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Abstract 

Identifying statistical associations between biological variables is crucial to understanding molecular mechanisms. Most association studies 
are based on correlation or linear regression analyses, but the identified associations often lack reproducibility and interpretability due to the 
comple xity and v ariability of omics datasets, making it difficult to translate associations into meaningful biological hypotheses. We developed 
StableMate, a regression frame w ork, to address these challenges through a process of variable selection across heterogeneous datasets. 
Given datasets from different environments, such as experiment al batches, St ableMate selects environment-agnostic (stable) and environment- 
specific predictors in predicting the response of interest. Stable predictors represent robust functional dependencies with the response, and can 
be used to build regression models that make generalizable predictions in unseen environments. We applied StableMate to (i) RNA sequencing 
data of breast cancer to disco v er genes that consistently predict estrogen receptor expression across disease st atus; (ii) met agenomics dat a to 
identify microbial signatures that show persistent association with colon cancer across study cohorts; and (iii) single-cell RNA sequencing data 
of glioblastoma to discern signature genes associated with the de v elopment of pro-tumour microglia regardless of cell location. Our case studies 
demonstrate that StableMate is adaptable to regression and classification analyses and achieves comprehensive characterization of biological 
sy stems f or different omics dat a t ypes. 

I

I  

c  

o  

e  

r  

H  

i  

t  

c  

a  

l  

m  

s  

t  

g  

a  

s  

t
 

s  

c  

o  

d  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
(
o
p
j

ntroduction 

nferring relationships between biological variables is a criti-
al problem in systems biology. Among different types of bi-
logical relationships, causal relationships are of high inter-
st as they enable a deeper understanding of the function and
egulatory mechanism of fundamental biological processes.
owever, this type of relationship is extremely difficult to

dentify based on observational studies alone, without fur-
her investment in experimental design. In contrast, statisti-
al associations (e.g. based on correlation or linear regression
nalyses) can be easily computed, but these associations may
ead to spurious findings. In recent years, a large number of
ethods have been proposed for statistical association analy-

is. Most of these methods are network modelling approaches
hat infer gene regulation by identifying associations between
enes through their expression levels ( 1–8 ). However, these
pproaches result in associations that are not robust against
mall variations in the data, are not reproducible or lack in-
erpretability ( 9–11 ). 

An important concept pertinent to the reproducibility of
tatistical associations is stability. A statistical association is
onsidered stable if it is invariant under small perturbations
f the data, and hence, more likely to be reproducible across
ifferent studies or conditions. Stability analysis in this con-
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text allows us to gain unique biological insights that are not
accessible with conventional inference association methods.
While the concept of stability has been applied ubiquitously
in meta-analysis studies to recover truly significant biomark-
ers associated with traits ( 12 ,13 ), it is only in recent years that
statisticians have established a formal framework explaining
the connection between stability and causality ( 14 ). Indeed, bi-
ological variables that show stable associations are more likely
to be closely or even have a causal relationship compared to
those with unstable associations. While stability is not suffi-
cient to establish causality, a causal relationship is necessarily
stable in some sense ( 15 ). Thus, identifying stable associations
may serve as a first step towards the inference of causal rela-
tionships. It is also enlightening to identify associations that
are unstable as they are sensitive to a change of study and
experimental conditions and provide insights into how these
conditions influence a biological system ( 16 ). 

We developed StableMate, a statistical framework, to iden-
tify both stable and unstable associations through variable se-
lection in a regression context. Inherent to variable selection
is the motivation to infer regression function that encapsu-
lates potential functional dependencies between the response
and selected predictors beyond using simple correlations. Sta-
bleMate is based on the recent theoretical development of
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stabilized regression (SR) ( 17 ). SR considers data collected
from different ‘environments’ or experiments, including tech-
nical or biological conditions. Typical environments can be
batches, cohorts, and also disease states. Given a response
variable and a set of predictors measured on samples in multi-
ple environments, there are two goals in SR. The first goal is to
distinguish stable predictors from unstable predictors, based
on whether these predictors are able to make consistent or
inconsistent predictions of the response across multiple envi-
ronments. More specifically, a prediction is defined as the pre-
dictors’ functional dependency on the response learned from
a regression model (e.g. linear model). To measure the consis-
tency of a prediction, we fit a regression model per environ-
ment and compare the functional dependencies between the
fitted models (e.g. linear model regression coefficients). The
second goal is to build regression models using stable predic-
tors that are generalizable to unseen environments. 

While the original approach from Pfister et al. ( 17 ) pro-
vides an elegant framework for SR, its application is com-
putationally inefficient for high-dimensional biological data.
We showed in our simulation study that it can lead to in-
accurate results. StableMate provides a new version of SR.
While SR selects stable predictors by performing stability tests
on every possible predictor subset, StableMate optimizes effi-
ciency with a greedy search based on our improved stochastic
stepwise selection algorithm. Moreover, StableMate provides
the flexibility to perform stability analysis with any regression
model. This greatly generalizes SR, which has been designed
for simple linear regression only. 

We illustrate the broad applicability and flexibility of Sta-
bleMate through three case studies across a broad range of
biological questions and data types. We show that StableMate
is able to (i) identify genes and gene modules involved in the
trancriptional regulation of a critical breast cancer (BC) gene
(see the ’StableMate identifies genes associated with ESR1
expression in ER+ breast cancer using RNA-seq data’ sec-
tion); (ii) identify faecal microbial markers for prediction of
colon cancer while accounting for batch effects in a multi-
cohort data (see the ‘StableMate discerns global microbial sig-
natures for colon cancer in multi-cohort metagenomics data’
section); and (iii) characterize changes of microglia transcrip-
tional identity during their transitions to a pro-tumour phe-
notype (see the ‘StableMate characterizes cell identity tran-
sition of glioblastoma-associated microglia with scRNA-seq
data’ section). In both simulated and real data (Section 5,
Supplementary Figures S1 and S2 ), we benchmarked the pre-
diction and the variable selection performances of StableMate
against other commonly used regression methods, including
the original SR algorithm in Pfister et al. ( 17 ). The results
show that StableMate yields superior performances compared
to competing methods. 

Materials and methods 

Data and preprocessing 

A summary of the data and StableMate analysis from the case
studies is presented in Table 1 . 

BC gene expression data 
We analysed the RNA-seq dataset from The Cancer Genome
Atlas Program (TCGA-BRCA) to study the transcriptional
regulation of ESR1 in ER+ BC, available from the R pack-
age TCGAbiolinks ( 18 ). The dataset includes the expres- 
sion quantification of 60 660 genes on 113 normal samples 
and 1094 BC samples. We focused on the log-transcript-per- 
million (logTPM) of 19 937 protein-coding genes for analysis.

We used two other gene expression studies as validation: the 
microarray data of 2509 BC samples from the METABRIC 

cohort ( 19 ,20 ), available from cBioProtal ( 21 ) in the form 

of z -score relative to all samples (log), and RNA-seq data of 
980 normal breast samples from GTEx ( 22 ) in the form of 
logTPM. 

Colon cancer metagenomics data 
We obtained nine colorectal cancer (CRC) case-control stud- 
ies of faecal metagenome from the R package curated- 
MetagenomicData ( 23 ). We excluded two studies with a 
sequencing depth lower than the average 10 million reads 
per sample. The remaining studies included curated microbial 
species abundance and pathway abundance data from seven 

different countries and eight different cohorts: including 107 

samples from Austria ( 24 ), 104 samples from the USA ( 25 ),
125 samples from Germany ( 26 ), 509 samples from Japan 

( 27 ), 128 samples from China ( 28 ) and 114 samples from 

France ( 29 ), as well as two cohorts containing 53 and 60 sam- 
ples from Italy ( 30 ). In total, all cohorts included 1429 sam- 
ples. We filtered the species and pathway abundance data from 

each cohort down to 313 species and 431 pathways that were 
detected across all cohorts. 

To normalize the abundance data, we applied rank transfor- 
mation by calculating the within-sample ranking quantile of 
the abundance of each species (or pathway). A species ranked 

the q th most abundant in a sample is assigned the value (1 −
q ) / ( p − 1), where p is the total number of species analysed.
Therefore, the most abundant species of a sample has a rank 

transformed value of 1, and the least abundant species has a 
value of 0. 

Glioblastoma single-cell RNA sequencing data 
We analysed the glioblastoma (GBM) single-cell RNA se- 
quencing (scRNA-seq) data from Darmanis et al. ( 31 ), who 

sequenced single cells sampled from four GBM patients at 
their tumour cores and surrounding peripheral tissues. The 
raw and curated read count data included 3589 cells mea- 
sured on 23 368 genes available from http:// gbmseq.org/ . We 
retained 1874 cells of myeloid cell types, including 1329 cells 
sequenced from the core and 518 cells sequenced from the 
periphery for analysis. We used the R package Seurat to 

log-normalize the data and identify the most variable 2000 

genes with the FindVariableFeatures function ( 32 ). We 
then imputed the log normalized data using Sincast imputa- 
tion with default tuning ( 33 ) for StableMate variable selection 

and single-cell projection. Diffusion map (DM) and diffusion 

pseudotime (DPT) learning were performed on the original 
log-normalized data (without imputation). 

StableMate to identify stable and 

environment-specific statistical associations 

We developed a variable selection method based on the SR 

framework proposed by Pfister et al. ( 17 ), where the predic- 
tors and response are measured in different biological environ- 
ments. The goal is to select stable and environment-specific 
(unstable) predictors that, respectively, make consistent and 

inconsistent predictions of the response across environments.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
http://gbmseq.org/
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Table 1. Summary of case studies 

Data Samples Response Predictors Environment Used in 

BC RNA-seq 
data from The Cancer 
Genome Atlas 
(TCGA-BRCA) 

N = 1207 = 113 normal 
samples + 1094 ER+ BC 

samples 

ESR1 gene 
expression 

P = 19 937 
protein-coding 
genes, pre-filtered, further 
see the ‘StableMate to 
identify stable and 
environment-specific 
statistical associations’ 
section 
P = 50 principal 
components learnt on the 
19,937 genes excluding 
ESR1 

Disease 
status (ER+ BC 

or normal) 

‘StableMate identifies genes 
associated with ESR1 
expression in ER+ breast 
cancer using RNA-seq data’ 
section, pooled StableMate 
analysis (ESR1 versus genes) 
‘StableMate identifies genes 
associated with ESR1 
expression in ER+ breast 
cancer using RNA-seq data’ 
section, pooled StableMate 
analysis (ESR1 versus PCs) 

RNA-seq data 
of normal breast tissue 
from GTEx 

N = 980 normal samples ‘StableMate identifies genes 
associated with ESR1 
expression in ER+ breast 
cancer using RNA-seq data’ 
section, external validation 

Microarray data of BC 

from METABRIC 

N = 2509 ER+ BC samples ‘StableMate identifies genes 
associated with ESR1 
expression in ER+ breast 
cancer using RNA-seq data’ 
section, external validation 

Metagenomics studies 
of colon cancer 
collected from 

N = 1429 = 107 (61 
controls, 46 cases) samples 
from an Austrian cohort + 
128 (54 controls, 74 cases) 
samples from a Chinese 
cohort + 
114 (61 controls, 53 cases) 
samples from a French 
cohort + 
125 (65 controls, 60 cases) 
samples from a German 
cohort + 
53 (24 controls, 29 cases) 
samples from an Italian 
cohort A + 
60 (28 controls, 32 cases) 
samples from an Italian 
cohort B + 
509 (251 controls, 258 
cases samples from a 
Japanese cohort + 
104 (52 controls, 52 cases) 
samples from a US cohort 

Colon cancer 
incidence 
(cancerous or 
normal) 

P = 313, species detected 
in all cohorts 
P = 431, pathways 
detected in all cohorts 

Study cohort ‘StableMate discerns global 
microbial signatures for colon 
cancer in multi-cohort 
metagenomics data’ and 
‘Benchmarking StableMate 
variable selection and 
prediction on metagenomics 
data’ sections, pooled 
StableMate analysis (disease 
status versus species) 
‘StableMate discerns global 
microbial signatures for colon 
cancer in multi-cohort 
metagenomics data’ section, 
environment-specific 
StableMate analysis (disease 
status versus species) 
‘Benchmarking StableMate 
variable selection and 
prediction on metagenomics 
data’ section, pooled 
StableMate analysis (disease 
status versus pathways) 
Supplementary Section S1.2 , 
environment-specific 
StableMate analysis (disease 
status versus pathways) 

scRNA-seq data of 
glioblastoma 

N = 1847 = 

1329 cells from tumour 
core + 
518 cells from tumour 
periphery 

DPT 
Each of CCL3, 
CCL4 TNF, IL1B, 
CSF1, CCL2 gene 
expression 

P = 23 
368, protein-coding 
genes, pre-filtered; 
further see the ‘Materials 
& methods’ section 

Cell loca- 
tion (periphery 
or core) 

‘StableMate characterizes cell 
identity transition of 
glioblastoma-associated 
microglia with scRNA-seq 
data’ 
section, environment-specific 
and pooled StableMate 
analysis (DPT versus genes) 
‘StableMate characterizes cell 
identity transition of 
glioblastoma-associated 
microglia with scRNA-seq 
data’ section, pooled 
StableMate analysis (each 
cytokine versus genes) 

Bulk transicriptional 
atlas of myeloid cells 

N = 901 myeloid cells ‘StableMate characterizes cell 
identity transition of 
glioblastoma-associated 
microglia with scRNA-seq 
data’ section, for cell identify 
profiling 

Sample breakdown per environment, response, predictors and the environment variables are described for StableMate regression. We performed two types of StableMate 
analysis based on how predictive variables were defined. In the first type, we pooled environments to select predictive variables and assess their stability across environments. 
In the second type, we select predictive variables in each environment and tested the stability of the predictor selected in the remaining combined environments. These two 
types of StableMate analysis are referred to as pooled and environment-specific . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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A final model is built on the stable predictors and is general-
izable to unseen environments. 

The original SR 

Briefly, SR examines all possible subsets of predictors in a
brute force search, fits a regression function on each subset,
and evaluates the subset’s stability across environments and
its prediction ability. First, the stability of predictor subsets
is constructed based on either a Chow test (testing for equal
regression coefficients of the predictors between regression
functions fitted in a specific environment) or a resampling ap-
proach. Subsequently, the prediction ability of stable subsets
is evaluated based on negative mean squared prediction error
combined with bootstrapping to define a cut-off for selecting
the most predictive sets. The importance of each variable with
respect to their stability , instability , and prediction ability is
then assessed via frequency of selection. The final SR model is
obtained as a weighted average of the regression functions fit-
ted on the stable and predictive subsets [refer to ( 17 ) for more
details]. 

We identified several limitations of SR in its current form. 

• It is computationally infeasible to enumerate every pos-
sible subset of predictors in omics data where the num-
ber of predictors P is very large (i.e. > 30). Pfister et al.
( 17 ) proposed the following solution: (i) pre-filter data
to tens of predictors. Then from the pre-filtered predic-
tor sets, (ii) randomly sample thousands of subsets to test
for stability and subsequently prediction ability. How-
ever, we argue that this solution is inefficient, as thou-
sands of subsets are not sufficient to represent the subset
space of many predictors. A drastic pre-filtering is there-
fore required but can result in filtering out important
predictors. 

• Identifying first the stable predictor sets, and then assess-
ing their prediction ability is not efficient. This is not only
because the stable and predictive sets are included in the
predictive sets, as we describe in Supplementary Section 

S3.1 , but also because stability is more difficult to com-
pute compared to prediction ability. 

Because of these limitations, SR results lack both variable
selection and prediction accuracy for large datasets, as we
highlight in our simulation ( Supplementary Figure S2 ). 

The StableMate approach 

StableMate addresses these issues by (i) implementing a greedy
rather than a brute force approach to select predictor sets
based on an improved version of stochastic stepwise regres-
sion (ST2*), which is a stochastic selector, (ii) building a
variable selection ensemble using repeated ST2*, (iii) pre-
screening predictors before each ST2* using random Lasso
to enable a much larger starting set of predictors than SR,
(iv) identifying first the predictive variables and then narrow-
ing down to the stable predictors to be more efficient in the
search, and (v) developing the concept of pseudo-predictor to
benchmark ST2* selections. The full methodological details
are available in Supplementary Section S3.1 . 

Main steps of StableMate 
We summarize the main steps of StableMate; a more de-
tailed algorithm is presented in Algorithm 1 in Supplementary 

Section S3.1 . 
(1) Depending on the type of analysis, a base regressor 
for ST2* is first specified, for example, we used ordi- 
nary least square regression (OLS) for case studies in 

the ‘StableMate identifies genes associated with ESR1 

expression in ER+ breast cancer using RNA-seq data’ 
and ‘StableMate characterizes cell identity transition of 
glioblastoma-associated microglia with scRNA-seq data’ 
sections and generalized linear models in the ‘StableMate 
discerns global microbial signatures for colon cancer in 

multi-cohort metagenomics data’ section. 
(2) For each iteration k , k = 1, …, K 

(a) Apply random Lasso pre-screening, then add pseudo- 
predictor. 

(b) Run ST2* to select the most predictive predictor set 
denoted S 

pred 
k . 

(c) Run ST2*to select the stable predictors within S 

pred 
k 

such that S 

stabpred 
k ⊆ S 

pred 
k . 

(3) Define importance score for prediction and stability. 
(4) Calculate significance cut-off scores to define stable, un- 

stable and non-significant variables. 
(5) Fit the final ensemble regression model as the weighted 

average of the fitted regressions on S 

stabpred 
k . 

Pre-screening predictors based on random Lasso 

We first pre-filter predictors based on a random Lasso proce- 
dure. For each ST2* run (described below), we randomly sam- 
ple one-half of the samples to select the top p predictors with 

Lasso ( 34 ). As an example, we chose p = 100 for the ‘Stable- 
Mate identifies genes associated with ESR1 expression in ER+ 

breast cancer using RNA-seq data’ and ‘StableMate charac- 
terizes cell identity transition of glioblastoma-associated mi- 
croglia with scRNA-seq data’ sections. The advantages are of 
2-fold. First, across the different resampling runs, the top p 

predictors are expected to differ, thus enabling us to cover a 
large and diverse range of predictors in our overall search.
Second, we improve the stability of Lasso pre-screening when 

subjected to sample perturbation ( 35 ) (see more details in 

Supplementary Section S3.1 ). 

ST2*: a new stochastic stepwise variable selection procedure 
We improved the ST2 algorithm proposed by Xin and Zhu 

( 36 ). ST2 is a stochastic version of the classic stepwise variable 
selection. ST2 searches for a set of predictors maximizing a 
particular objective function to quantify the predictive ability 
or stability of predictor sets. It uses a greedy approach with it- 
erative forward and backward searching steps. ST2 starts with 

an initial predictor set (which can be empty). In the forward 

step, a collection of predictor sets is randomly sampled from 

predictors that are not included in the current model. The pre- 
dictor set that yields the largest increase in the objective func- 
tion is then added to the current model. In the backward step,
a collection of predictor sets is randomly sampled from pre- 
dictors that are included in the current model. The set that 
yields the largest increase of the objective function is then re- 
moved from the current model. The forward and backward 

steps alternate until the objective function does not improve 
further . However , the major drawback of ST2 is that it sam- 
ples subsets of a fixed size that is randomized at each step. If a 
wrong size is sampled, ST2 may stop prematurely, leading to 

inaccurate variable selection. 
In ST2*, we follow the ST2 algorithmic framework but we 

improved the procedure to sample different predictor subset 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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Figure 1. Toy example for StableMate analysis. ( A ) Stable predictors. Consider a regression problem where the response Y e and predictors X e were 
generated from three different environments (e.g. batches, cohorts) e = e 1 , e 2 , e 3 , as represented in panel ( A1 ). Stable predictors are a subset of all 
predictors that are useful for predicting Y e and whose association with the response Y e does not change with e . If we fit a regression model in each 
environment to predict the response using only the stable predictors ( A2 ), then the fitted models should be approximately the same across all 
environments ( A3 ). Thus identifying stable predictors is useful for constructing regression models that are agnostic to environments and hence may be 
more generalizable to unseen environments. On the other hand, predictive but unstable (referred to as ‘environment-specific’) predictors may be useful 
for understanding environment-specific regulatory mechanisms of the response Y e . ( B ) Difference between stable and environment-specific predictors. 
We simulated 900 samples, each with response Y e and predictors X e 1 , . . . , X 

e 
19 across environments e = e 1 , e 2 , e 3 . Left panel plots Y e against a stable 

predictor X e 3 ; right panel plots Y e against an environment-specific predictor X e 15 . Linear regression lines were fitted per environment. Both X e 3 and X e 15 are 
useful for predicting Y e since they are both strongly negatively correlated with Y e in each environment. However, for the stable predictor X e 3 , the 
regression lines ha v e the same slope and intercept in all three environments. For the environment-specific predictor X e 15 , the regression lines have the 
same slope but differ in their intercepts. ( C ) StableMate variable selection plot. StableMate takes as input the predictors X e 1 , . . . , X 

e 
19 measured from the 

900 samples across all environments, where the environment index e is known for each sample, and the response Y e for each sample. The variable 
selection plot shows the prediction score ( x -axis) and the st abilit y score ( y -axis) assigned to each predictor . V ertical and horizontal dashed lines represent 
the significance thresholds for prediction and st abilit y respectively based on bootstrap, as defined in the ‘Materials and methods’ section. The predictive 
variables are further labelled as stable (up triangles) or environment-specific (down triangles), where, in particular, X e 3 and X e 15 are both correctly labelled. 
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izes at each step (refer to Supplementary Section S3.1 for a
etailed description of the ST2* algorithm). We also added
bjective functions that are well suited to assess prediction
nd stability; namely, we used the negative Bayesian informa-
ion criterion (NBIC) and negative prediction sum of squares
NPSS) ( Supplementary Section S3.1 ). 

Finally, we run ST2* on K iterations (e.g. K = 2000 in our
ase studies) first to identify the predictive subsets of predic-
ors, and second to identify the stable subsets within each pre-
ictive subset. As a result, we select an ensemble of stable and
redictive predictor sets. These iterations address the stochas-
ic nature of ST2*, which can yield potentially different pre-
ictor sets for each iteration. The sets of stable predictors
re then used to build the final regression model (described
elow). 

ut-off prediction and stability scores 
e calculate a prediction score for each predictor based on

ow often the predictor is selected as predictive across the en-
sembles. We do similarly for the stability score. The output can
be represented in a variable selection plot such as Figure 2 A,
where the scores are represented on the x -axis (prediction) and
y -axis (stability). 

To define a significance cut-off of these scores, we create a
pseudo-predictor as a negative control. A pseudo-predictor is
represented as an artificial index P + 1 so that its inclusion in
the regression model does not affect the model fitting nor the
value of the objective function in ST2*, but it is still taken into
account when calculating the scores of all predictor sets. 

We applied a bootstrap procedure on the variable selec-
tions to compare the distributions of the prediction and sta-
bility scores of the predictors to that of the pseudo-predictor
to assess their significance. A predictor with a prediction score
larger than the pseudo-predictor’s in more than 97.5% times
of the bootstrap iterations is considered as significantly pre-
dictive. We do similarly for the cut-off stability score. A pre-
dictor is considered environment-specific (unstable) if its sta-
bility score is lower than that of the pseudo-predictor. Finally,
the rest of the predictors are assigned as ‘non-significant’, as

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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Figure 2. StableMate selects genes from the TCG A-BR CA dataset which predict ESR1 expression across normal and ER+ samples. We used ( A ) gene 
expression or ( B ) principal components (PCs) of gene expression as predictors. The st abilit y score ( y -axis) of a gene is a measure of how consistently 
this gene predicts ESR1 regardless of the disease status (normal or ER+). Stable and disease-specific genes / PCs are labelled as up and down triangles, 
respectively. ( C ) ESR1 expression (y-axis) against PC scores ( x -axis). The correlation between ESR1 with the highly disease-specific PC3 changed from 

positive to negative between normal and ER+ samples, whereas the sign of the correlations between ESR1 and the stable PC1 and PC2 remained 
unchanged between normal and ER+ samples. We analysed PC1 (i.e. the most important stable PC) and PC3 (i.e. the most important disease-specific 
PC) as an example. ( D ) Gene ontology enrichment on the top 200 genes from PC1 (top) and PC3 (bottom) suggested biological activities related to 
hormonal regulation and epidermis de v elopment, respectiv ely. T he predictiv e abilit y and st abilit y of PC1 suggest that ESR1 may directly participate in 
hormonal regulation, which is corroborated by the knowledge that ESR1 is a transcriptional factor activated by estrogen binding. ( E ) Reproducibility of 
StableMate results using external databases, GTEx for normal breast tissue and the METABRIC data from cBioPortal for ER+ BC: ESR1 expression 
against the expression of the metagene defined by the top 200 genes contributing to PC3 (i.e. linear combination of these 200 genes according to the 
loading vector of PC3) confirm the opposite trends we observed in ( C ) of ESR1 against PC3 in normal and ER+ samples. 
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Figure 3. StableMate meta-analysis of metagenomic data re v eals k e y species predictiv e of CR C across eight independent study cohorts. ( A ) 
StableMate variable selection plot of the pooled analysis. The majority of highly predictive species were found stable, and none was identified as 
cohort-specific. ( B ) PCoA with samples coloured by either disease status (left column) or cohorts (right column). ( B1 ) Using all 313 species shared by all 
cohorts, regardless of their st abilit y; ( B2 ) using only the 23 stable species selected by StableMate. PERMANO V A R 

2 statistic on the first two principal 
coordinates is shown in the top left corner of each panel. The coloured bar at the bottom shows the composition of the total variance. When considering 
all 313 species, the cohort effect is much larger than the disease effect (almost negligible); with 23 species identified as stable, the cohort effect is still 
present but smaller than the disease effect. ( C ) StableMate variable selection plot of the Austria cohort-specific analysis (one of the eight cohort-specific 
analy ses). P re v otella copri w as f ound to be an Austria-specific species f or predicting CR C, since it has a high prediction score but a lo w st abilit y score. 
Such species are interesting for studying cohort-specific effects that may confound the CRC diagnosis. 
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hown in plot Figure 2 A. Note that since these cut-off scores
re based on the bootstrap of variable selections, the signif-
cance indicates the variability in the ST2* selections, and
ence provide a reference on whether more ST2* runs need
o be performed. 

inal ensemble regression model generalizable to unseen envi-
onments 
he final regression model is then built on the different sets of
table and predictive predictors. Each regression model is fit-
ed by regressing the response variable on each stable and pre-
ictive subset in the ensemble. We then aggregate these models
s the average of the fitted regression weighted by the ranking
f objective functions NBIC and NPSS. 

rincipal component analysis 

e used the prcomp function from the R package stats ( 37 )
o perform principal component analysis (PCA). 
Gene modules 

PCA (centred but unscaled) was used to identify metagenes in
the form of PCs that represent gene modules from the TCGA
BC RNA-seq data. The 23 most variable metagenes selected
by the elbow method were then used as the predictors of ESR1
expression for the subsequent StableMate analysis ( 38 ). To
avoid overfitting, ESR1 was removed from the data. 

Aggregation of gene expression with similar expression patterns
We applied PCA (not centred nor scaled) on the set of genes,
and extracted the loading coefficients of each gene on the first
PC using a soft-thresholding approach to identify the top con-
tributing genes with loading coefficients of the same sign. We
then considered the absolute value of the loading coefficients
of these top genes to obtain positive weights, which we then
used for aggregating their expression by a linear combination.

Principal coordinate analysis 

We used the cmdscale function from the R package stats
( 37 ) to perform principal coordinate analysis (PCoA). PCoA
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was performed on the combined colon cancer case-control
studies with classical multidimensional scaling on Euclidean
distance between samples. We calculated two distances matri-
ces on either the 313 species of the full data and the 23 species
selected by StableMate. Permutational multivariate analysis of
variance (PERMANOVA) was then used to test the separation
of the sample groups based on disease status or cohorts. We
used the adonis function from the R package vegan ( 39 ). 

Methods’ benchmark 

We benchmarked the prediction performance of StableMate
against other commonly used methods, including OLS, gen-
eralized linear model (GLM or logistic regression), Lasso re-
gression (Lasso) ( 34 ), and random forest (RF) ( 40 ). 

The regression models were trained for the different bench-
marking tasks described below on the pooled data of train-
ing environments. For predicting continuous responses in the
simulation study, we used GLM Lasso with a Gaussian family.
For the binary classification of colon cancer in the second case
study, we used GLM Lasso with a binomial family. StableMate
requires to specify the different sample environments, while in
RF samples were weighted according to the inverse of the size
of the environment each sample belongs to. Lasso penalties
were tuned using cross-validation, where each environment is
used as a fold to minimize the averaged mean squared error.
We used the functions lm for OLS, glm for GLM, cv.glmnet
from the package caret for Lasso ( 41 ), and the R package
randomForest for RF ( 42 ). 

Simulation study 

The benchmark results are shown in Supplementary 
Figures S1 and S2 . 

We simulated systems of variables observed from four envi-
ronments. A system is a model that describes the causal rela-
tionships between variables, and an environment is the prob-
ability distribution of variables that generates data. There-
fore, a system of variables in different environments are gen-
erated by different probability distributions but with the
same causal relationships. The simulations are described in
Supplementary Section S3.2 . For each simulation run, a vari-
able in the system was randomly sampled as the response
while the remaining variables were set as predictors. The re-
gression models were trained on data generated in the first
three environments to predict the response. The data of the
fourth environment were used for testing. 

Metagenomics case study (‘StableMate discerns global micro-
bial signatures for colon cancer in multi-cohort metagenomics
data’ section) 
We trained each regression model to predict colon cancer
disease status. We performed leave-one-dataset-out (LODO)
cross-validation. We considered either all 313 species or 431
pathway abundances (no pre-filtering). In addition, we also
performed LODO validation to evaluate the performance of
the RF models trained using the different sets of predictors
selected by either StableMate, Lasso, or RF. 

Diffusion map and diffusion pseudotime 

Diffusion map 

In case study 3 (see the ‘StableMate characterizes cell identity
transition of glioblastoma-associated microglia with scRNA-
seq data’ section) we visualized the scRNA-seq data using 
DM, which is a non-linear dimension reduction method highly 
suitable for single-cell data with potential cell state transitions.
DM learns transition probabilities between cells and projects 
cells into a lower dimensional Euclidean space that approxi- 
mates the ‘diffusion distances’ between cells accordingly. DM 

was run on the 2000 most variable genes of the log normalized 

data using the R function DiffusionMap with default param- 
eters from the package destiny ( 43 ). 

Diffusion pseudotime 

DPT inference was then applied following DM learning ( 44 ).
The cell that has the largest DC1 score in the tumour periphery 
was chosen as the root of the cell trajectory. The distance be- 
tween the cumulative transition probabilities of any cell with 

the root cell is defined as its pseudotime. 

Sincast projection of scRNA-seq onto a reference 

atlas of myeloid cells 

We used Sincast ( 33 ) available at https://github.com/ 
meiosis97/Sincast to impute scRNA-seq data and to query 
GBM cell types and cell states. We queried the identity of a 
specific subset of GBM cells, namely myeloid cells classified 

by Darmanis et al. ( 31 ). The reference myeloid atlas was from 

Rajab et al. ( 45 ) who compiled bulk RNA-seq and microarray 
data of myeloid cells from 44 independent studies. Sincast 
projects the query scRNA-seq cells onto the atlas by calculat- 
ing the predicted PCs of the cells, which are then represented 

on the PCA of the reference atlas. The result is a 3D PCA 

plot (i.e. Figure 4 A) where we can infer the identity of the 
query cells according to the biology of their surrounding atlas 
samples. 

Sincast imputation 

The log-normalized scRNA-seq data was imputed using the 
sincastImp function with its default parameters, where the im- 
putation of any cell is based on its nearest neighbouring cells.

Sincast projection 

Only the most 2000 most variable genes of the query scRNA- 
seq data were considered. The query data were projected onto 

the reference PCA atlas after rank transformation. The projec- 
tion is then reorganized and visualized via DM. 

Quantification of query cell identity 

To quantify the identity of each query cell based on the refer- 
ence cell types, we used Sincast modified version of the Capy- 
bara cell score of Kong et al. ( 46 ). The approach is based on 

weighted restricted least square regression ( 33 ). 

Results 

Illustration of StableMate on toy example 

We simulated 900 samples measured on 20 variables from 

three environments e = e 1 , e 2 , e 3 , with 300 samples in each en- 
vironment. Denote by Y 

e the response variable of interest we 
wish to predict. We use the remaining 19 variables X 

e 
1 , . . . , X 

e 
19 

as predictors (see Figure 1 A). In particular, X 

e 
3 is a causal par- 

ent of Y 

e and is expected to be stable, whereas X 

e 
15 is a causal 

child of Y 

e and hence is expected to be environment-specific 
(see details in Supplementary Section S3.2 ). To illustrate 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://github.com/meiosis97/Sincast
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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Figure 4. Characterizing transition of microglia cell identity from periphery to core in GBM tumour with scRNA-seq data. ( A1 ) Sincast projection of the 
query single cells (crosses) onto a bulk RNA-seq reference atlas of m y eloid cells (dots) to assign cell identity. The cells from the tumour periphery were 
located close to the reference foetal microglia, while the cells from the tumour core showed a transition towards the reference monocytes and 
macrophages. Panel ( A2 ) is identical to panel ( A1 ) e x cept that cells are coloured according to DPT, representing a cell state transition. StableMate was 
applied to select genes predictive of DPT, where cell location (core and periphery) was set as the environmental variable. ( B )–( F ) The expression of the 
cytokines was imputed based in Sincast. We identified several cytokines that are typical microglia activation and polarization markers, including ( B ) CCL3 
and CCL4, which are stable, and ( C ) TNF, IL1B, CCL2, and CSF1, which are periphery-specific. ( D ) A gene regulatory network was built by running 
StableMate on each of the se v en response variables, namely DPT and six cytokines CCL3, CCL4, TNF, IL1B, CCL2, and CSF1 (represented as large 
nodes). The aim was to select stable and predictive genes associated with each of these response variables. The cell location was still set as the 
en vironment v ariable. An edge indicates that a gene is stable and predictiv e of a response v ariable. We f ound that CCL3 and CCL4 w ere stable and 
predictive of DPT as a separate graphical community from TNF, IL1B, CCL2, and CSF1, which were predictive but unstable of DPT. ( E ) The expression 
le v els of MHC-II molecule HLA-DOA and the macrophage marker MARCO. ( F ) The expression levels of large extracellular matrix protein VCAN. MARCO, 
VCAN and HLA-DOA were all identified as core-specific. The upregulation of MARCO, VCAN, and the downregulation of HLA-DOA suggest a 
de v elopment of M2-like immunosuppressive macrophage. 
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StableMate results we plotted Y 

e against X 

e 
3 and X 

e 
15 in Fig-

ure 1 B. Here, X 

e 
3 is stable in the sense that its relationship with

Y 

e can be described by the same linear equation for e = e 1 , e 2 ,
e 3 , whereas X 15 is environment-specific as its relationship with
Y 

e varies for different e . 
Briefly, the StableMate procedure first pools samples from

all environments to identify the variables that are most
predictive of the response regardless of the environment.
Then, among these predictive variables, stable and unsta-
ble (environment-specific) variables are further differentiated.
Both procedures involve fitting regression models with a base
regressor, which is set as simple linear regression by default.
More complex relationships can be modelled by choosing
non-linear models as the base regressor in StableMate. 

The variable selection results from a default StableMate
analysis can be summarized in Figure 1 C, where every variable
is assessed in terms of prediction and stability. First, all vari-
ables with low prediction scores are filtered out. They are eval-
uated based on their prediction ability from the fitted regres-
sion models. Second, among the predictive variables, we fur-
ther differentiate between those that are significantly stable,
unstable, or indeterminate. The stability score of a given pre-
dictor measures the probability of a predictor being present in
regression models that are generalizable across environments.
In this example, X 

e 
3 , which was expected to be stable, received

the highest prediction and stability score, whereas X 

e 
15 , which

was expected to be environment-specific, received a high pre-
diction score but the lowest stability score. We further detail
in the ‘Materials and methods’ section (see the ‘StableMate
to identify stable and environment-specific statistical associ-
ations’ section) how we defined these scores and significance
thresholds. 

We evaluated the ability of StableMate to accurately iden-
tify stable and environment-specific predictors in a benchmark
study where we compared our performance with existing ap-
proaches including the original SR algorithm. Our results
show that StableMate leads to superior accuracy and com-
putational efficiency, as detailed in Supplementary Figures S1
and S2 . 

The next sections highlight the flexibility of StableMate to
identify stable and environment-specific predictors in differ-
ent analytical settings. The different types of analyses are de-
scribed in Table 1 . 

StableMate identifies genes associated with ESR1 

expression in ER+ BC using RNA-seq data 

In the first case study, we illustrate the application of Sta-
bleMate to identify genes and gene modules associated with
the regulation of the ESR1 gene based on BC transcriptomics
data. ESR1 is one of the marker genes of the ER+ subtype of
BC, characterized by the high expression of the estrogen re-
ceptor (ER) ( 47 ). By leveraging abundant prior knowledge of
ESR1’s role in BC progression, our aim is to validate Stable-
Mate results within a biological context. We are interested in
the association between ESR1 and other genes across normal
and ER+ samples. In particular, we expect that genes identified
as stable for predicting ESR1 expression are not confounded
by disease status, suggesting a close or potential causal rela-
tionship with ESR1 in its transcriptional regulation. In con-
trast, genes identified as disease-specific might be interacting
with ESR1 indirectly, e.g. at downstream of ER regulation or
by co-regulating with ER. 
Data and StableMate setting. 

We used the publicly available BC gene expression (BRCA) 
data from The Cancer Genome Atlas (TCGA) ( 48 ). We fil- 
tered the dataset to retain 113 normal and 778 ER+ tumour 
samples. 

Since we were interested in the regulation of ESR1, we set 
ESR1 as the response and all other genes as predictors and fit 
simple linear regressions for StableMate analysis. We set the 
disease status (normal or ER+) as the environment variable so 

that we could identify stable genes, whose association with 

ESR1 did not change significantly between normal versus ER+ 

samples, and disease-specific genes, whose association with 

ESR1 significantly varied significantly between disease status.
In addition to identifying individual genes, we also combined 

StableMate with PCA to identify stable and disease-specific 
gene modules. Namely, we still took ESR1 as the response 
and disease status as the environment variable, but we used 

meta genes (first a few PCs of all genes except ESR1) as pre- 
dictors. Then, we defined the stable and disease-specific gene 
modules as the most important genes of stable and disease- 
specific metagenes. 

StableMate selected genes proxy to ESR1 regulation 

The StableMate variable selection results are summarized 

in Figure 2 A. Among the most stable genes predictive of 
the ESR1 expression, CCDC170 and ARMT1 are the clos- 
est genes located to the upstream genomic region of ESR1 

( Supplementary Figure S3 A) and have been reported to fuse 
with ESR1 ( 49 ). Their proxy to ESR1 suggests that they might 
be subject to the same transcriptional regulation as ESR1, thus 
explaining their stability. On the other hand, the STC2 gene 
was identified as disease-specific. This might be explained by 
the fact that STC2 has been identified as a downstream target 
of ER signalling ( 50 ,51 ). In addition, the proximal promotor 
region of STC2 is not directly subject to ER binding but is 
dominated by other transcriptional activities such as hypoxia 
induced stress response ( 52 ,53 ). As a result, ER signalling is 
indirectly involved in the STC2 activation ( 51 ). This evidence 
supports our hypothesis that STC2 and ESR1 should be indi- 
rectly or distally related in transcriptional regulation as indi- 
cated by their environment-specific associations. 

StableMate with PCA identified gene modules associated with 

ESR1 

Feature selection from transcriptional data is often followed 

by gene set enrichment analysis. While the stability analysis 
on individual genes gave us some insights into ER regulation,
we selected relatively few genes as either stable or disease- 
specific—this was insufficient for statistically meaningful en- 
richment analysis. To overcome this issue, we used the first 23 

most significant PCs (selected by the elbow method) ( 38 ) of all 
genes (except ESR1) as predictors for ESR1 expression rather 
than individual genes. In this context, each PC is a linear com- 
bination of the expression of all genes except ESR1, and can be 
viewed as a metagene, which is useful for quantifying the ac- 
tivities of gene modules ( 54 ). Similar to our previous analysis,
disease status (normal and ER+) was set as the environmental 
variable. Of note, we observed similar results with the meta- 
gene construction method of weighted gene co-expression net- 
work analysis ( 1 ), which identifies gene modules with hier- 
archical clustering first and then computes a metagene on 

each gene module by eigen decomposition, akin to PCA (see 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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upplementary Methods S1.1 and Supplementary Figures S4
nd S5 ). 

The StableMate variable selection results are summarized in
igure 2 B. PC1 and PC2 were found to be highly stable and
redictive, suggesting that the major source of variation they
xplain (15.56% and 10.83%, respectively) is closely related
o ER regulation. All subsequent PCs up to PC6 were pre-
ictive but disease-specific. We considered the top 200 genes
ontributing to PC1 (most stable) and PC3 (disease-specific)
nd conducted an enrichment analysis. Genes from PC1 were
ainly associated with biological processes related to hor-
one regulation (Figure 2 C). The ESR1-mediated estrogen

ignalling is at the centre of hormone regulation, and hence
he high prediction ability and stability of PC1 are manifest.
enes from PC3 were associated with basal cell-like transcrip-

ional activities in epidermis development. The top genes con-
ributing to PC3 (see details in Supplementary Figure S3 B) in-
luded a high proportion of basal cytokeratins (BCKs), such
s KR T5, KR T7, KR T14, and KR T17, suggesting that PC3
ay reflect the ‘basalness’ of samples (Figure 2 C). Interest-

ngly, PC3 scores were positively correlated with ESR1 expres-
ion in normal samples but negatively correlated with ESR1
n ER+ samples (Figure 2 C). This trend was also observed be-
ween the basal BC enriched genes [listed in Li et al. ( 55 )] and
SR1 expression ( Supplementary Figure S3 C), confirming the
C3 characterization of basalness. 
To validate the reproducibility of our findings, we queried

he gene expression portals GTEx ( 22 ) for normal breast tis-
ue and the METABRIC data from cBioPortal ( 21 ) for ER+
C. Our analysis using these external datasets showed simi-

ar trends between ESR1 and PC3 (Figure 2 E). The negative
orrelation between BCKs (contributing to PC3) and ESR1
xpression may be explained by the fact that the BCK induc-
ion in ER+ BC requires low ER expression ( 55 ). However, to
he best of our knowledge, no study so far has reported that
his correlation may turn positive in normal breast tissues. 

tableMate discerns global microbial signatures for
olon cancer in multi-cohort metagenomics data 

here has been considerable research interest in using faecal
icrobiome as biomarkers for CRC. If successful, this non-

nvasive way of screening for CRC may reduce the mortal-
ty rate through early intervention ( 56 ,57 ). By pooling faecal
etagenomics data from a large number of independent CRC–

ontrol studies, several meta-analyses have been conducted to
dentify cross-cohort microbial signatures of CRC and to build
redictive models for its diagnosis ( 26 , 30 , 58 ). However, these
nalyses ignored the technical differences between cohorts,
hich could have confounded their results. We addressed this
roblem by conducting a meta-analysis based on StableMate
sing the cohort as the environmental variable. In particular,
e selected stable microbial signatures that make consistent
redictions of CRC across cohorts, as well as cohort-specific
ignatures that highlight confounding factors in CRC predic-
ion. Our results showed better prediction accuracy compared
o the methods used in these studies. 

ata and StableMate setting 
e retrieved eight CRC case-control faecal metagenomic

atasets from the R package curatedMetagenomicData ( 23 ).
he datasets were generated by eight different cohorts from
even countries (refer to Table 1 for the cohort used and for
the number of CRC and controls in each cohort). Data were
curated into abundance data using a standardized data pro-
cessing pipeline by Pasolli et al. ( 23 ). In total, we collected 604
CRC and 596 control samples. Our analysis focused on the
species abundance data measured on 313 microbial species.
The analysis of pathway abundance data measured on 431
pathways is detailed in Supplementary Figure S6 . 

Since we were interested in the CRC diagnosis using
metagenomics data, we set the disease status (CRC or nor-
mal) as the response and the microbial species as predictors
and performed logistic regression in StableMate analysis. We
implemented StableMate using the following two strategies. In
the first analysis, we applied StableMate as in the toy example
(see ‘Illustration of StableMate on toy example’ section) and
our first case study (see the ‘StableMate identifies genes associ-
ated with ESR1 expression in ER+ breast cancer using RNA-
seq data’ section), where all cohorts were pooled to select pre-
dictive species and assessed their stability by setting cohort as
the environment variable. From this analysis, we found that
the majority of the selected predictive species were stable and
none of them was cohort-specific (as discussed later in the ‘Sta-
bleMate discerns global microbial signatures for colon can-
cer in multi-cohort metagenomics data’ section). Therefore,
in a second analysis, we applied StableMate on each cohort to
identify cohort-specific predictive species and tested the sta-
bility of the species selected in the remaining seven cohorts
combined. There we considered only two environments: the
specific cohort and the remaining cohorts combined. These
‘cohort-specific analyses’ are useful for identifying species that
are highly predictive in a specific cohort but their association
with CRC in the specific cohort cannot be generalized to other
cohorts. 

StableMate identified stable microbial species predictive of
colon cancer 

From the pooled analysis, we identified 23 stable species to
predict disease status (CRC or normal) (Figure 3 A). To illus-
trate the strong cohort effect of the data and the ability of
StableMate selection to identify predictors with a mild cohort
effect, we used PCoA with all 313 species versus the 23 sta-
ble species. The PCoA results combined with a permutation
ANOVA showed that the main source of variation was the
cohort effect rather than disease status (Figure 3 B1) when all
species were used. This implies that a predictive model built
using all species is likely to be affected by cohort (batch) ef-
fects. In contrast, the PCoA and ANOVA results of the 23
stable species selected by StableMate showed a decrease in
cohort effects and an increase in the effects of disease status
(Figure 3 B2). In particular, the CRC and normal samples were
better separated in the PCoA when using only the 23 stable
species (left panel of Figure 3 B2). A formal evaluation of the
goodness of variable selection is presented in the ‘Benchmark-
ing StableMate variable selection and prediction on metage-
nomics data’ section. 

StableMate identified cohort-specific microbial species predic-
tive of colon cancer 

We conducted cohort-specific analyses for each of the eight co-
horts to identify predictors with high cohort specificity. As an
example, Figure 3 C shows the results for the Austrian cohort.
A number of species were found to be highly predictive in the
Austrian cohort but with a very low stability score and, there-
fore, were identified as cohort-specific. Among them, P. copri

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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was the most predictive and one of the most cohort-specific
species, suggesting that P. copri might be a marker for CRC
specific to the Austrian cohort only. It should be noted, how-
ever, that diet could be a confounder, as the Austria-specific
species might be related to the low-fibre diet in that popula-
tion (see Supplementary Section S1.2 for details). 

Pooling data improves generalizability of prediction models 
Most of the predictive species selected on the pooled data
were stable (Figure 3 A), whereas predictive species selected in
the individual cohorts showed less stability ( Supplementary 
Figure S7 ). This can be explained as the stability score of a pre-
dictor is correlated with the predictor’s influence on the gener-
alizability of regression models. As the number of cohorts in-
creases, regression models tend to put less weight on unstable
predictors. As a result, unstable predictors have less influence
on model fitting. Hence, we obtained high stability scores for
these predictors. This analysis quantitatively confirms a com-
mon perception in classical meta-analysis that training regres-
sion models on pooled data rather than individual datasets
can yield improved generalizability ( 26 , 30 , 58 ). 

However, aside from pooling data, we were able to further
improve generalizability of prediction models by taking into
account the cohort effect through stability analysis. We con-
ducted a benchmark study in the ‘Benchmarking StableMate
variable selection and prediction on metagenomics data’ sec-
tion, where we showed that the StableMate model built us-
ing the stable species outperformed several commonly used
regression methods in the pooled analysis. 

StableMate characterizes cell identity transition of 
GBM-associated microglia with scRNA-seq data 

GBM is the most invasive type of brain tumour that presents
significant therapeutic challenges. GBM harbors a hetero-
geneous tumour microenvironment dominated by tumour-
associated macrophages (TAM) and microglia, which were re-
cruited by GBM to promote tumour growth, migration, recur-
rence, and resistance to immunotherapy ( 59 ). Since the major-
ity of TAM in GBM are thought to be derived from microglia
(i.e. tissue-resident macrophages in the brain) infiltrating the
tumour, identifying key genes involved in this process could
have therapeutic potential. 

In this case study, we analysed a scRNA-seq dataset of
myeloid cells at the periphery (migrating front) and the core
of the GBM tumour. These locations represent the start and
the end points of the transition from microglia to T AM. W e
used StableMate to extract the key genes involved in this tran-
sition while taking location into account. Hence, we were able
to investigate how the transition differs between the locations
and reveal location-agnostic and -specific immune activities. 

Data and StableMate setting 

From the scRNA-seq dataset from Darmanis et al. ( 31 ) of four
GBM tumours, we extracted and analysed 1847 myeloid cells
from the tumour core (1329 cells) and from the tumour pe-
riphery (518 cells) with the cell annotation provided by the
authors of the study. 

We visualized the scRNA-seq data and observed a clear cell
trajectory between the two locations, which may represent the
cellular transition of microglia to T AM. W e conducted a pseu-
dotime analysis to quantify this trajectory and used Stable-
Mate to predict as a response the pseudotime based on ex-
pression of the genes as predictors. The base regressor used 

for StableMate analysis was simple linear regression. The cell 
location, core or periphery, was set as the environment vari- 
able. StableMate selected several cytokines as being predictive 
of the pseudotime. To further investigate the possible mecha- 
nism of these cytokines, we performed a second analysis to 

build a gene regulatory network for these cytokines. More 
specifically, we applied StableMate on each of the cytokines 
as a response and all other genes as predictors. We then sum- 
marized the selection results in the form of a network, where 
the cytokines are connected to their stable predictor genes. 

DPT tumour periphery to core 

We first visualized the myeloid cells projected onto a bulk 

RNA-seq reference atlas of myeloid cells ( 45 ) to assign the 
identity of the cells. We performed this using Sincast ( 33 ) 
(Figure 4 A1). The projection showed that the cells from the 
periphery of the tumour closely matched foetal microglia 
in the reference, and the cells from the core of the tu- 
mour matched a wider range of monocytes and macrophages 
( Supplementary Figure S8 A). The projection also showed a 
continuous state of transition, rather than discrete clusters.
We also confirmed the transition by a separate DM analysis 
in Supplementary Figure S8 B. This exploration suggested that 
the data were suitable for DPT analysis (Figure 4 A2), where 
we set the cells at the tumour periphery as the root (start) of 
the trajectory ( 44 ). The inferred DPT was then used as the re- 
sponse for our first StableMate analysis described below. 

StableMate analysis identifies cytokines that signify microglia 
pre-activation and polarization in tumour periphery 
Among the genes selected by StableMate as predictive of 
DPT, we identified six cytokines whose expression were all 
negatively correlated with DPT ( Supplementary Figure S8 C).
Among these cytokines, CCL3 and CCL4 were identified as 
stable (Figure 4 B), while TNF, IL1B, CCL2, and CSF1 were 
identified as periphery-specific (Figure 4 C). The selection of 
the six cytokines is interesting as they are important markers 
of microglia activation in response to disease ( 60 ). 

In order to visualize the relationships of these cytokines, we 
ran StableMate on each cytokine as a response, where all the 
other genes were used as predictors, and built a gene regu- 
latory network (Figure 4 D—DPT was included as a ‘pseudo 

gene’ here to incorporate the result from the first analysis).
This network showed that the two stable cytokines (CCL3 

and CCL4) formed a community with DPT, whereas the four 
periphery-specific cytokines (TNF, IL1B, CCL2, and CSF1) 
formed another community. 

Other stable genes predictive of DPT represented on this 
network include EGR2 and CD83, which were connected to 

both DPT and CCL3 ( Supplementary Figure S8 D). CCL3,
CCL4, CD83, and EGR2 are all known to be associated 

with an immediate early inflammatory response by microglia 
in a pre-activated state, which is in between homeostasis to 

those fully activated under pathological conditions ( 61–66 ).
These four genes showed consistent downregulation during 
the transition regardless of cell location. On the contrary,
the periphery-specific cytokines, which are known markers 
for microglia polarization to either the pro-inflammatory M1 

or anti-inflammatory M2 phenotype ( 60 ), exhibited stronger 
negative association with DPT in the periphery—resulting in 

low expression levels—and weak association with DPT in the 
core (Figure 4 C). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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ore-specific genes revealed reprogramming of tumour-
nfiltrating microglia into immunosuppressive TAM in GBM
umours 
he core-specific genes identified by StableMate included

wo interesting cell surface markers: the macrophage
arker MARCO and MHC class II antigen HLA-DOA

 Supplementary Figure S8 C). MACRO was lowly expressed in
he tumour periphery but upregulated along the DPT trajec-
ory towards the tumour core (Figure 4 E, upper). HLA-DOA
xpression levels had a low–high–low pattern along the trajec-
ory, with high expression levels at the boundary of tumour pe-
iphery and core (Figure 4 E, lower; other MHC-II genes were
lso examined in Supplementary Figure S8 E). The upregula-
ion of MARCO and the downregulation of HLA-DOA to-
ards the core may indicate the presence of MARCO 

hi , MHC-
I lo macrophages, which are characteristic of the M2-like im-
unosuppressive TAM ( 67 ,68 ). In addition to these two cell

urface markers, many pro-tumour markers were also iden-
ified by StableMate as core-specific and showed similar ex-
ression patterns as MACRO ( Supplementary Figure S9 A).
ne example is VCAN, which encodes a large extracellu-

ar protein contributing to the establishment of tumour mi-
roenvironments (Figure 4 F). The expression patterns of these
ore-specific pro-tumour markers suggest that they responded
pecifically to the tumour microenvironment and hence are
otentially good therapeutic targets. 
In addition, we examined the immune activation state of

he cells at the beginning of the core stage of the transi-
ion. We observed high expression of the stable cytokines
CL3 and CCL4 (Figure 4 C), as well as the microglia marker
MEM119, which were all then gradually suppressed in the
ore ( Supplementary Figure S8 F). This may imply the repro-
ramming of activated microglia in the early stages of the core
ransition to TAMs. 

enchmarking StableMate variable selection and 

rediction on metagenomics data 

e used the species abundance data from eight metagenomics
tudies of CRC described in the ‘StableMate discerns global
icrobial signatures for colon cancer in multi-cohort metage-
omics data’ section to benchmark the variable selection and
rediction performances of StableMate (using logistic regres-
ion model as the base model) against GLM (with logistic re-
ression using all predictors), Lasso regression ( 34 ) and RF
 40 ). To assess the prediction performance of these methods,
e used a LODO cross-validation strategy. That is, in each
f the eight cross-validation iterations, we left out one of the
ohorts and trained the different regression models using the
ther seven cohorts (based on all 313 species). The left-out
ohort was then used as a test dataset on which the AUC
as calculated for each regression model. Since the left-out

ohort represents an unseen environment, regression models
eceiving higher AUCs can be considered as more generaliz-
ble. To assess the variable selection performance of Stable-
ate, recall that we have already applied StableMate to do

 pooled meta-analysis as described in the ‘StableMate dis-
erns global microbial signatures for colon cancer in multi-
ohort metagenomics data’ section and identified 23 stable
pecies. We applied Lasso and RF to the same pooled data
ith eight cohorts to select 23 species (for RF, we ranked all

pecies by their importance scores in descending order, and
hen selected the top 23). We use these three lists of species
to build RF models and assess their generalizability using
LODO. 

StableMate based on logistic regression outperformed Lasso
and performed comparably to RF in CRC classification 

The LODO AUC values for all competing methods are shown
in boxplots in Figure 5 A. To illustrate the benefits of using
stable predictors to build regression models, we considered
two versions of the StableMate prediction model, one built
using all selected predictive variables, the other using only the
stable predictors. To further investigate if the differences in
AUC values were statistically significant, we conducted a series
of two-sided paired t -tests, and the P -values of these tests are
shown in Figure 5 A. 

We first compared the performances of all methods except
RF, since they all use variants of linear models to make predic-
tions, whereas RF is a non-linear approach. From Figure 5 A,
we observed that the StableMate prediction using only sta-
ble predictors was significantly better than GLM, Lasso, and
StableMate using all predictive variables. Among these meth-
ods, GLM had the worst generalizability. As GLM does not
perform variable selection, the prediction model potentially
included many noisy features. Lasso’s selected variables led
to poorer prediction compared to the two variants of Stable-
Mate. The version of StableMate using only stable predictors
led to slightly higher mean AUC compared to StableMate us-
ing all predictive variables, with a P -value indicating a sig-
nificant difference. The superior performance of StableMate
based on stable predictors highlighted the benefits of using
such type of predictors to build prediction models. 

Finally, we observed that the AUC performance of Stable-
Mate based on the stable predictors was indistinguishable
from RF. This can be explained as StableMate only uses an
ensemble of stringent logistic models to make predictions (see
the ‘Materials and methods’ and ‘StableMate to identify sta-
ble and environment-specific statistical associations’ sections),
whereas RF uses an ensemble of non-linear and highly flexible
decision trees targeted for classification tasks. 

One can also use StableMate as a variable selection method
only and then separately build regression models based on the
stable predictors. Filtering out irrelevant and unstable predic-
tors in data can benefit model fitting by improving generaliz-
ability ( 71 ). Therefore, the notable classification performance
of RF motivated the second benchmark study below, in which
we evaluated whether StableMate can select predictors that
lead to more generalizable RF models. 

Species selected by StableMate lead to more generalizable pre-
diction models 
We applied StableMate, Lasso, and RF to select three
species lists, each containing 23 species. Figure 5 B
shows a Venn diagram that compares these three lists
(see also Supplementary Figure S10 A for a more comprehen-
sive comparison). The three lists included an overlap of nine
species, all of which are well-known species associated with
CRC ( 70 ). Among these three methods, StableMate and Lasso
shared 20 species, many more than with RF species selection.
Of note, StableMate selected three species that were neither
selected by Lasso nor by RF (Figure 5 B), including Bacteroides
intestinalis whose connection with CRC has not been widely
reported. Bacteroides intestinalis , along with its metabolic
product, is considered as an important biomarker for human
gastrointestinal health ( 72 ). Under carcinogenetic stress,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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Figure 5. StableMate outperforms commonly used regression methods in prediction and variable selection based on the colon cancer case study. ( A ) 
We used LODO cross-validation to calculate area under the curve (AUC, y -axis) and assess the generalizability of the classification when applied to an 
unseen cohort. Paired t -tests compare the AUC values and adjusted P -values ( 69 ) are shown. Each point presents the AUC value calculated on a left-out 
cohort. Methods include GLM (logistic regression), Lasso (Lasso logistic regression), RF, and two versions of StableMate (logistic 
regression): SM-Stab-based stable predictors only and SM-Pred using all predictive variables. Among all linear methods (all except RF), SM-Stab 
obtained the highest mean AUC (the difference is statistically significant). Compared to RF, SM-Stab had a slightly lo w er mean AUC, but this difference 
was not statistically significant. Note that RF is a more flexible non-linear classification method. ( B ) Venn diagram to compare the three lists of species 
(each containing 23 species) selected by StableMate, Lasso, and RF. StableMate and Lasso made similar selections, with 20 species selected by both. 
The RF selection was quite different from the other two methods. Nine species were selected by all three methods, all of which are known to be 
associated with CRC ( 70 ). In addition, two species, also known to be associated with CRC, were selected by both Lasso and RF but not by StableMate. 
This is because these two species were not significantly stable as suggested by StableMate selection. ( C ) Generalizability of six sets of species: top 23 
species selected by StableMate (‘SM’), Lasso and RF, the 9 species selected by all the methods (‘RF & Lasso & SM’), the 20 species selected by both 
Lasso and StableMate (‘Lasso & SM’) and the 26 species selected by either Lasso or StableMate (‘Lasso | SM’). We built six RF classifiers using these 
six sets of species and reported their AUC values (mean AUC on the x -axis). The stable species selected by StableMate led to the best RF model, with a 
higher AUC than RF trained with all 313 species in ( A ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. intestinalis has been shown to exhibit increased activity in
enhancing DNA integrity maintenance and suppressing cen-
tral metabolic activities, suggesting B. intestinalis ’ protective
role against CRC ( 73 ,74 ). This hypothesis is concordant with
our observation of a decreased abundance of B. intestinalis in
CRC samples across cohorts ( Supplementary Figure S11 A). 

For a quantitative evaluation, we built RF models using six
different selections of species and computed their AUC using
the LODO cross-validation approach. The results are sum-
marized in Figure 5 C, where the 23 stable species selected by
StableMate led to the highest mean AUC (0.818). StableMate
and Lasso selections had high AUC values since their selec-
tions were similar. The difference between StableMate and
RF selections was not statistically significant, probably due
to a lack of cohorts and statistical power . However , the Sta-
bleMate selection led to less variable prediction performances
(smaller interquartile range) compared to RF. Two species, Di-
alister pneumosintes and Parvimonas micra , were selected by
Lasso and RF but not by StableMate (Figure 5 B). In particular,
P. micra is known to be associated with CRC as it promotes
tumourigenesis ( 75 ,76 ). However, StableMate identified these
two species as predictive but not significantly stable. The fact
that there was no improvement in the prediction performance
of RF trained on the StableMate selection with these two addi-
tional species (comparing ‘Lasso | SM’ and ‘SM’ in Figure 5 C)
justifies why StableMate did not select these two species. 

Benc hmar k based on pathway abundance data 

A similar benchmarking analysis based on the pathway abun-
dance data showed that StableMate outperformed the other
methods, including RF, in predicting CRC (highest mean AUC; 
see Supplementary Figure S6 B). However, the pathway abun- 
dance data were less stable and less predictive of CRC com- 
pared to the species abundance data. All methods obtained 

lower AUC scores in LODO assessment. We observed strong 
differences in variable selections between the cohorts and the 
methods ( Supplementary Figures S6 A and S10 ). 

Discussion 

The unbiased characterization of a biological system requires 
a comprehensive understanding of the relationships between 

biological variables. Current methods that infer biological re- 
lationships attempt to define and identify statistical associa- 
tions but often lack generalizability or biological interpretabil- 
ity ( 9–11 ). We developed StableMate, a new regression frame- 
work based on SR ( 17 ) to address these challenges. 

StableMate selects stable and environment-specific (unsta- 
ble) predictors of the response variable to represent statisti- 
cal associations across different technical or biological envi- 
ronments. Discerning the stability of associations allows us 
to make interpretable inferences on biological relationships.
On the one hand, stable predictors suggest closer relationships 
with the response compared to environment-specific predic- 
tors. On the other hand, environment-specific predictors are 
useful for characterizing the environmental differences in the 
biological system under study. 

In the three case studies dealing with different types of can- 
cer omics data, we showed that StableMate brings novel bio- 
logical insights. In the simulation study, we showed the benefit 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae130#supplementary-data
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f using StableMate for better prediction accuracy, computa-
ional efficiency, and accuracy of variable selection compared
o existing methods. 

In the first case study, we analysed the RNA-seq data of
C. Stability analysis allowed us to identify genes and gene
odules that directly or indirectly relate to ESR1 regulation. 
In the second case study, we conducted a meta-analysis of

ight metagenomic studies of colon cancer. StableMate anal-
sis revealed global microbial signatures that can make con-
istent prediction of colon cancer regardless of the cohorts, as
ell as cohort-specific microbial signatures that can shed light
n confounders in colon cancer prediction. In this study, we
lso benchmarked the performance of different existing meth-
ds in making cross-cohort predictions, showing that Stable-
ate is highly competitive. We noted that StableMate did not

ignificantly outperform RF, probably due to either a small
umber of cohorts affecting statistical power, or because of
he difference between a linear logistic regression (StableMate)
nd a non-linear classification method (RF). This, therefore,
lso motivated our simulation study, where we considered a
ontinuous response and generated enough repetition of ex-
eriments ( Supplementary Figures S1 and S2 ). 
In the third case study, we analysed scRNA-seq data of
yeloid cells residing in the core and the surrounding periph-

ry tissues of GBM. We first identified a trajectory of con-
inuous cell state transition between the cells at the two lo-
ations and then applied StableMate to identify stable and
ocation-specific genes associated with this cell state transi-
ion. By analysing periphery- and core-specific genes, we hy-
othesized that microglial polarization seems to occur primar-
ly in the tumour periphery, and the reprogramming of mi-
roglia into pro-tumour TAM happens after microglia infil-
rate the tumour core. The stable genes exhibited consistent
xpression patterns in both the locations, hence ubiquitously
nvolved in the development of both the pro- and the anti-
nflammatory microglia. 

In these case studies, the biological interpretation of the
ariable selections mainly focused on significant genes or mi-
robial signatures. However, further experimental validations
ould hypothesize on the causal implication of stable predic-
ors to the response. 

StableMate is based on SR but implements a different algo-
ithm for stochastic stepwise variable selection to select sta-
le and environment-specific predictors with higher compu-
ational efficiency and accuracy. The stepwise framework of
tableMate can be implemented with different base regressors
o address different regression problems, such as OLS and lo-
istic regression, as we illustrated in our case studies. Stable-
ate is available in R and can flexibly implement user-defined

egression methods. One such extension could, for example,
nclude non-linear regression methods, as well as penalized re-
ression to avoid the pre-screening step currently proposed in
tableMate. 

ata availability 

he StableMate R code and data analysis are available at
ttps:// github.com/ meiosis97/ StableMate and https://doi.org/
0.5281/zenodo.13626593 . 
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