, likelihood ratio=1.94,
Youden index=0.38). However, this difference mainly
depended on one statistical outlier in the AD group. Without
this outlier, the difference in expression was no longer signif-
icant (p=0.058).

Effect of Blood Contamination on CSF miRNA Levels

We studied the effect of blood contamination, which often
occurs during lumbar puncture of CSF, on miRNA levels.
We simulated this effect by spiking whole blood into cell-
free CSF. Mean Ct values of miR-27a and miR-29a were

negatively correlated with the numbers of erythrocytes
(miR-27a: r=-0.89, p=0.001, Fig. 2a; miR-29a: r=—0.88,
p=0.002, Fig. 2b), indicating a strong dependence of these
miRNA levels on the number of blood cells present in the
CSF sample. No correlation was evident for miR-125b
(Fig. 2¢). We also investigated how fast the effect of blood
contamination on miRNA levels occurred. A comparison of
the Ct values for miR-27a and miR-29a in cell-free and blood-
spiked CSF samples showed that mean Ct values for these
miRNAs in CSF decreased, and thus miRNA levels increased,
immediately after blood-spiking (Fig. 2d, e). A plateau was
reached after 30 min. As expected, miR-125b levels were not
affected by blood contamination at any time duration of incu-
bation (Fig. 2f).

Discussion

In AD, many miRNAs (e.g. miR-9, miR-146, miR-107, miR-
124) have been described that are differentially expressed in
the brain and regulate proteins involved in AD pathogenesis
(see for an overview [13] and [14]). A subset of miRNAs can
also be detected in CSF. Therefore, these miRNAs have been
suggested as potential diagnostic tools for AD, provided that
their levels can be quantified in volumes that are suitable for
diagnostic purposes (<1 ml) [8-10]. In an earlier study, we
investigated several miRNAs of interest in hippocampus and
CSF, but only few miRNAs (miR-16 and miR-146a) were
detectable in CSF, and furthermore, we discovered that the
levels of miR-146a are influenced by blood contamination
[10]. With this study, we aimed to investigate other recently
proposed miRNA biomarkers in CSF, and tested whether
miR-27a, miR-29a, miR-29b, and miR-125b (previously re-
ported with different levels in CSF of AD patients compared
to controls [9, 8]) may indeed serve as biomarkers for AD.
We found similar levels of miR-27a in CSF samples of AD
patients and controls, which contradicts the previously report-
ed decrease of miR-27a levels in AD CSF [8]. A possible
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Fig. 1 MiRNA levels in cell-free CSF of AD patients and controls.
Relative expression levels (REL) of miR-27a (a), miR-29a (b), and
miR-125b (¢) in CSF of AD patients and control subjects. Data are
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Fig. 2 Effect of spiking cell-free CSF with whole blood. Cell-free CSF
was spiked with different volumes of whole blood. After centrifugation,
miR-27a (a), miR-29a (b), and miR-125b (c¢) levels were analyzed.
Also, the effect of incubation period with blood cells on CSF miRNA
levels was measured. Spiked blood cells were removed from CSF after

explanation for this discrepancy is the effect of blood contam-
ination on miR-27a CSF levels as we demonstrated in this
study. However, since no information on cell count was pro-
vided in the earlier study, our assumption remains speculative.
MiR-29a levels in CSF of AD patients were significantly in-
creased compared to controls and discriminated AD from con-
trols with good sensitivity and moderate specificity. The in-
creased miR-29a levels in AD confirm previous findings [9]
and are also in line with a report on its increased levels in the
medial frontal gyrus of AD patients [15]. In contrast, another
study reported decreased miR-29a levels in the cortex of AD
patients [16]. Interestingly, BACEI, an enzyme involved in
proteolytic production of the A} protein from its precursor
protein, is regulated by miR-29a [2]. A potential drawback
for the biomarker potential of CSF miR-29a levels may be
that its levels are strongly correlated to the number of blood
cells if present in the CSF, as we show in this study. Our
finding of slightly increased miR-125b levels in CSF of AD
patients compared to controls is in contrast to a previous study
in which a decrease was reported [9]. The increase we found
was mainly dependent on one AD sample, and should there-
fore be interpreted with caution. Our findings are, however,
consistent with the reported levels of miR-125b in brain tissue,
i.e. an increase in hippocampus, medial frontal gyrus, and
temporal cortex of AD patients [15, 17]. If additional studies
can confirm the increased levels of miR-125b in CSF of AD
patients, its potential as a diagnostic marker would be

Time (minutes)

Time (minutes)

various periods of time and expression levels of miR-27a (d), miR-29a
(e), and miR-125b (f) were measured. Data are represented by cycle
threshold (Ct) values. Key: empty circle=cell-free CSF; filled
circle=blood-spiked CSF

strengthened by the fact that miR-125b levels are not influ-
enced by blood contamination.

MiRNAs are found in plasma and in serum [9, 18], and in
several cell types present in blood (e.g. blood mononuclear
cells, erythrocytes, or leukocytes [19-21]). It is therefore pos-
sible that these are the sources of blood-derived miRNAs that
are released in the CSF upon traumatic lumbar puncture,
hence influencing miRNA levels. The effect of blood contam-
ination on miR-27a and miR-29a levels in CSF occurred very
fast. Their levels are altered within 10 min after blood spiking,
which means that contamination cannot be prevented by fast
processing of samples. Thus, these miRNAs cannot serve as
biomarkers in CSF collected after a traumatic lumbar
puncture.

This study demonstrated that reproducing previously re-
ported CSF miRNA expression data can be challenging and
that blood contamination may be a major factor that influences
miRNA levels. Hereby, blood-derived miRNAs may alter the
levels in CSF, but possibly also other factors such as miRNA
degrading enzymes present in the blood may play a role in
influencing miRNA CSF levels. For our study, we also cannot
exclude that the mean difference in age, although not statisti-
cally significant, between the AD and the control group may
have biased our results. This, however, requires further study.
Other factors that may account for contradictory miRNA ex-
pression data are normalization methods [22] and cohort size.
Also, degeneration of the brain in AD might be an important
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factor that could lead to decreased levels of some miRNAs,
rather than specific downregulation. However, this does not
account for the miRNAs that were investigated in this study,
which were either upregulated or were present at equal levels
in AD patients compared to controls. Further, there is increas-
ing evidence that etiology plays an important part in genetic
variation, including variations in miRNA-encoding DNA, and
that expression profiles are population-specific and therefore
could lead to different results across different populations [23,
24]. Despite these considerations, miR-29a may be a promis-
ing biomarker for AD. However, significantly larger studies in
patients with different genetic backgrounds will be necessary
to further validate miR-29a as an AD biomarker. This study
investigated four miRNAs, but there may be more miRNAs
that could serve as biological markers in CSF, either stand-
alone or as part of a miRNA panel. In addition, miRNAs may
be useful biomarkers for AD severity and should be tested in
different stages, for instance in patients with mild cognitive
impairment due to AD compared to AD patients with different
CDR scores.
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