
biomolecules

Article

Protein–Protein Connections—Oligomer, Amyloid and Protein
Complex—By Wide Line 1H NMR

Mónika Bokor 1,* and Ágnes Tantos 2

����������
�������

Citation: Bokor, M.; Tantos, Á.

Protein–Protein

Connections—Oligomer, Amyloid

and Protein Complex—By Wide Line
1H NMR. Biomolecules 2021, 11, 757.

https://doi.org/10.3390/

biom11050757

Academic Editors: Simona Maria

Monti, Giuseppina De Simone and

Emma Langella

Received: 17 March 2021

Accepted: 14 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, 1121 Budapest, Hungary
2 Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; tantos.agnes@ttk.hu
* Correspondence: bokor.monika@wigner.hu; Tel.: +36-209939420

Abstract: The amount of bonds between constituting parts of a protein aggregate were determined
in wild type (WT) and A53T α-synuclein (αS) oligomers, amyloids and in the complex of thymosin-
β4–cytoplasmic domain of stabilin-2 (Tβ4-stabilin CTD). A53T αS aggregates have more extensive
βsheet contents reflected by constant regions at low potential barriers in difference (to monomers)
melting diagrams (MDs). Energies of the intermolecular interactions and of secondary structures
bonds, formed during polymerization, fall into the 5.41 kJ mol−1 ≤ Ea ≤ 5.77 kJ mol−1 range for αS
aggregates. Monomers lose more mobile hydration water while forming amyloids than oligomers.
Part of the strong mobile hydration water–protein bonds break off and these bonding sites of the pro-
tein form intermolecular bonds in the aggregates. The new bonds connect the constituting proteins
into aggregates. Amyloid–oligomer difference MD showed an overall more homogeneous solvent
accessible surface of A53T αS amyloids. From the comparison of the nominal sum of the MDs of
the constituting proteins to the measured MD of the Tβ4-stabilin CTD complex, the number of inter-
molecular bonds connecting constituent proteins into complex is 20(1) H2O/complex. The energies
of these bonds are in the 5.40(3) kJ mol−1 ≤ Ea ≤ 5.70(5) kJ mol−1 range.

Keywords: α-helix; amyloid; β-sheet; hydration; intrinsically disordered proteins; oligomer; protein–
protein interactions; wide-line 1H NMR

1. Introduction

One of the main reasons intrinsically disordered proteins (IDPs) are so important in
different physiological processes is that they are capable of forming a bewildering variety
of interactions. They can undergo induced folding or unfolding, they are able to form
physiological or pathological aggregates, and even form fuzzy complexes, where disorder
is retained during the interaction [1]. Describing the molecular details of the different
interaction types of IPDs is crucial for the clear understanding their mechanisms of function
and for the interference with the pathological processes caused by their erroneous behavior.

In our work presented here, two IDP interaction systems were studied to gain informa-
tion about the bonds holding the protein associations—oligomer, amyloid, and complex—
together. One system contains wild type and mutant α-synuclein (αS) in the forms of
oligomers and amyloids. Detailed structural and preparation information can be found
in [2,3]. The other system consists of two proteins—thymosin-β4 (Tβ4) and cytoplasmic
domain of stabilin-2 (stabilin CTD)—which form a 1:1 complex (see [4,5] for structural
information and for details of preparation).

αS is a 140-amino-acid protein mainly located at presynaptic terminals and is abundant
in the brain [6]. The exact physiological role of αS remains unclear, but it’s thought to be
involved in the regulation of synaptic vesicle mobility [7] through binding to VAMP [8].
Pathological aggregation of αS is the leading cause of Parkinson’s disease (PD), and some
mutations of αS, such as A53T, cause familial occurrences of the disease [9,10]. A53T
mutation results in faster αS accumulation [11]. When the balance between the production

Biomolecules 2021, 11, 757. https://doi.org/10.3390/biom11050757 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/biom11050757?type=check_update&version=1
https://doi.org/10.3390/biom11050757
https://doi.org/10.3390/biom11050757
https://doi.org/10.3390/biom11050757
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11050757
https://www.mdpi.com/journal/biomolecules


Biomolecules 2021, 11, 757 2 of 10

and clearance of αS is disturbed, the monomeric αS aggregates and misfolds into oligomers,
then amyloid fibrils and finally Lewy bodies [12]. The exact pathogenesis of PD is still
unknown, but more and more evidence suggests that the oligomeric form of αS plays a
vital part in the pathogenesis of PD [12–16]. Historically, αS has been considered as an IDP
in the healthy, physiological state [17,18]. IDPs exist as dynamic protein ensembles with
fluxional structures under physiological conditions that can adopt different conformations
depending on their external stimuli, thus enabling the complex signaling and regulatory
requirements of higher biological systems [19,20].

The structural traits that lie behind the stronger amyloidogenic propensity of the
disease-related mutants are intensively studied and have revealed many important features.
The helical content of wild type (WT) αS is minimally affected by the A53T mutation,
while there is an increase in the β-sheet content of the A53T mutant-type in comparison to
the WT protein [18,21–24]. Long-range intramolecular interactions between the different
regions either are less abundant or disappear upon A53T mutation [25–27], indicating that
the NAC (non-AB component) region is more solvent-exposed upon A53T mutation [28].
As this segment is indispensable for the amyloid formation, its easier accessibility explains
the increased aggregation propensity of the A53T mutant [22,23,26,29–33]. The structures of
the A53T αS are thermodynamically more preferred than the structures of the WT αS [26].

Our understanding of amyloid structure lately has been improved a lot by innovations
in cryo-electron microscopy, electron diffraction and solid-state NMR. The results show
expected cross-β amyloid structure and an unexpectedly diverse and complex amyloid
fold [34]. The amyloid cores are constituted of extensive mainchain hydrogen bonding be-
tween adjacent β-strands within the stacked layers, and close interdigitation of sidechains.
The amyloid fibrils are dynamic, with monomers and/or oligomers dissociating from their
ends [35,36].

Isolated Tβ4, stabilin CTD and their 1:1 complex create a system where the bonds
formed in the complex can be studied.

Tβ4 is an IDP with moonlighting functions. It can sequester actin [37] and it has im-
portant role in the regulation of the formation and modulation of the actin cytoskeleton [38].
Many different functions were attributed to Tβ4. Such functions are, e.g., endothelial cell
differentiation [39], angiogenesis [40] and wound repair [41]. Tβ4 can increase the con-
centration of metalloproteinases, which is important in cell migration [41], the underlying
process of which is still unclear. The multiple functions of Tβ4 are probably related to that,
it is an IDP and has very little transient secondary structure in solution phase [42]. It binds
often weakly to its physiological partners, and forms structurally heterogeneous complexes
with them [43], but it can fold upon binding.

Stabilin-2 is an endocytic receptor for hyaluronic acid, and its C-terminal domain
(CTD) binds Tβ4 [4,44]. The observation that Tβ4 colocalizes with stabilin-2 in the phago-
cytic cup suggests that the complex of Tβ4 with stabilin-2 CTD is involved in the phago-
cytosis of apoptotic cells [45]. It was also shown that knockdown or overexpression of
Tβ4 decreased and enhanced the phagocytic activity of stabilin-2, respectively. While the
exact molecular mechanism of this is yet unclear, it was found that Tβ4 engages in multiple
fuzzy interactions with stabilin-2 CTD. It is capable of mediating its distinct yet specific
interactions without adapting distinct folded structures in the different complexes [42].
Weak binding was confirmed between Tβ4 and stabilin-2 CTD and it was suggested that
the proteins become slightly more disordered in the complex [4,5].

The purpose of this experimental study is to determine the amount and quality of
bonds between constituting parts of a protein aggregate in wild type (WT) and A53T
α-synuclein (αS) oligomers, amyloids and in the complex of thymosin-β4–cytoplasmic
domain of stabilin-2. The selection of the studied proteins represents a system in which
the constituents are different in their degree of polymerization and another system where
the constituents interact with each other. This work presents as novelty compared to the
previous works [2–5] the differences between α-Ss of different degrees of polymeriza-
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tion and sheds light on the bonds between the constituting proteins in the Tβ4-stabilin
CTD complex.

2. Materials and Methods

The studied proteins were prepared, and their qualities were checked as in [2–5].
Briefly, untagged versions of α-synuclein variants were expressed in E. coli cells and
purified using anion exchange chromatography, while stabilin CTD was expressed with
an N-terminal His-tag and purified on a Ni-NTA affinity column. The wide-line 1H
NMR signals (see Appendix A and Supporting Information of [3]) on the time scale are
composed of more components of different origins (ice, protein, mobile water) and time
constants. The intensities of the components with the longest decaying-time constants
give the amounts of the mobile hydration water. Melting diagrams (MDs) are the relative
amounts of the proteins’ mobile water measured by intensities of wide-line 1H NMR
signals vs. normalized functional temperature. The mobile hydration differences were
calculated from MDs of WT and A53T αS monomers, oligomers and amyloids in [3],
and from MDs of Tβ4, stabilin-2 CTD and their 1:1 complex in [4,5]. In this work, potential
barriers corresponding to normalized functional temperature are used. Potential barriers
are calculated from functional (or absolute) temperature by first normalizing it with the
melting point of water (273.15 K) and then scaling this normalized temperature with the
melting heat of ice (Q = 6.01 kJ mol−1), Ea = T·Q/Tm, where T is the absolute temperature
and Tm is the melting point of water. The relative amount of mobile water is converted to
molar amount of mobile water per amino acid residues, naa. The MDs are given as naa vs.
Ea. The motion of water is controlled by the potential barrier.

3. Results
3.1. The α-Synuclein System

Mobile hydration differences (monomer MD subtracted from oligomer (o-m) and amy-
loid (a-m) MDs) were calculated for αS variants of different polymerization degrees. The dif-
ference MDs for the o-m and the a-m cases are very similar for each variant (Figure 1).
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Figure 1. (a) Wild type α-synuclein, oligomer-monomer (grey) and amyloid–monomer (blue) melting diagrams; (b) A53T
α-synuclein, oligomer–monomer (red) and amyloid–monomer (green) melting diagrams. Mol H2O per mol amino acid
residue (naa) vs. potential barrier. Lines are guides to the eye. The insets are the derivative forms of the difference melting
diagrams. Mol H2O per mol amino acid residue (naa) vs. potential barrier. Lines are guides to the eye. The insets are the
derivative forms of the difference melting diagrams.

The derivative ratios are depicted in the insets of the figures and they reflect very
sensitively the changes in the trends of the melting curves. However, they have char-
acteristically different shapes for the WT and the A53T variants. While the WT αS o-m
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difference MD has two sections with distinct slopes, A53T αS has three. The additional
low-potential-barrier (Ea) sections in A53T difference curves can be attributed to the excess
β-sheet contents [22–25] of the mutant compared to WT. The additional β-sheet content is
reflected by the low Ea constant naa (mol H2O per mol amino acid residue) or only little
raising naa sections in o-m and a-m differences, respectively (Figure 1b). This is supported
by the inverse preferences to form helices for alanine and to support β-sheet structures for
threonine [46], i.e., A53T αS is more prone to have β-sheets than WT αS. This suggestion
is affirmed by the comparison of o-m and a-m differences for the WT and the A53T αS
variants (Figure 2).
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The WT and the A53T o-m differences are equal in the potential barrier region
5.41 kJ mol−1 ≤ Ea ≤ 5.77 kJ mol−1 (Figure 2a). This region belongs to interactions incorpo-
rating the monomers into oligomers or amyloids and to the secondary structures forming
in the process of polymerization. The loss of mobile hydration water is the most intensive
at potential barrier values near to the melting point of bulk water (6.01 kJ mol−1). The slope
of the decrease is less steep in the case of o-m curves than for o-a curves (Figures 1 and 2).
In this region, close to the melting point of bulk water, the most strongly bound water
molecules start to move. The mobile hydration water loss is the greatest for the a-m
curves, here is where we can detect the largest difference compared to the monomers.
The monomers lose much more hydration water, which is visible as mobile for NMR,
while forming amyloids than in the formation of oligomers. Some of the strong mobile
hydration water–protein bonds are disrupted, allowing the protein to form intermolecular
connections in the oligomers and amyloids. These new bonds are the ones that hold the
oligomers and amyloids together. In the ~5.8 kJ mol−1 to 6.01 kJ mol−1 potential barrier
region, A53T αS amyloids lose the most mobile hydration water, ∆naa = 9.8. While the WT
αS amyloids lose less mobile hydration water, ∆naa = 7.5. The oligomers make approx-
imately half as much water–protein bonds in their formation, namely ∆naa = 4.9 in the
A53T variants and it is ∆naa = 4.0 in the WT αS oligomers. This suggests a more compact
form of A53T oligomers, partially explaining why this mutant forms amyloids at a much
faster pace than the wild type αS.

The (amyloid–oligomer) mobile hydration difference shows that oligomers are more
hydrated than amyloids (Figure 3). As mentioned earlier, this is directly connected to the
differences in the compactness of the two protein structures. The difference varies between
naa = −0.9 and naa = −1.8, except at 5.85 kJ mol−1 ≤ Ea ≤ 6.01 kJ mol−1, where it extends to as
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large values as naa ≈−13. The difference changes more for WT than for A53T αS, the average
is −1.40(5) with 0.08 variance for WT αS in the 4.96 kJ mol−1 ≤ Ea ≤ 5.85 kJ mol−1 potential
barrier range while the average is −1.27(4) with 0.04 variance for A53T αS in the same
energy range. This means an overall more homogeneous solvent accessible surface of
A53T αS. It can be the result of the amyloids having smaller solvent accessible surface per
monomer units compared to oligomers.
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3.2. The Stabilin CTD-Tβ4 System

The number of the intermolecular bonds connecting Tβ4 and stabilin CTD was determined,
to build 1:1 protein complex. The mobile hydration values per amino acid residues were simply
added together for the constituting proteins at each potential barrier values, i.e., the MDs of
these proteins were numerically added. The sum was compared to the measured MD of the 1:1
protein complex (Figure 4). The comparison revealed that the sum is greater than the measured
values of the 1:1 complex between 5.40(3) kJ mol−1 ≤ Ea ≤ 5.70(5) kJ mol−1 potential barrier
values. Outside of this range, the sum and measured MDs coincide. The difference equals
to naa = 0.21(1) or 20(1) H2O/complex and gives the number of mobile hydration water to
protein bonds broken by the formation of the 1:1 protein complex. These broken bonds
mean interaction sites that then make new intramolecular bonds, which hold the 1:1 protein
complex together. The energy of the bonds falls in the potential-barrier interval of the
broken bonds.

Given the sizes of the two proteins, the number of intermolecular bonds is low.
Since both of the partners are disordered in isolation, this few intramolecular bonds are
not capable of restricting the movement of the two proteins, resulting in a fuzzy complex.
In this setup, both Tβ4 and stabilin CTD retain most of their structural disorder even in the
bound state. Fuzzy complexes, where some level of flexibility is observed after binding,
are frequently found in nature [47]. In most cases, when an IDP makes connections with a
globular protein, fuzziness is limited to a certain level, but binding of two IDPs can lead to
the formation of complexes with extreme fuzziness—where the partners remain mostly
disordered [5]. These types of interactions pose a challenge for structural characterization,
as most methods are unable to pick up the subtle changes that occur upon binding in such
a way. Our results clearly show that Tβ4 and stabilin CTD are capable of interacting with
each other and remain almost completely disordered in their complex.
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4. Discussion

The A53T mutants have surplus β-sheets to the wild type α-synucleins according to
FTIR, ss-NMR and single-molecule force spectroscopy experiments [21,23,24]. In our results,
the additional β-sheet content is indicated by the extra low-potential-barrier constant or
almost constant MD difference section (Figure 2). The bonds between the monomers in
oligomers or amyloids and the secondary structures specific to the aggregates appear
as coinciding sections of WT and A53T αSs (thick black lines in the insets of Figure 2).
The most strongly bound water molecules start to move close to the melting point of bulk
water. Oligomers lose more mobile hydration water than the amyloids as it can be seen on
the (amyloid–oligomer) hydration difference. On place of the lost protein–water bonds,
new intermolecular connections form during aggregation, which bond the monomers
into oligomers or amyloids. The A53T oligomers are more compact than the WT ones
according to the (amyloid–oligomer) MD differences (Figure 3). This compactness partially
gives reason the mutant to form amyloids faster. The oligomers are more hydrated as a
result. The A53T αS has more homogeneous solvent accessible surface per monomer units
compared to WT αS because, e.g., the mobile hydration in the (amyloid–oligomer) MD
differences are smaller with half as big variance. The (amyloid–oligomer) MD differences
being negative, reflect the amyloids having smaller solvent accessible surface per monomer
units compared to oligomers.

The sum of the MDs of the proteins Tβ4 and stabilin CTD is greater than the measured
MD of the 1:1 protein complex by naa = 0.21(1) or 20(1) H2O/complex (Figure 4). The Tβ4
and stabilin CTD interact with each other while remain almost completely disordered in
their complex. Binding of two IDPs like Tβ4 and stabilin CTD leads to the formation of a
complex with extreme fuzziness [5], the partner proteins remain disordered in the complex.
Both constituting proteins in the 1:1 complex retain most of their structural disorder. Tβ4
and stabilin CTD connect to each other with only a small number of intermolecular bonds.
The intermolecular bonds are not enough numerous to limit the movement of the two
proteins in the complex.

5. Conclusions

Mobile hydration differences (monomer MD subtracted from oligomer and amyloid MDs)
were calculated for αS variants of different polymerization degrees. The derivative ratios of
the MDs reflect very sensitively the changes in the trends of the melting curves, and they have
characteristically different shapes for the WT and the A53T variants. The constant low Ea
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sections in A53T αS difference curves for oligomers and amyloids are caused by the excess
β-sheet contents of the mutant compared to WT. The 5.41 kJ mol−1 ≤ Ea ≤ 5.77 kJ mol−1

difference MD regions belong to interactions linking the monomers into oligomers or
amyloids and to the bonds of secondary structures forming in the process of polymerization.
The monomers lose much more mobile hydration water while forming amyloids than in the
formation of oligomers, reflecting fundamental structural differences between oligomers
and amyloids. A part of the strong mobile hydration water–protein bonds are lost and
these bonding sites of the protein form intermolecular bonds in the oligomers and amyloids.
The new bonds being created connect the constituting proteins into oligomers or amyloids.
The amyloid–oligomer difference MD showed that there is an overall more homogeneous
solvent accessible surface of A53T αS amyloids than the WT variants, suggesting a more
densely packed amyloid structure.

We gained information on the intermolecular bonds constructing the αS oligomer and
amyloid aggregates from the monomers.

The number of the intermolecular bonds was determined, which connect Tβ4 and
stabilin CTD in the thymosin-β4–stabilin-2 CTD complex. It was found that there are
naa = 0.21(1) or 20(1) H2O/complex such bonds and their bonding energy falls into the
5.40 kJ mol−1 ≤ Ea ≤ 5.70 kJ mol−1 range. These results were gained from the compari-
son of the nominal sum of the MDs of the constituting proteins to the measured MD of
the thymosin-β4–stabilin-2 CTD complex and provide further insight into the molecular
background of their fuzzy complexes.
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Appendix A

Wide-Line 1H NMR-Spectrometry

Frozen protein solutions are measured with wide-line 1H NMR to get melting dia-
grams in the temperature range from −70 ◦C to +20 ◦C. The free induction decay (FID)
signal can be separated into differently decaying components. The slowly decaying com-
ponent is generated by the 1H nuclei of the mobile hydration water. The extrapolated
amplitude to time zero of each FID-component is proportional to the amount of each
1H fraction.

The mobile water molecules are found at the surface of the protein molecules. The melt-
ing diagram gives the amount of mobile water measured by NMR as a function of tem-
perature. The corresponding potential barrier values to temperature, Ea are given as the
normalized fundamental temperature multiplied with the molar heat of fusion for water
(Ea = T/273.15 K × 6.01 kJ mol−1, normalized fundamental temperature is multiplied with
the molar heat of fusion of water [48]), thus providing an energy scale.

The amount of mobile, i.e., molten water is measured directly as a fraction of the total
water content of the protein solution, n vs. T. It is converted into the number of mobile
water molecules per amino acid residue, naa. The naa vs. Ea data can provide quantitative
analysis beyond spectroscopy.
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The melting curve can be formally described as a series expansion (Supporting Infor-
mation of [5]),

n
(

Tf n

)
= A + B

(
Tf n − Tf n1

)
+ C

(
Tf n − Tf n2

)2
+ D

(
Tf n − Tf n3

)3
+ . . .

The parameter Tfn1 gives the temperature where the thermal trend of the MD switches
between constant and linearly increasing. Likewise, the trend changes from linear to
quadratic at Tfn2 and it becomes cubic at Tfn3.

The fitting procedure is carried out in sections. It starts with the lowest temperatures.
If there is a constant n region, then the values of A are determined and kept for further
analysis. Then, follows the linear section and parameters B and Tfn1 are gained and used in
sections of higher powers. The next section is increasing quadratically and C and Tfn2 is
fitted, then the cubic section is next with D and Tfn3.
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