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Abstract: Polyazomethine (PAM) prepared from the polycondensation between p-phenylene diamine
(PDA) and p-terephthalaldehyde (PTAl) via Schiff reaction can physically crosslink (complex) with
Co ions. Co-complexed PAM (Co-PAM) in the form of gel is calcined to become a Co, N-co-doped
carbonaceous matrix (Co-N-C), acting as cathode catalyst of an anion exchange membrane fuel
cell (AEMFC). The obtained Co-N-C catalyst demonstrates a single-atom structure with active Co
centers seen under the high-resolution transmission electron microscopy (HRTEM). The Co-N-C
catalysts are also characterized by XRD, SEM, TEM, XPS, BET, and Raman spectroscopy. The Co-
N-C catalysts demonstrate oxygen reduction reaction (ORR) activity in the KOH(aq) by expressing
an onset potential of 1.19–1.37 V vs. RHE, a half wave potential of 0.70–0.92 V, a Tafel slope of
61–89 mV/dec., and number of exchange electrons of 2.48–3.79. Significant ORR peaks appear in
the current–voltage (CV) polarization curves for the Co-N-C catalysts that experience two-stage
calcination higher than 900 ◦C, followed by double acid leaching (CoNC-1000A-900A). The reduction
current of CoNC-1000A-900A is comparable to that of commercial Pt-implanted carbon (Pt/C),
and the max power density of the single cell using CoNC-1000A-900A as cathode catalyst reaches
275 mW cm−2.

Keywords: polyazomethine; cathode catalyst; oxygen reduction reaction; anion exchange membrane
fuel cell

1. Introduction

Because most metal materials can be easily corroded in an acidic environment, it
is necessary to use high-corrosion-resistance and expensive precious metals as fuel cell
electrodes. Among the most used electrode materials, the precious metal platinum (Pt) has
always been the best catalytic material for fuel cells. However, due to its limited resource
reserves and expensive price, we need to replace it with other cheaper, non-precious
materials. On the other hand, in an alkaline environment, metallic parts of fuel cells face
fewer corrosion problems, although their electrochemical activity is still far less than that
of platinum.

Transition metal and nitrogen-doped carbonaceous networks (MNC: metal, nitrogen-
doped carbon matrix) are considered a promising non-platinum group material (NPGM)
that can possibly replace PGMs with comparable electrochemical activity and better dura-
bility. [1,2] Transition metals, which own six coordination sites and form an octahedral
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structure, acting as the active centers of the cathode catalyst of anion exchange membrane
fuel cells (AEMFCs), can accommodate oxygen molecules with two of their coordination
sites, leaving the other four empty sites to bond with nitrogen (MN4). [3–7] Fe and Co are
often chosen as the main transition metals used to build an MNC network (Fe-N-C and
Co-N-C, respectively) and behave as the cathode catalyst of the proton exchange membrane
fuel cell (PEMFC) or AEMFC [8–19].

A carbonaceous matrix can be created by calcining nitrogen-containing (N-containing)
aromatic polymers that are able to form robust complexes with either Fe or Co ions.
Therefore, an MNC catalyst can be easily prepared just by calcining the metal-chelating,
N-doped aromatic polymers. Eventually, a so-called single-atom catalyst (SAC) system is
formed in the carbonaceous matrix, with the MNx active centers acting as the adsorption
points for O2 in the cathode of a fuel cell [20–38].

Among the N-doped aromatic polymers, polyazomethine (PAM) can be easily pre-
pared via simple reaction in a short polymerization time. At temperature slightly above
or equal to room temperature (RT), we can obtain PAM via the Schiff polycondensation
reaction between diamine and dialdehyde. The affluent imine groups are able to capture
(complex) Co ions and create gel-like composites. In other words, we can actually already
construct a similar Co ion-N-complexed structure inside the Co-PAM body after polymer-
ization, which can be easily calcined to become Co-N-C a catalyst with active CoNx centers
as a promising cathode catalyst of AEMFC.

In this study, we characterized Co-N-C catalysts with FTIR (Fourier transform in-
frared), XRD (x-ray diffraction), XPS (x-ray photoelectron spectroscopy), Raman spec-
troscopy and measured the ORR by polarization curves and the reduction current by LSV
(linear sweeping voltage). Eventually, we prepared an MEA (membrane electrode assem-
bly), which was fabricated into a single cell to measure its power density and voltage drop
vs. current density.

2. Materials and Methods
2.1. Materials

PDA (para-phenylene diamine) (Tokyo Kasei Kogyo Co., Ltd., Tokyo, Japan), TPAl
(terephthalaldehyde) (Tokyo Kasei Kogyo Co., Ltd., Tokyo, Japan), and anhydrous cobalt(II)
chloride (CoCl2, J.T. Baker, Radnor, PA, USA)

2.2. Preparation of Co-N-C Catalyst

For preparation of the Co-N-C Catalyst, 1.34 g of TPAl in 100 mL alcohol, 1.62 g of
PDA in 80 mL alcohol, and 0.99g of CoCl2 in 50 mL alcohol were mixed together into one
solution. The mixture solution was stirred at room temperature until an orange gel formed,
which slowed down the speed of stirring. (Figure 1a–d). The mixture was transferred to
a Petri dish, and the alcohol of the gel-like mixture was vaporized at RT, shrinking into a
robust jelly gel (Figure 1e). Eventually, the jelly gel was dried at 80oC for 8 h before cooling
to RT, and Co-PAM was prepared.

The dry, neat PAM prepared in the absence of CoCl2 became a dry cake after removing
the alcohol, and no gel-like product was obtained (Figure 1f). Dry Co-PAM, the precursor
of Co-N-C catalyst, was calcined to 600 ◦C (700, 800, 900, and 1000 ◦C) at 10 ◦C min−1 and
maintained at 600 ◦C (700, 800, 900, and 1000 ◦C) for 30 min in an argon atmosphere, then
cooled to RT. The impurities and magnetic parts (CoO and Co) of the calcined materials
were dissolved by acid leaching with 1 M H2SO4 (aq.) at 60 ◦C for 12 h, followed by
filtration, and cleansed with deionized water and alcohol before drying in a vacuum oven
at 80 ◦C for 8 hr. The acid-leached products were subjected to a second calcination at
500 ◦C (600, 700, 800, and 900 ◦C) in N2 and NH3 atmospheres at 10 ◦C min−1 (named
CoNC-600A500) and washed again in 1 M H2SO4 (aq.) at 60 ◦C for 30 min, followed by
drying in a vacuum oven at 80 ◦C. The obtained sample was named CoNC-600A-500A
(-700A-600A, -800A-700A, -900A-800A, and -1000A-900A).
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Figure 1. Polymerization mixture of Co-PAM. (a) Initial, (b) 10 min, (c) 20 min, (d) 30 min, (e) after
evaporation of alcohol, (f) dry PAM cake prepared without CoCl2.

2.3. Characterization
2.3.1. X-ray Photoelectron Spectroscopy (XPS)

Different binding energy spectra of N1s and Co2p belonging to various Co-N-C cata-
lysts were used to characterize the different bonding types of nitrogen and cobalt with a
Fison (VG)-Escalab 210 XPS instrument (Fison, Glasgow, UK) using an Al Ka X-ray source
at 1486.6 eV. The pressure in the chamber was maintained below 10−6 Pa. The powered
samples were shaped into tablets by a stapler. Binding energies of N1s and Co2p of around
400 and 780 eV, respectively, were recorded.

2.3.2. Raman Spectroscopy

The Raman spectra of all samples were obtained by a Raman spectrometer (TRIAX
320, HOBRIA, Kyoto, Japan).

2.3.3. Wide-angle X-ray Diffraction (WXRD)

A copper (Cu-Kα) Rigaku x-ray source (Rigaku, Tokyo, Japan) with a wavelength of
1.5402 Å was the target for x-ray diffraction. The scanning angle (2θ) ranged from 10◦ to
90◦, with a voltage of 40 kV and a current of 30 mA, operated at 1◦ min−1.

2.3.4. Scanning Electronic Microscopy (SEM)

The sizes and morphologies of Co-N-C catalysts were obtained by SEM (field emission
gun scanning electron microscope, AURIGAFE, Zeiss, Oberkochen, Germany).

2.3.5. Transmission Electron Microscopy (TEM)

Photos of the samples were taken using an HR-AEM field emission transmission
electron microscope (HITACHI FE-2000, Hitachi, Tokyo, Japan); the samples were first
dispersed in acetone and were subsequently placed dropwise on carbonic-coated copper
grids before being subjected to electron radiation.
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2.3.6. Surface Area and Pore Size Measurement (BET Method)

Nitrogen adsorption–desorption isotherms (type IV) were obtained with an Autosorb
IQ gas sorption analyzer (Micromeritics-ASAP2020, Norcross, GA., USA) at 25 ◦C. The
samples were dried in vacuum at a temperature higher than 100 ◦C overnight. The surface
area was calculated according to the BET equation when a linear BET plot with a posi-
tive C value was in the relative pressure range. Pore size distribution was determined
by the quenched solid density functional theory (QSDFT) method based on a model of
slit/cylinder pores. The total pore volumes were determined at P/P0 = 0.95.

2.4. Electrochemical Characterization
2.4.1. Current–Potential Polarization-Linear Scan Voltammetry (LSV)

Electrocatalyst support was implemented in a three-electrode system. A round work-
ing electrode with an area of 1.5 cm2 was prepared as follows: Ag/AgCl, carbon graphite,
and a Pt strip were used as the reference, relative, and counter electrode, respectively.
The electrochemical test was performed in a potentiostat/galvanostat (Autolab-PGSTAT
30 Eco Chemie, KM Utrecht, The Netherlands) in 0.1 M KOH(aq) solution, and C–V curves
were obtained from −0.2 to 1.0 V at a scanning rate of 50 mV·s−1. The catalyst ink was
prepared by combining 2.9 mg Co-N-C catalyst powder with a mixture of 375 µL of ethanol
and 375 µL of deionized water and stirring until uniform. Subsequently, 7.14 µL of 5%
D-2020 Nafion solution (Merck, Darmstadt, Germany) was introduced into the mixture as a
binder, the mixture was ultrasonicated for 1 h, and 5µL of the obtained ink was uniformly
spray-coated on the carbon paper for C-V testing.

The current–potential polarization curves obtained from the LSVs of the various Co-
N-C catalysts were measured using a rotating-disk electrode (RDE: Metrohm, Tampa, FL,
USA) operating at 900, 1200, 1600, 2500, and 3600 rpm, respectively, in O2-saturated 0.1 M
KOH(aq). The reduction current densities of various Co-N-C catalysts, which were recorded
at 1600 rpm with 5 mV s−1 scanning speed within the measured voltage range (0.0~1.2 V),
were chosen for comparison.

2.4.2. MEA Preparation

An X37-50RT sheet (50 µm) purchased from Dioxide Materials, Boca Raton, FL, USA,
was used as the hydroxyl ion-exchange membrane. To saturate the membranes with
hydroxyl (OH−) ions, the X37-50RT (2 × 2 cm) membrane was submerged in 1 M KOH(aq)
solution for 24 h. Subsequently, the treated membranes were dipped in distilled water for
15 min and were then stored in 1 M KOH(aq) solution. The catalyst inks were prepared by
mixing 18 mg of Co-N-C powders in 400 mg of methanol and 400 mg of deionized water,
which were mechanically stirred until uniform, followed by the addition of 90 mg of 5%
Sustainion® XB-7 alkaline ionomer ethanol solution (Dioxide Materials, Raton, FL, USA)
before stirring again until uniform. Eventually, the catalyst mixture was ultrasonicated for
1 h, followed by dropwise coating on both sides of the treated X37-50RT sheet as the anode
(Pt/C) and cathode electrodes (2 × 2 cm), respectively, and hot pressing at 140 ◦C with a
pressure force of 70 kgf cm−2 for 5 min to obtain the MEA.

2.4.3. Single-Cell Performance Testing

The MEA was installed in a fuel cell test station to measure the potentials and power
densities of the assembled single cell at different current densities using a single-cell testing
device (model FCED-P50; Asia Pacific Fuel Cell Technologies, Ltd., Miaoli, Taiwan). The
active cell area was 2 × 2 cm. The temperatures of the anode, cell, cathode, and humidifying
gas were maintained at about 60 ◦C. The fuel-flowing rates of the anode input H2 and the
cathode input O2 were set at 30 and 60 mL·min−1, respectively, based on stoichiometry.
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3. Results and Discussion
3.1. XPS

Nitrogen can bond with carbon, cobalt, and oxygen in various forms, including
pyridinic, pyrollic, graphitic, pyridinic oxide-Ns, and Co-N in the matrix of Co-N-C cata-
lysts [39–43], which can be characterized by the XPS of N1s in Figure 2a. The percentages
of each type of nitrogen obtained from the deconvolution of XPS are listed in Table 1. We
understand that CoNx is the best type of active center for ORR, which can be created in
the Co-N-C catalysts after experiencing the 1000A-900A process. Co-Nx demonstrates the
highest Co-N composition of 33.82%, as listed in the second column of Table 1. Addition-
ally, it also demonstrates the highest portion of pyridinic N, revealing that Co-N bonding
originates from pyridinic Ns that are usually found at the edges of the Co-N-C matrix, as
shown in Scheme 1. It seems that the presence of Co-Ns can crosslink the massive carbon
matrix together but behaving as the center of catalysis. In investigating the compositions
of pyridinic N and Co-N in CoNC-900A-800A, we also found them in higher percentages
compared to other types of nitrogen, except CoNC-1000A-900A, in accordance with Table 1,
revealing the requirements for the catalyst to experience two-stage calcination and double
acid leaching in order to create more active CoNx centers. The contributions of other types
of nitrogen seem less important compared to that of pyridinic N.

Table 1. Atomic ratios of the different N species in Co-N-C-catalysts, as determined by XPS analysis.

CoNC-
Catalyst

N1s (at%)

Pyridinic N Co-N Pyrrolic N Graphitic N Pyridine-N oxide

1000 6.6% 9.7% 66.2% 7.8% 9.7%

1000A 4.2% 30.2% 46.9% 10.4% 8.3%

1000A-900 9.76% 18.05% 52.7% 10.71% 8.78%

1000A-900A 35.97% 33.82% 17.48% 6.51% 6.22%

900A-800A 22.15 24.62 36.80 12.46 3.97

800A-700A 1.31 16.60 75.09 5.94 1.06

The chelated Co ions of the Co-PAM might experience reduction, oxidation, and
nitridation during high-temperature calcination, possibly resulting producing Co, Co-Ox,
and Co-Nx, respectively, which can be quantitatively measured in the XPS of Co2p, as
illustrated in Figure 2b. The Co metal created on the surface of the catalysts is known
to be removed by acid leaching when we compare the spectrum of 1000 with 1000A or
1000A-900 with 1000A-900A in Figure 2b. Some of the Co-Ox, which is considered to be
the main source of magnetic attraction of the catalysts, can be neutralized and removed by
1M sulfuric acid (acid treatment), comparing 1000A-900 to 1000A-900A. Although Co-Ox
is another possible source of the active catalyzing center of the cathode catalyst, it still
needs be removed. Because the Co-O bonding cannot join the carbonaceous network
structure, it forms dangling, individual oxides, such as CoO or Co2O3, in the carbon matrix.
Additionally, the catalyst cannot easily disperse in the solvent to prepare the catalyst ink
due to the presence of a strong magnetic attraction contributed by Co oxides.

Likewise, the Co metal is able to act as the active center of catalysis of ORR. However,
the available surface area for O2 is relatively small, and most of the Co atoms inside are
not in direct contact with the fuel gas to induce ORR. Co-Nx, which is presented as the
SAC in the catalyst network, is the most efficient and active center for ORR in the cathode
of the AEMFC.

Briefly, the CoO and Co element found in the XPS spectra are possibly buried deep in
the Co-N-C catalysts because the CoO and Co located on the surface can be removed by
sulfuric acid and are to induce ORR.
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Scheme 1. Calcination of Co-PAM into Co-N-C.

3.2. Raman Spectroscopy

The Raman spectrum, which is usually applied to identify the presence of C(sp3) and
C(sp2), can also be used to monitor the surface roughness of the catalyst, with a method
similar to that used to calculate the surface area from BET spectra. Carbon materials that
experience calcination higher than 800 ◦C in inert gas are able to develop unsaturated
carbons in the form of either a graphene or carbon nanotube (CNT) structure, displaying
high concentrations of C(sp2) in the Raman spectrum. However, higher concentrations of
C(sp2) also result in a more plain structure in the conjugated aromatic form, contributing to
a smoother surface that is not suitable for a catalyst, which needs high surface area. In other
words, we can monitor the surface roughness of the catalyst by comparing the concentration
of C(sp3) to that of C(sp2), which can be achieved by determining the ratio of the intensity
of the D band (1350 cm−1) and comparing it with that of the G band (1590 cm−1), ID/IG,
from the Raman spectrum [16,17]. Figure 3 reveals the D and G bands of various Co-N-C
catalysts, and the ID/IG values are listed in the first column of Table 2. We understand
that the ID/IG value is lower for Co-N-C catalysts prepared with one-stage calcination and
higher for those prepared with two-stage calcination, indicating many C(sp2) remained
after the first calcination and more C(sp2) converted to C(sp3) after the second calcination,
resulting in higher ID/IG values, as seen in Table 2. Higher concentrations of C(sp3) result
in more broken surface morphologies of the catalysts, exposing more active Co centers to
O2 in the cathode.
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Figure 3. Raman spectra of various Co-N-C catalysts measured from 1000 to 2000 cm−1.

Table 2. Comparison of various properties of Co-N-C catalysts.

Co-N-C-Catalyst ID/IG
a BET Surface Area (m2 g−1) Pore Diameter b

1000 1.07 253.25 4.53

1000A 1.08 290.73 4.58

1000A-900 - 646.85 4.28

1000A-900A 1.12 680.94 4.82

900A-800A 1.14 461.47 5.74

800A-700A 1.08 547.39 3.46
a: obtained from Raman spectra. b: obtained from BET adsorption curves.

3.3. WAXD Spectroscopy

The XRD spectra of the Co-N-C catalysts that experienced 1000oC calcination are
posted in Figure 4a, in which each spectrum demonstrates significant diffraction peaks of
C(002) located at around 26◦ belonging to either graphene or CNT, which provide high
conductivity for the transportation of electrons in the electrodes. The significant diffraction
peaks of Co(111) and Co(200) at 45◦ and 52◦, respectively, appear in the spectrum of CoNC-
1000. Comparing spectra of CoNC-1000 with -1000A, we understand that most of the Co
metals formed during calcination can be removed by acid leaching. Small amounts of CoO
are present in the Co-N-C catalysts after treatment at 1000 ◦C.

The XRD spectra of the Co-N-C catalysts prepared with two-stage calcination and
double acid-leaching are presented in Figure 4b. No significant C(002) peak is found
until the calcination temperature is over 900 ◦C, and less Co and CoO are found for
CoNC-800A-700A.
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Figure 4. X-ray diffraction patterns of Co-N-C catalysts (a) treated at 1000oC (b) and with two-stage
calcination double acid leaching.

3.4. BET Surface Area and Pore Size Distribution

The BET surface area significantly increased to more than 450 m2g−1 (Figure 5a) after
the second calcination, which was performed at a temperature 100 ◦C less than the first
calcination in order not to devastate the structure created in the first calcination. A larger
amount of ammonia gas compared to N2 than that applied in the first calcination was mixed
with N2 gas in the second calcination to create more and larger pores on the surface of
Co-N-C catalysts by efficient bombardment [16,17,19]. This eventually caused a significant
increase in surface area, with more mesoporous pores, as presented in the second column
of Table 2. The pores newly created in the second calcination demonstrate mesoporous size,
as opposed to the microporous structure resulting from the first calcination (Figure 5c,d).
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Figure 5. (a,b) N2 adsorption–desorption isotherms and (c,d) pore size distribution of Co-N-C
catalysts treated with different methods of calcination.

The BET surface area was less than 300 m2g−1 when only single calcination at 1000 ◦C
was conducted, as presented in the second column of Table 2 and Figure 5d, in which
microporous pores dominate (Figure 5d), indicating N2 can only construct micropores.

3.5. SEM and TEM Micrograph

In order to enhance the capability of pore creation on the surface of the catalyst, Co-
PAM was heated to 1000 ◦C first (CoNC-1000), which resulted in a flake-like morphology
(Figure 6a) derived from the formation of a Co, N-doped carbonaceous structure (curved
multilayered graphenes) with no significant surface pores seen. After leaching with acid,
few micro- and mesoporous pores (based on the data from Figure 5) were perceivable
(Figure 6b) for CoNC-1000A, which were created by the vacancies left by the Co elements
or CoO washed away by acid. Additional microporous pores are created if the catalyst
is subjected to second heating at 900 ◦C with NH3 gas included in the influx mixture gas.
In this case, micropores dominate on the surface (Figure 6c), in accordance with Figure 5.
Additional mesopores formed when following washing with acid, as illustrated in Figure 6d
(CoNC-1000A-900A), resulting in a BET surface area close to 680 m2 g−1, as presented in
Table 2, as more CoNx active centers can are exposed to the incoming O2 in the cathode.
Briefly, both two-stage heating in different types of gas (N2 and NH3) and double acid
leaching are required to achieve a high concentration of micro- or mesoporous pores on the
Co-N-C catalysts.

Similar morphologies were found for TEM micrographs; no significant pores were
seen on the surface of CoNC-1000 (Figure 6e) until it was acid-leached (CoNC-1000A in
Figure 6f). More tiny pores are perceivable after the second calcination at 900 ◦C (CoNC-
1000A-900 in Figure 6g), and many more pores formed after second acid leaching for
CoNC-1000A-900A, as seen in Figure 6h.
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and (d,h) CoNC-1000A-900A.

3.6. Electrochemical Measurement
3.6.1. CV and LSV Curves

The catalyzing capability of the prepared cathode catalyst was characterized first
by identifying its reduction peak in the polarization curves (C-V curves). Both CoNC-
1000A-900A and -900A-800A were taken at a scanning rate of 50 mV·s−1, and neither
demonstrated a significant reduction peak in an N2 atmosphere (Figure 7). However, strong
reduction peaks appeared when N2 was replaced with O2 for both catalysts, revealing both
as promising cathode catalysts for ORR in base medium (KOH(aq)) and as suitable catalysts
of AEMFC.
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Figure 7. Polarization curves of CoNC 1000A-900A and 900A-800A in N2 and O2 atmospheres.

To further examine the ORR capability of the Co-N-C catalysts, the electrode was
replaced by a rotating disk electrode (RDE), and the LSV curves of Pt/C and Co-N-C
catalysts were recorded in O2-saturated 0.1 M KOH(aq) (or 0.1 M HClO4 (aq) for com-
parison) solution at 5 mV s−1 and 1600 rpm. The reduction current density from 0 to 1 V
was recorded for all samples. The limiting reduction current density (LRCD) at 0 V was
used as the standard to identify suitable Co-N-C catalysts to fabricate MEA for single-cell
testing. In acid medium, more hydrogen peroxide (H2O2) was produced [44] due to in-
sufficient ORR (two-electron route reduction), which can carry out redox reaction (Fenton
process) with Co(II), resulting in the formation of a hydroxyl radical (OH.), which can
effectively destroy the Co-N-C structure during operation of the PEMFC. The same catalyst
(CoNC-1000A-900A) had a lower LRCD (4.6 mA cm−2) in the acid medium (Figure 8, inset
(1)) in comparison with that obtained in base medium (5.2 mA cm−2 (Figure 8, inset (2)),
which can be attributed to the damage to Co-N-C structure caused by the generating OH.

through the Fenton process in acid medium. On the contrary, less H2O2 was generated
(four-electron route of ORR) in the acid medium when Co-N-C was replaced with Fe-N-C,
with LRCD approaching 6 mA cm−2 [17] (Figure 8, inset (1)). It seems that the Fe-N-C
structure can tolerate the corrosion of hydroxyl radicals.

When we compare the LRCD of all Co-N-C catalysts that experienced 1000 ◦C in
(Figure 8 inset-(3)), we understand that second stage calcination and second acid leaching
are necessary for the Co-N-C catalysts to obtain high LRCD. Only Co-PAM prepared with
two-stage heating (calcination temperature higher than 900 ◦C) and washed twice with
acid can obtain an LRCD that is comparable to that of commercial Pt/C (Figure 8). The
onset and half-wave potentials of various Co-N-C catalysts are also listed in Table 3, with
similar values for all catalysts (61–77 mV/dec), except CoNC-1000.
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(2) KOH, and (3) Co-N-C catalysts at 1000 ◦C.

The kinetic current density (Jk) of LSV curves of various Co-N-C catalysts measured at
1600 rpm in KOH(aq) were used to create the Tafel plot in Figure 9a. The voltage vs. Log
(| Jk |) diagram is similar to voltage vs. current. Consequently, the Tafel slope obtained
from Figure 9a can be considered the resistance of electron transportation in the cathode.
The obtained Tafel slopes (Table 3) for all Co-N-C catalysts are smaller than those reported
in the literature [45–48], indicating the e-transferred speed inside the Co-N-C catalysts are
faster than that of common Fe-N-C or Co-N-C catalysts. It seems that the resistance of
e-transferred speed in the cathode is high if the cathode catalyst does not experience acid
leaching, even though it was already calcined at temperatures as high as 1000 ◦C, comparing
the Tafel slope of CoNC-1000 (89 mV/dec) to that of CoNC-1000A (77 mV/dec) in Figure 9a
and Table 3. The slope value continued to decreased with second calcination and second
acid-leaching, as presented in Table 3, indicating that lower resistance (smaller slope) and
higher e-transferring speed can be achieved if the catalysts experience high-temperature
(>900 ◦C) calcination and double acid leaching.

LSV curves measured at different rotational speeds were used to plot the Koutecký–
Levich (K-L) lines, which can be used to calculate the number of electrons (n) transferred
during ORR according to Koutecký–Levich equation (Figure 9b). The obtained averaged
n-values are listed in the third column of Table 3. Both CoNC-1000A-900A and -1000A-900
demonstrated higher numbers of electrons transferred at all potentials and n-values close
to 4, indicating more 4e routes were followed during ORR.
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Table 3. Comparison of various electrochemical properties of all Co-N-C catalysts.

CoNC-Catalyst Onset Potential
(V) a

Half-Wave
Voltage (V) a

Tafel Slope
(mVdec−1) b

# of Exchange
Electrons c

Pmax
(mWcm−2) d

1000 1.37 0.76 89 3.38 200

1000A 1.28 0.92 77 2.75 150

1000A-900 1.26 0.70 74 3.49 270

1000A-900A 1.28 0.78 61 3.79 275

900A-800A 1.25 0.74 66 3.13 250

800A-700A 1.19 0.74 77 2.48 66
a: obtained from LSV curves in Figure 9. b: obtained from curves in Figure 10a. c: obtained from curves in
Figure 10b. d: obtained from Figure 11.

3.6.2. MEA and Single Cells

The anode catalysts of all MEAs were made of commercial Pt/C, and the cathode
catalysts were Co-N-C catalysts, except for the comparison MEA, in which both anode and
cathode catalysts were Pt/C.

The discussion about the obtained LRCDs of various types of Co-N-C catalysts in
Figure 8 reveals that catalysts experienced two-stage calcination, and the process of double
acid leaching resulted in a significant reduction in ORR. The power density and potential
vs. current density of all single cell prepared with different types of cathode catalysts are
illustrated in Figure 10.

For a single cell made of a neat PAM catalyst that prepared at 1000 ◦C in the absence
of Co (NC-1000), the max power density (Pmax) is very low. However, the Pmax can be
increased to close to 200 mW cm−2 (CoNC-1000) if the Co is chelated with the precursor
(Co-PAM) before calcination.

Most of the obtained Co-N-C catalysts have a Pmax higher than 200 mW cm−2, which
is not common single cells of AEMFCs using Co-N-C composites as cathode catalysts. The
literature [37,49–52] reports that the Pmax of single cells based on Co-N-C catalysts is almost
always below 200 mW cm−2 if the anode is fabricated with 20% Pt/C rather than 40% Pt/C
or 20% RuPt/C.

The calcination temperature needs to be higher than 800 ◦C in order to obtain a single
cell with a Pmax over 200 mW cm−2, especially for a single cell using CoNC-1000A-900A as
the cathode catalyst, the Pmax of which can reach 275 mW cm−2. The high-power density
of single cells using Co-N-C cathode catalysts experiencing high temperature calcination
(>900 ◦C) can be attributed to the presence of CoNx (SAC), CoO, and Co elements, in
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accordance with the Co2p of XPS in Figure 2b. However, only the exposed surface of both
CoO and Co can perform catalysis, not the enclosed ones, and they can be easily removed
by acid leaching. Consequently, high concentrations of CoO and Co found in XPS do not
mean the cathode catalysts can promote more ORRs because most of them are inside the
Co-N-C catalysts and not able to directly interact with O2.
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Although the Pmax of all Co-N-C catalysts are lower compared to that of Pt/C catalysts
(350 mW cm−2), their potentials can extend to more than 1000 mW cm−2 (current intensity),
and the max current density (Imax) can be over 900 mW cm−2. However, the potential
of cells made of Pt/C decays very quickly, and the Imax of Pt/C is just 700 mW cm−2,
indicating the durability of the Pt/C catalyst might not be as favorable as that of Co-N-C
catalysts, which will be discussed in the next section.

3.6.3. Durability Testing by Limited Reduction Current Density

Durability testing was conducted in the presence of 0.1 M KOH(aq) by measuring the
limited reduction current density (LRCD) after performing multiple redox cycles.

The LSV curves of CoNC-1000A-900A after performing different numbers of redox
cycles are plotted in Figure 11a, and the relative current is obtained from the ratio of the
LRCD, comparing with the first cycle vs. numbers of cycles in Figure 11b to illustrate the
durability of the catalyst under continuous, cyclic redox reaction.

We clearly see only 50% decay for CoNC-1000A-900A, and it becomes stable after
300 cycles (Figure 11b). However, the relative ratio of Pt/C decayed to more than 70% after
500 cycles, which confirms that the potential of the single cell made of Pt/C decayed very
fast with current density (Figure 10).
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4. Conclusions

Co ions firmly chelate with the imine groups of PAM to create a gel after polymer-
ization. After calcination, a SAC based on CoNx bonding in the carbonaceous matrix is
formed and can effectively improve the ORR in the cathode. The obtained Co-N-C catalysts
can enhance the capability of ORR if the calcination was conducted in two-stage heating in
different atmospheres plus double acid leaching. High-temperature calcination (>900 ◦C)
can promote the formation of SACs based on CoNx, and acid leaching is able to remove
both the CoO compounds and the exposed Co metals on the surface of SACs, leaving many
of meso- or micropores large enough for O2 molecules enter.

The prepared Co-N-C catalysts demonstrate effective ORR activity in the KOH(aq)
by demonstrating an onset potential of 1.19–1.37 V vs. RHE, a half-wave potential of
0.70–0.92 V, a Tafel slope of 61–89 mV/dec., and 2.48–3.79 exchange electrons.

Eventually, we obtained a Co-N-C catalyst that can produce a limited reduction current
comparable to that of commercial Pt/C. A single cell based on the MEA using CoNC-
1000A-900A as the cathode catalyst demonstrated a max power density of 275 mW cm−2

in KOH(aq) medium, which is relatively high compared with that of common AEMFC.
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