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Abstract

Background: The evolutionary tree of 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial
enzyme that catalyzes a key step in the biosynthesis of bacterial endotoxin, is evenly divided between metal and non-metal
forms, both having similar structures, but diverging in various degrees in amino acid sequence. Mutagenesis,
crystallographic and computational studies have established that only a few residues determine whether or not KDO8PS
requires a metal for function. The remaining divergence in the amino acid sequence of KDO8PSs is apparently unrelated to
the underlying catalytic mechanism.

Methodology/Principal Findings: The multiple alignment of all known KDO8PS sequences reveals that several residue pairs
coevolved, an indication of their possible linkage to a structural constraint. In this study we investigated by computational
means the contribution of coevolving residues to the stability of KDO8PS. We found that about 1/4 of all strongly
coevolving pairs probably originated from cycles of mutation (decreasing stability) and suppression (restoring it), while the
remaining pairs are best explained by a succession of neutral or nearly neutral covarions.

Conclusions/Significance: Both sequence conservation and coevolution are involved in the preservation of the core
structure of KDO8PS, but the contribution of coevolving residues is, in proportion, smaller. This is because small stability
gains or losses associated with selection of certain residues in some regions of the stability landscape of KDO8PS are easily
offset by a large number of possible changes in other regions. While this effect increases the tolerance of KDO8PS to
deleterious mutations, it also decreases the probability that specific pairs of residues could have a strong contribution to the
thermodynamic stability of the protein.

Citation: Ackerman SH, Gatti DL (2011) The Contribution of Coevolving Residues to the Stability of KDO8P Synthase. PLoS ONE 6(3): e17459. doi:10.1371/
journal.pone.0017459

Editor: Floyd Romesberg, The Scripps Research Institute, United States of America

Received October 6, 2010; Accepted February 3, 2011; Published March 9, 2011

Copyright: � 2011 Ackerman, Gatti. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by U.S. Public Health Service Grants GM41857 to SHA, GM69840 to DLG, and by a Wayne State University Research
Enhancement Program in Computational Biology Grant to DLG. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dgatti@med.wayne.edu

Introduction

3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) syn-

thase (KDO8PS) is a bacterial enzyme that synthesizes KDO8P

from phosphoenolpyruvate (PEP) and arabinose 5-phosphate

(A5P). This reaction is of significant biological relevance, as

KDO8P is the phosphorylated precursor of KDO, which is an

essential component of the endotoxin of Gram negative bacteria

[1]. The enzyme exists in two forms, differing in the requirement

(or lack thereof) of a divalent metal for activity [2]. We and

others have determined high-resolution structures of both

metallo- and non-metallo forms of KDO8PS [2,3,4,5,6], which

revealed the features of the active site: in metal dependent

KDO8PSs the divalent metal ion (Zn2+, or Fe2+, [7]) is

coordinated by the side chains of a cysteine, a histidine, a

glutamic acid, and an aspartic acid. In non-metallo KDO8PSs

an asparagine replaces the metal binding cysteine and there is no

metal ion. Several mutagenesis studies [6,8,9,10,11,12] and more

recently, quantum mechanical simulations [7,13,14], have

established that substitution of the metal binding cysteine with

asparagine is absolutely required to convert metal-dependent to

metal-independent KDO8PSs, although additional changes in

the highly conserved CysAspGlyPro motif of the loop that

contains the metal binding aspartic acid are necessary to achieve

appreciable levels of activity [6,12]. These observations are

intriguing and raise the possibility that during the evolution of

KDO8PS, after the initial choice between cysteine + metal and

asparagine, additional sequence divergence occurred primarily

to maximize the stability of the protein in the environment of

hundreds of different bacteria. In this study we aimed to establish

if the climb to stability fitness was a key factor in determining the

amino acid sequence of KDO8PSs, and whether it affected only

conserved positions or also positions with a high propensity for

coevolution. A new combination of tools from information

theory and structural modeling provided an avenue to quantify

the contribution of coevolving residues to the stability of KDO8P

synthase: this methodology may be of general value in the study

of all protein families.
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Results

The stability landscape of KDO8PS
From the point of view of protein stability the organization of

enzyme active sites is inherently unstable because these sites are

optimized for catalysis, which means they are pre-organized to

stabilize the transition state(s), rather than the protein [15,16].

Thus, the substitution of a catalytic side chain (most often to

alanine) will typically increase the overall protein stability, while

sacrificing function [17,18]. Conversely, most mutations that

introduce a new function are destabilizing [19,20]. The generality

of this stability-function tradeoff must be viewed within the context

of the fact that regardless of their effect on functions most

mutations are destabilizing [21,22,23,24]. With respect to

KDO8PS, several attempts were made (e.g., [6,11]) to map the

evolutionary paths from metallo- to non-metallo forms (and vice

versa) without giving sufficient consideration to the fact that

sequence differences between and within these forms in different

bacterial backgrounds, may be related not only to activity but also

to stability.

One way we looked at the relevance of individual residues in

the context of the three-dimensional structure of KDO8PSs was

by computing a Hidden Markov Model (HMM) for the entire

KDO8PS protein family (multiple sequence alignment MSA S1,

Supporting Information). This family contains the ‘C23’ metallo

sub-family (175 sequences with Cys at position 23 of Neisseria

meningitidis (Nm.) KDO8PS (Uniref Q9JZ55, PDB 2QKF), used

here as reference [6]), and the ‘N23’ non-metallo sub-family (173

sequences with Asn at position 23). Only the positions of the

MSA corresponding to the sequence of Nm. KDO8PS (MSA S2,

Supporting Information) were used in the calculation of the

HMM profile. A HMM profile specifies a probability distribution

over the alphabet of the 20 common amino acids, taking into

consideration the background frequency for each amino acid,

computed by counting amino acid occurrences in all known

proteins, or only in the proteins of the family under consideration

[25,26]. If the background frequency of amino acid j is pj, then

the important positions are those whose distribution differs from

p. Therefore, the relative entropy between the observed

distribution Pi at the i-th position of the profile and p, H(Pi ||

p) = I(Pi), defines the information content of Pi. This information

can be visualized as a HMM histogram or vector (Figure 1A). In

practice, the height (relative entropy = information content) of

the histogram at each position indicates how much the observed

frequency of amino acids at that position deviates from the

background frequency. In the HMM vector of Figure 1A,

position numbers refer to the reference sequence of Nm.

KDO8PS [6]. There is a ‘‘wavy’’ pattern in the histogram

derived from the MSA of all KDO8PSs (1st inset of Figure 1A),

which is clearly evident in the superimposed Loess [27,28] fit.

Regions of the histogram higher than the mean value are marked

with an orange bar below the sequence; these regions invariably

include the strands of the b-barrel in the structure (Figure 1B), a

clear indication that the sequence of the interior of the protein is

less determined by chance. The HMM vectors of metallo (C23)

or non-metallo (N23) KDO8PSs, calculated independently, are

shown in the 2nd inset of Figure 1A. Their difference is shown in

the 3rd inset of Figure 1A. The difference vector identifies

positions that best fulfill the specific demands of the two

subfamilies of KDO8PS: while partly still in regions of the

HMM profile with high relative entropy, these positions tend to

cluster outside the b-barrel (Figure 1B).

Unfortunately the HMM vectors do not reveal whether the

driving force for these effects is only function or whether stability

is also a factor. This question was addressed by using the

experimentally validated FoldX algorithm [22,23,29] to calcu-

late the DDG changes associated with introducing any one of the

20 possible amino acids at each position of the structure of Nm.

KDO8PS (again taken here as the reference structure for this

class of proteins). This type of calculation was initially introduced

by Tokuriki et al. [30] to study the overall distribution of stability

effects for all possible mutations in a large set of different single

domain globular proteins. In our case we used an entire tetramer

of Nm. KDO8PS, which is known to be the biological unit of the

enzyme [6], and the individual mutations were introduced

simultaneously in all four subunits. Thus, the calculated DDG

changes account also for the effects of mutations at the interface

between subunits. Furthermore, as DDG changes can be

dependent on a particular conformation of the enzyme, a

three-dimensional model of tetrameric Nm. KDO8PS derived

from the X-ray structure [6] (see Methods section) was subjected

to 12 nanoseconds (ns) of molecular dynamics (MD) simulation

at 300 K under solvated conditions. This very long simulation

time progressively eliminated possible errors in the original

model and assured that the equilibrium structure of Nm.

KDO8PS that is used in the FoldX calculations is as close as

possible to the native structure in solution. Progressive

convergence of the structure toward equilibrium was evaluated

from the changes in the Ca root mean square deviation, Ca-

RMSD, from the structure at time t = 0 (Figure S1A, Supporting

Information). The final part of the simulation (6–12 ns) was

selected to gather statistics about the conformational properties

of the enzyme. The fluctuations around the average structure

(Ca root mean square fluctuation, Ca-RMSF) that occur in this

part of the simulation reflect the degree of mobility in the

solution structure (Figure S1A).

Frames from the final 6 ns of the simulation were investigated

further with a clustering procedure (incorporated in the program

X-Cluster, Schrodinger, LLC) that, based on the cross-RMSDs

between frames, identified three structures (PDB S1, PDB S2,

PDB S3, Supporting Information) as representative of all the states

sampled during this part of the MD run. Thus, the final 6 ns of the

MD simulation can be considered as fluctuations around these

three main conformations, which appear in a 58:24:18 relative

ratio. DDG changes associated with mutating every amino acid of

all four subunits to all 20 possible amino acids were calculated in

duplicate for each of the three conformers. Values derived from

each configuration were then merged by weighing each configu-

ration according to its contribution to the population of states in

solution as determined from the MD run (Figure S1B). The final

DDG values reflect not only the distribution of energies in the

solution ensemble of tetrameric Nm. KDO8PS, but also the

differences originating from the slightly different environment that

each residue senses in the four subunits of the tetramer. The

outcome of this calculation is a ‘‘stability landscape’’ of KDO8PS

(Figure 2A; Energy Matrix S1, Supporting Information): the peaks

in the landscape represent positions in the protein where

introduction of a certain amino acid would significantly increase

the DG, and therefore decrease the overall stability. It is worth

noting that while the energies derived from FoldX are clearly not

on an absolute scale [30], the relative trends are expected to be

correct [31,32]. In general, it can be seen how bulky aromatic

residues (W,Y,F,H) tend to decrease stability ( = increase energy) at

every position, and in four positions (21,68,231,232) any residue

besides glycine or alanine decreases stability dramatically. These

effects appear to be due to very large energy terms derived from

van der Waals clashes of these residues with their surroundings,

which are not sufficiently relieved by the relaxation of the

Coevolving Residues of KDO8P Synthase
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structure. The observed amino acid frequencies at each position in

the C23 and N23 sub-families of KDO8PSs are shown as lolly-

pops (yellow for C23, green for N23, height proportional to the

corresponding frequency) superimposed to the stability landscape

of KDO8PS (Figure 2A). In most positions, the amino acids most

often used are those that do not decrease stability: in other words,

only the planes of the stability landscape are significantly

populated.

The data presented in Figure 2A offer an interesting

opportunity to understand the relationship between sequence

and stability in KDO8PS: for each position in the reference

structure of Nm. KDO8PS we consider two vectors (each with 20

elements): the first is the vector of the DDG changes associated

with mutating the original sequence to each of the 20 amino acids;

the other contains the frequencies of each of the 20 amino acids for

that position in each of the two subfamilies of KDO8PS (or in the

entire family). We recall that if a MSA is composed of independent

sequences all producing stable folds with approximately the same

structure, and if individual residues contribute additively to

stability (no epistasis) [33,34], then the stability contribution

DDGa,i of a particular amino acid a at a given position i should be

a roughly logarithmic function of its frequency fa,i in the MSA

[35]:

DDGa,i&{ ln fa,i ð1Þ

Approaches based on this idea have been generally successful in

engineering more stable proteins [36,37,38,39]. It follows that for

each of the 280 positions in the reference structure of Nm.

Figure 1. HMM histograms of metallo and non-metallo KDO8PSs. A. 1st inset, HMM vector for all KDO8PSs with superimposed Loess fit
(calculated with a span of 20 residues). Regions of the histogram higher than the mean are highlighted with an orange bar below the sequence. 2nd

inset, HMM vectors for the C23 and N23 sub-families of KDO8PS. 3rd inset, difference between the HMM vectors of the C23 and N23 sub-families. B.
Stereo view of a monomer of Nm. KDO8PS shown here as a ribbon drawing. The regions of the structure corresponding to the orange bars in the 1st

inset of Panel A are colored in yellow. Residues corresponding to positions with values .2s in the difference histogram of panel A are shown as
sticks with green carbon atoms. Residues corresponding to positions with values .2s for the difference between C23 and N23 KDO8PSs in the
correlation between stability and amino acid usage (last inset in Figure 2B) are shown as sticks with magenta carbon atoms. Helices are labeled (H1 to
H8) according to their position in the amino acid sequence.
doi:10.1371/journal.pone.0017459.g001
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Figure 2. Stability landscape of KDO8PS. A. DDG changes associated with introducing any one of the 20 possible amino acids at each position
of all four subunits of the structure of Nm. KDO8PS were calculated using the FoldX algorithm to produce a ‘‘stability landscape’’ of KDO8PS: the
peaks in the landscape represent positions in the protein where introduction of a certain amino acid would significantly decrease the overall stability.
The observed frequency of different amino acids at each position in the two subfamilies of C23 and N23 KDO8PSs is superimposed to the stability

Coevolving Residues of KDO8P Synthase
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KDO8PS we can calculate the linear correlation coefficient (corr)

between the stability vector [exp(-DDGa,i)] derived with FoldX and

the amino acid frequency vector derived from the MSA. The

result of this calculation is shown in the insets of Figure 2B; in the

family of all KDO8PSs and in both subfamilies there is a clear

distinction between positions in which the amino acid usage is

influenced by an evolutionary drive to increase stability, and other

positions in which there is no such trend. There is a wavy pattern

in the correlation between stability and observed amino acid

frequencies (see the Loess fit in the first inset of Figure 2B), which is

similar to that already noticed in the HMM vector (Figure 1A).

The 2nd inset of Figure 2B shows the p-values for the correlations

in the 1st inset, calculated by testing the null hypothesis of zero

correlation against the alternative hypothesis of non-zero correla-

tion. The large p-values for all the sequence positions with

correlation near zero, and the small p-values (,5E-4) for all the

sequence positions with large correlation, lend credibility to the

apparent correlation between stability gains and choice of

particular amino acids in certain regions of the protein. The

correlation coefficients between the HMM vectors (Figure 1A) and

the stability/sequence correlation vectors are 0.34 (p = 7.1E-9),

0.31 (p = 1.5E-7), and 0.39 (p = 1.9E-11), for all KDO8PSs and for

the C23 and N23 subfamilies, respectively, suggesting that the

choice of sequence in the regions of high relative entropy is at least

in part aimed at increasing the overall stability of the structure. If

the correlation vectors between sequence and stability for each

sub-family (3rd and 4th insets of Figure 2B) are subtracted from

each other (5th inset of Figure 2B), a new set of positions is

identified in the structure of Nm. KDO8PS, which represent places

in which the correlation with stability changes significantly

between the two sub-families. These are positions in which one

sub-family selectively affects stability with respect to the other sub-

family by preferentially adopting or discarding certain amino

acids. By and large, these positions (Figure 1B, residues colored in

magenta) are also found outside the b-barrel, as already noted for

the positions derived from the difference between the HMM

vectors (Figure 1B, residues colored in green).

The contribution of coevolving residues to the stability of
KDO8PS

In a MSA some positions are highly conserved, while others

vary. The conserved positions are clearly important, but the non-

conserved positions are not irrelevant because the net stabilization

of the folded state, relative to the unfolded state is usually so small,

that all positions may contribute significantly to the protein

stability. This is clearly evident in the stability landscape of

Figure 2A. Thus, the destabilizing effects of a given amino acid at

one position can be compensated by the stabilizing effect of a

certain amino acid at another position: in other words, two

positions could be coevolving. A wide variety of algorithms have

been developed to detect coevolving positions from a MSA

(reviewed in [40,41,42]). Some of these methods use x2-tests

[43,44], some are perturbative [45,46,47], others employ amino

acid substitution matrices [48], and many work within the frame of

information theory [49]. Information entropy, H(X), is a measure

of the uncertainty associated with a discrete random variable X

that assumes values {x1,..., xn}:

H Xð Þ~{
X

x[X

p xð Þ logb p xð Þ ð2Þ

where b is the base of the logarithm used and p is the probability

mass function of the variable X [50,51]. Related to H(X), mutual

information, MI(X;Y), measures the mutual dependence of two

discrete random variables X and Y:

MI X;Yð Þ~MI Y;Xð Þ~
X

x[X

X

y[Y

p x,yð Þ logb

p x,yð Þ
p xð Þp yð Þ ð3Þ

where p(x,y) is the joint probability mass function of X and Y, and

p(x) and p(y) are the marginal probability mass functions of X and

Y, respectively. Intuitively, MI measures how much knowing one

of the two variables reduces the uncertainty about the other. In a

MSA, the amino acids in a given column can be considered as a

set of observations (xi) of a random variable X. An estimate of the

entropy H(X) is obtained by using the observed amino acid

frequencies, f(xi), in place of the underlying probabilities, p(xi);

likewise, MI(X;Y) for a pair of columns can be derived using the

frequencies, f(xi,yj), of all ordered pairs occurring in the two

columns. In practice, MI between positions (columns in a MSA)

reflects the extent to which knowledge of the amino acid at one

position allows us to predict the identity of the amino acid at the

other position [52,53,54]. If amino acids occur independently at

the two sites, the theoretical value for MI is zero; conversely, MI is

high if the two positions are correlated.

However, significant background MI can originate from random

pairings of residues when the number of sequences in the multiple

sequence alignments is small (in practice, less than 125 sequences

[54]). In addition, positions with high entropy (non-conserved

positions) have more background MI than positions with low

entropy. MI is also affected by various sources of bias, because the

sequences in a MSA do not exactly meet the assumption of

independent evolution. For example, the appearance of a mutation

in an ancestral protein, which is clearly a single evolutionary event,

would be considered in a MI analysis as representing an

independent event that occurred in each of the proteins in the

MSA that descended from that ancestor. This treatment of a single

event as multiple independent events acts as a phylogenetic bias that

increases the mutual information among residues. Normalization of

MI values reduces the effect of positional entropy and phylogenetic

bias [54], and several normalized variants of MI have been

proposed. A useful and symmetric type of normalized MI is

symmetric uncertainty (SU) [55,56]:

SU X ,Yð Þ~2
MI X;Yð Þ

H Xð ÞzH Yð Þ ð4Þ

landscape as lolly-pops (yellow for C23, green for N23), whose height is proportional to the frequency of a certain amino acid at a certain position. B.
Stability/(amino acid usage) correlation in the two subfamilies of KDO8PSs. Correlation coefficients are based on the stability landscape and the
relative frequency of each amino acid at each position as shown in panel A. From top to bottom: 1st inset, correlation between stability and amino
acid usage at each position in the entire family of KDO8PSs; a Loess fit (calculated with a span of 20 residues) is superimposed. The regions of the
structure with the highest relative entropy in the HMM vector of Figure 1A are shown with an orange bar below the stem plot. 2nd inset, p-values for
the correlations shown in the 1st inset. 3rd and 4th insets, correlation between stability and amino acid usage at each position of C23 (yellow circles)
and N23 (green circles) KDO8PSs. 5th inset, difference between the correlations in C23 and N23 KDO8PSs. Residues corresponding to positions with
values .2s for this difference are shown as sticks with magenta carbon atoms in Figure 1B.
doi:10.1371/journal.pone.0017459.g002
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MIr, a form of MI normalized by the joint entropy of the

variables, H(X,Y), instead of the sum, H(X)+H(Y), is conceptually

similar to SU and is also widely used [53,54].

We have calculated the matrix of symmetric uncertainties

SU(X,Y) for all columns in the MSAs of the entire family of

metallo + non-metallo KDO8PSs. As recommended by some

authors [57,58,59] gaps were not included in the amino acid

alphabet as this can lead to artificially high MI values, and if a gap

appeared in a row in at least one of the two columns, that row did

not contribute to the SU value for just those two columns. On the

other hand, also this exclusion may lead to an artificial increase of

the SU value. In fact, while the theoretical value for MI is zero if

amino acids occur independently at the two sites, MI can be zero

only if the observed pair frequencies reflect all possible pairs for the

observed amino acid frequencies. If all 20 amino acids are present

in each column and are equally probable, MI vanishes only if the

frequency of each pair of amino acids is 1/202. This condition is

not met in a MSA with less than 400 sequences. Thus, in order to

weigh the significance of pairs of columns containing different

numbers of ungapped rows, the SU value was scaled linearly by

the fraction of ungapped rows in the two columns with respect to

the total number of rows in the alignment. Other forms of (non-

linear) correction for the number of rows included in the MI

calculation have also been proposed [60].

Many have noticed that MI between positions i and j in a MSA is

highly correlated to the product MIi|MIj

� �
of the average value

of MI at each of these positions [58,61]. While the origin of this

correlation is uncertain, and can perhaps be attributed to positional

entropy effects and a combination of both phylogenetic and

stochastic bias [61], it is nonetheless clear that it produces a high

background MI that obscures coevolution patterns. Several

corrections have been proposed to eliminate this correlation, giving

rise to new formulations or scoring of MI defined respectively as

positional MI, MIp [58], Z-scored residual MI, ZRes [61], Z-scored-

product normalized MI, ZNMI [62]. The Zpx score introduced by

Gloor et al. [63] supercedes the MIp score. More recently it has been

pointed out that attempts to infer coevolution only from pair-count

data are heavily affected by assumptions on the consistency between

joint and marginal frequencies [59], and that additional biological

knowledge may be necessary for a meaningful derivation of

coevolution patterns. In this line of thinking, Codoner et al. [64]

have proposed to consider the correlation in the hydrophobicity

and/or molecular weight of coevolving amino acid sites a priori to

determine statistically their biological significance, and have shown

that the application of these statistical filters to the number of pairs

detected as coevolving reduces significantly the number of false

positives. However, while this is clearly an emerging strategy in

coevolution studies, here we are primarily interested in determining

whether there is a statistical correlation between coevolution and

stability, and therefore we do not include in the identification of

coevolving pairs any statistical filters based on structural properties

that directly affect stability (like hydrophobicity or molecular weight).

Finally, the sensitivity of MI analyses to the size and quality of

the MSA is also a matter of concern [60,62,64,65]. We have

studied the effect of different levels of sequence redundancy in the

MSA, by calculating MI not only with the original data set of 348

sequences but also with a series of progressively smaller MSAs in

which the highest level of identity between any two sequences was

98, 96, 94, 92, 90, 88, 86, 84, 82, 80%. These MSAs consisted

respectively of 308, 266, 241, 221, 203, 179, 165, 154, 146, 130

sequences. A threshold point at which the trend in the statistics for

the total number and distribution of coevolving pairs appeared to

change could be recognized in the MSA with 86% maximal

sequence identity, which consisted of only 165 sequences (Figure

S2, MSA S3, Supporting Information). While throughout the

manuscript we refer to the complete data set of 348 sequences, the

corresponding results obtained with the data set of 165 sequences

are also provided (Table S1, Table S2, Table S3, Supporting

Information). Overall these analyses were fairly insensitive to the

size/redundancy of the MSAs, suggesting that in the specific case

of KDO8PS MI studies are not particularly affected by stochastic

and/or phylogenetic bias.

Despite normalization and scaling, the SU matrix of the MSA

for the KDO8PS family is contaminated by a significant level of

background MI (corr = 0.78 to the MIi|MIj

� �
column product

matrix). The Zpx, ZRes and ZNMI matrices all work well with the

KDO8PS data set in reducing this background MI; as expected

they are highly correlated to each other (corr(Zpx,ZRes) = 0.90,

corr(Zpx,ZNMI) = 0.81, corr(ZNMI,ZRes) = 0.73). Since it is not clear

yet which of these formulations of MI is more accurate or

appropriate for a particular study [62], we report the results

obtained with each one in our analysis of coevolution in KDO8PS

(Tables 1, 2 and 3). In this study we were not interested in

determining whether there are patterns of spatial relationship

among the coevolving positions, but whether there is a relationship

between coevolving pairs and the stability landscape of KDO8PS

described in the previous section. As an example of our approach,

the number of coevolving pairs with score higher than 1 to 5 s
over the mean of all scores in the ZRes matrix, are shown for every

position in the MSA of all KDO8PSs as histograms in the insets of

Figure 3. The same regions of sequence highlighted for the HMM

vector of Figure 1A are shown below the baseline of the lowest

inset, as horizontal orange bars. The correlation coefficients

between the histogram vectors for each type of MI matrix and the

HMM vector of Figure 1A are shown in Table 1. These

coefficients were calculated including only positions of the MSA

that do not correspond to fully conserved residues, as there are no

coevolving pairs between these positions. Some modest level of

correlation (at best corr = 0.30) with reasonable statistical signifi-

cance (p,0.01) can be recognized only for the strongest signals in

the ZRes, and ZNMI matrices.

Since the HMM vector represents deviations from the expected

background probability distribution to satisfy the demands of

structure, stability and function, it is reasonable to suggest that

strongly coevolving positions of KDO8PS may be associated with

one or more of these demands. In order to determine the specific

contribution of coevolution to stability we compared the level of

MI of each pair with the average contribution to stability by that

pair in the MSA of KDO8PS, as derived by applying to each

sequence in the MSA the information contained in the stability

matrix shown in Figure 2A (Energy Matrix S1, Supporting

Information). For example, based on that matrix a proline would

contribute 3.27 kcal/mol at position 31 of a sequence in the MSA,

but 21.05 kcal/mol at position 56. We were interested not only in

the sum (DDGi+DDGj) of the stability contributions of each

member of the i,j pair (as these contributions can be considered

approximately additive under the assumption of no epistasis), but

also in the absolute value of the difference |DDGi2DDGj|, which

depends on whether the two contributions have similar or opposite

effects. Since MI is already the log of a probability, consistent with

equation (1) the two magnitudes of interest are:

DDGizDDGj!{MI i; jð Þ ð5Þ

DDGi{DDGj

�� ��!MI i; jð Þ ð6Þ
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where the average in equation (6) is over all the sequences in the

MSA. As an example, these magnitudes are shown in Table 2 for

all coevolving pairs with a score .5 s in the ZRes matrix of

Figure 3. Less than 20% of these pairs (rows in bold in Table 2)

have values of |DDGi2DDGj|.(DDGi+DDGj), and thus identify

positions that, on average, exert opposite effects on the stability of

KDO8PS. For each type of MI matrix, the correlations between

the score vector (for example, the score columns in Table 2) and

the (DDGi+DDGj) and |DDGi2DDGj| vectors are shown in

Table 3. In general, it can be seen that, as progressively higher s
thresholds are chosen, the score vectors become more clearly anti-

correlated to the (DDGi+DDGj) vector: this trend is consistent with

equation (5), because we expect that pairs whose components raise

the DDG are less likely to occur. The score vectors are also anti-

correlated to the |DDGi2DDGj| vector, suggesting that on

average coevolving pairs have a preference for positions whose

individual effects on stability are similar. The trends are similar in

the various matrices and p-values are acceptable, with ZRes and

ZNMI yielding the largest values of anti-correlation (Table 3).

These results can be interpreted in the light of current theories

of coevolution. According to one hypothesis, a reason for

coevolving pairs is to suppress a decrease in stability or function

produced by a mutation at one site with an increase in stability or

function provided by a mutation in a residue near the site of the

first mutation [66,67,68]. This tenet is challenged by the

observation that most suppressor mutations are not close in space

to the initial mutations [69], while coevolving sites are most often

spatially clustered [53,54,68,70]. Directed evolution studies also

suggest that epistatic paths can be bypassed (and they certainly are

in laboratory evolution), because there are multiple sequences that

satisfy a given fitness goal, and there are many different paths to

these sequences [34,71,72].

Table 1. Correlation coefficients between the histogram vectors derived from the MI matrices and the HMM vector of Figure 1A.

Threshold for
coevolving pairs 1 s 2 s 3 s 4 s 5 s

Correlation to the HMM vector [p-value]

Zpx matrix 20.393 [2.0e-10] 20.094 [0.144] 0.061 [0.346] 0.104 [0.012] 0.118 [8.0e-4]

ZRes matrix 20.013 [0.838] 0.118 [0.066] 0.171 [0.007] 0.222 [4.9e-4] 0.201 [1.6e-3]

ZNMI matrix 20.270 [1.9e-5] 0.104 [0.105] 0.227 [3.4e-4] 0.297 [2.3e-6] 0.300 [1.7e-6]

doi:10.1371/journal.pone.0017459.t001

Table 2. Contribution to KDO8PS stability from coevolving pairs with score .5 s in the ZRes matrix of Figure 3.

i,j pair score DDG(i+j) |DDG(i-j)| i,j pair score DDG(i+j) |DDG(i-j)|

23,179 13.464 1.473 0.866 145,169 18.448 0.481 0.299

23,201 16.307 1.264 0.674 145,193 13.953 0.380 0.399

24,65 20.772 0.494 0.302 156,157 23.782 1.169 0.428

24,66 16.083 0.600 0.203 169,193 26.494 0.217 0.209

24,74 19.011 0.594 0.217 169,218 14.159 0.686 0.553

26,244 245.65 20.021 0.024 172,204 20.79 0.294 0.205

45,215 13.477 0.602 0.505 172,205 16.916 0.516 0.424

45,268 13.995 1.112 0.651 172,206 15.603 0.413 0.333

62,107 188.1 20.009 0.030 195,221 71.347 0.285 0.252

73,76 18.029 0.174 0.387 204,205 24.25 0.709 0.235

74,173 18.367 0.378 0.285 204,206 19.581 0.606 0.356

91,106 16.741 0.272 0.323 205,206 16.747 0.828 0.579

116,137 14.649 2.573 2.497 208,211 15.733 0.326 0.274

119,120 41.6 0.025 0.025 215,249 14.89 0.176 0.081

119,175 13.509 0.094 0.083 215,268 14.422 0.662 0.518

120,124 13.63 0.073 0.058 222,248 14.622 0.241 0.256

133,234 114.09 0.111 0.092 227,229 14.026 1.276 0.971

139,213 184.35 20.067 0.083 231,268 13.469 2.913 1.800

141,172 17.902 0.194 0.136 240,243 15.497 0.872 0.805

141,204 17.453 0.388 0.120 248,249 45.125 0.162 0.186

144,205 13.579 0.782 0.160 268,272 28.615 0.820 0.440

DDG’s are in kcal/mol. Rows in which |DDG(i-j)|.DDG(i+j) are shown in bold.
doi:10.1371/journal.pone.0017459.t002
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According to an alternative model for coevolution, ‘‘covarions’’

arise when both the original residue and the mutated residue are

compatible with function, but the spectrum of residues possible at

other positions in the protein is altered by the mutation [73]. In

this context one might expect that most single mutations that

finally become stabilized in coevolving pairs are neutral in the

context of the protein in which they occur, but become beneficial

(even at a much later time) in the presence of the partner in the

pair [63]. The data in Table 3 suggest that both mechanisms were

operational in the evolution of KDO8PS. Approximately 1/4 of

all strongly coevolving pairs (for example those shown in bold in

Table 2; see also Table 3) may have originated from cycles of

mutation and suppression that affected stability. Other pairs, for

which both values of (DDGi+DDGj) and |DDGi2DDGj| are small,

are best explained by a succession of neutral or nearly neutral

covarions.

Discussion

In the metal dependent forms of KDO8PS the metal is not

directly involved in an activation process, but together with its

ligands stabilizes the position of the reactants that favors the

condensation reaction [7,13,14]. In the non-metal forms of the

enzyme, this role is performed by an asparagine side chain that

replaces the combination cysteine + metal [13,14]. In both forms

of the enzyme additional stabilization of the reactants is provided

by variations in the CysAspGlyPro motif of the loop that contains

the metal binding aspartic acid [6,12]. Outside these demands

placed on the structure by the need to catalyze a specific reaction,

the factors (like protein stability) that contributed to the evolution

of hundreds of different forms of KDO8PS are not well

understood. The starting point of our study was the derivation

of the stability landscape of KDO8PS (Figure 2A) by calculating

the DDG changes associated with introducing any one of the 20

possible amino acids at each sequence position of the structure of

Nm. KDO8PS (taken here as the reference structure for this class

of proteins). Superposition on this landscape, of the actual amino

acid frequencies at each position in the two sub-families of

KDO8PSs confirms the intuitive expectation that in most positions

of high relative entropy (Figure 1A, 1st inset), the amino acids most

often used are those that do not decrease stability (Figure 2B, 1st

inset). Furthermore, the plane regions of the landscape tend to be

large, such that random drifts of sequence have a high chance of

producing only small gains or losses of stability, which can be

easily offset by changes in other regions. This feature of the

landscape may be part of the physical basis for the threshold

robustness (tolerance) to mutations that was observed in other

proteins [74,75].

Another important factor in constraining sequence variation is

the need to retain a common core structure, while possibly

adapting to specific bacterial environments. Ultimately, the

preservation of structure is related to the preservation of function

because small changes in atom distances in the active site

(produced by overall changes of structure) can have effects on

the activation energies as dramatic as those produced by very

localized mutations in the active sites [76]. Both sequence

conservation and coevolution were involved in the preservation

of the structure of KDO8PS, but coevolution had a marginal role

(Table 1). This result can be rationalized by observing that if most

mutations shifted a position in the sequence away from a clearly

defined valley in the stability landscape, then it would be more

likely for a given amino acid at that position to become fully

conserved. Conversely, if most mutations moved a position around

between regions of similar height, a large number of different

amino acids at other positions might easily compensate the small

DDG changes of the initial mutation, and a clear pattern of

coevolution would be less likely to emerge.

In our study we have used various formulations of MI to

identify correlated positions, but other methods may provide

different information on the potential cross-talks between

conserved and correlated positions, and be better suited for

different tasks [44]. For example, using the Observed Minus

Table 3. Correlation coefficients between the vectors of MI scores for i,j pairs above a threshold s value and the vectors
representing the average effect of those pairs on the stability of KDO8PS.

Threshold for coevolving pairs. 1 s 2 s 3 s 4 s 5 s

Zpx matrix

No. of unique coevolving pairsa 4319 1402 467 162 75

corr(MIij,DDGi+DDGj) [p-value]b 20.019 [0.103] 20.110 [1.9e-5] 20.205 [3.8e-6] 20.272 [2.3e-4] 20.258 [0.013]

corr(MIij,|DDGi2DDGj|) [p-value] 20.082 [3.0e-8] 20.156 [2.0e-9] 20.223 [5.5e-7] 20.283 [1.3e-4] 20.260 [0.013]

% of pairs with opposite effects 0.343 0.301 0.244 0.222 0.223

ZRes matrix

No. of unique coevolving pairs 861 267 105 66 42

corr(MIij,DDGi+DDGj) [p-value] 20.116 [3.3e-4] 20.183 [1.3e-3] 20.236 [7.7e-3] 20.260 [0.017] 20.353 [0.011]

corr(MIij,|DDGi–DDGj|) [p-value] 20.129 [7.1e-5] 20.194 [7.3e-4] 20.231 [9.0e-3] 20.240 [0.026] 20.288 [0.032]

% of pairs with opposite effects 0.271 0.232 0.238 0.227 0.190

ZNMI matrix

No. of unique coevolving pairs 4157 892 225 78 32

corr(MIij,DDGi+DDGj) [p-value] 20.051 [4.5e-4] 20.166 [3.3e-7] 20.242 [1.2e-4] 20.235 [0.019] 20.451 [4.8e-3]

corr(MIij,|DDGi2DDGj|) [p-value] 20.105 [5.5e-12] 20.201 [7.1e-10] 20.262 [3.5e-5] 20.238 [0.018] 20.445 [5.3e-3]

% of pairs with opposite effects 0.362 0.314 0.280 0.269 0.250

aSince the MI matrix is symmetric the total number of pairs (as represented for example in the histograms of Figure 3) is twice that of the unique part of the matrix.
bThe null hypothesis of zero correlation was tested against the alternative hypothesis of negative correlation.
doi:10.1371/journal.pone.0017459.t003

Coevolving Residues of KDO8P Synthase

PLoS ONE | www.plosone.org 8 March 2011 | Volume 6 | Issue 3 | e17459



Coevolving Residues of KDO8P Synthase

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e17459



Expected Squared (OMES) covariance method [43] Kowarsch et

al. found a statistically significant association between correlated

positions and disease-causing mutations [77]. The association

was more pronounced for the exposed accessible sites of the

proteins studied, which are expected to be more involved with

function, rather than for the structural cores, which are more

likely to be involved in stability. Thus, altogether, despite the

significantly different algorithm used, the conclusions of

Kowarsch’s study are compatible and complementary to ours

in assessing the contributions of correlated positions to the

stability of proteins.

Derivation of the stability landscape is still at an early stage of

refinement and its utility as a tool to understand the evolution of

amino acid sequences in protein families needs additional

confirmations. Current calculations were carried out with the

FoldX algorithm, which uses a full atomic description of the

structure of proteins and whose different energy terms have been

weighted using empirical data obtained from protein engineering

experiments [22,29,78]. While this or similar algorithms involving

empirical functions provide a relatively fast estimation of the

importance of the interactions contributing to the stability of

proteins and protein complexes, the calculated DDG changes are

unlikely to be on a correct absolute scale [30] and are certainly not

as accurate as those derived from more sophisticated approaches

like, for example, Free Energy Perturbation (FEP [79]); unfortu-

nately, FEP is still computationally too expensive and time

consuming, to be compatible with full sequence scans. Two recent

comparisons of various methods (including CC/PBSA [80],

Rosetta [81], EGAD [82], I-Mutant2.0 [83], I-Mutant3.0 [84],

CUPSAT [85], MultiMutate [86], Dmutant [87], Hunter [31],

and FoldX) designed to predict the DDG changes associated with

mutations, ranked FoldX among the overall best performing ones

[31,32]. However, while all the methods showed a correct trend in

their predictions, they failed to provide precise values, with the

best predictors being only moderately (60%) accurate.

All these considerations point to the conclusion that significantly

better tools are needed for a quantitative analysis of mutations by

computational means. However, regardless of whether further

improvements are easily achievable in calculating the stability

landscape of proteins, an aim of this study is to stress how such

landscape can be an important tool to integrate structural data

with information theory to understand the evolution of proteins.

For example, it should be noted that HMM profiles would be quite

different if the information content of the distribution Pi at the i-th

position of the profile was calculated with respect to the expected

frequency of different amino acids as derived from the values of

the stability matrix at that position, rather than from the

background frequencies of different amino acids in all known

proteins, or just in the family under consideration. In that case we

might expect that the positions with high information content

would be those in which the observed sequence deviates

significantly (perhaps for functional reasons) from the stability

constraints associated with a certain structure. Similar consider-

ations might apply also to the calculation of mutual information,

where the expected frequencies derived from the stability profile

could be used as the probability mass function of each variable.

This approach is complementary to that adopted by Codoner et al.

[64] to filter out (based on the hydrophobicity and molecular

weight of residues at specific positions) potential false positives in

the ensemble of coevolving pairs inferred from MI analyses. For

example, if a model based on the size of side chains is adopted for

the distribution of aa’s at any given position, we can see how the

largest contribution to MI between any two positions will originate

from deviations (like the match of one large and one small side

chain in a defined region of space) of the observed joint

distribution with respect to the model. The interpretation of MI

as the Kullback-Leibler divergence [88,89,90] of the observed

versus the model joint distribution of two variables becomes

particularly meaningful in this context.

While our study was primarily aimed at studying the effect of

coevolving residues on the overall stability of KDO8PS, indirectly

it provided important information on the functional role of specific

pairs. For example, residues 23–26 of Nm. KDO8PS listed at the

top of Table 2 represent the sequence AsnValLeuGlu, with Asn

being the key residue the replaces the metal binding Cys in all non-

metal KDO8PS’s. Position 26 appears to coevolve with position

244, which immediately precedes the conserved motif CysAsp-

GlyPro (residues 246–249 in Nm. KDO8PS), whose functional role

in KDO8PS was already noted [12]. Coevolution of position 24

with positions 65,66, and 74 is explained by the fact that residue

24 is in van der Waals contact with 66 and within 10 Å of 65 and

74. Other pairs, like position 23 (Cys or Asn in all KDO8PS) with

positions 179 and 201, are of interest but at the moment still

unexplained. It is also worth noting that, besides its relevance for

the coevolution analysis, the stability matrix of Nm. KDO8PS

(Energy Matrix S1, Supporting Information) provides the platform

for designing new mutations of KDO8PS that may be useful to

stabilize or destabilize specific regions of the enzyme.

Finally, it is legitimate to ask whether the conclusions about the

role of coevolving residues in the thermodynamic stability of

KDO8PS can be extended to other proteins. First, the analysis

appears to be fairly insensitive to the choice of the reference

sequence in the MSA. In fact, we obtained very similar results

using the X-ray structure of KDO8PS from the hyperthermophile

Aquifex aeolicus (PDB entry 1FWW) as the reference structure for

the calculation of the stability matrix (not shown). Second,

preliminary application of the method to two other structurally

unrelated protein families (the Atp12p chaperones involved in F1-

ATPase assembly [91], and B1 type metallo b-lactamases [92])

gave results that are consistent with those obtained with KDO8PS

(Table S4, Table S5, Supporting Information). While these

observations are very encouraging, clearly more testing with a

larger set of different protein families will be necessary before any

general principles about the role of coevolution in protein stability

can be derived from the application of the tools described in this

study.

Methods

Multiple Sequence Alignments
Multiple sequence alignments (MSAs) of 348 sequences (175

metallo and 173 non-metallo KDO8PSs) were calculated

independently with T-Coffee [93], Muscle [94], and Mafft [95]

Figure 3. Mutual information in KDO8PS. The ZRes matrix for the MSA of all KDO8PSs is shown in the upper panel. For better contrast, matrix
values are displayed in the z-score range 0 to 20 with the color ramp shown in the side bar; the full range of the matrix is from 23.9 to 245.7. Fully
conserved positions appear as uniform light blue rows and columns. For each position of the MSA of all KDO8PSs, the insets below the matrix show
the number of coevolving pairs with score values larger 1, 2, 3, 4, or 5 s over the mean of all the scores in the matrix. The regions of the structure with
the highest relative entropy in the HMM vector of Figure 1A are shown as orange bars below the histograms; these are the same regions also shown
as orange bars in Figures 1 and 2.
doi:10.1371/journal.pone.0017459.g003
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and then merged together with T-Coffee (MSA S1, Supporting

Information). For clarity and ease of comparison with the X-ray

structure, the sequence numbering of Nm. KDO8PS was used as

reference for the entire family, and only positions in the MSA with

a corresponding residue in Nm. KDO8PS were finally retained

(MSA S2, Supporting Information). Hidden Markov Models

(HMMs) [25] were calculated with the HMMER 3.0 package

[96].

Molecular Dynamics Simulations
A complete three-dimensional model of Nm. KDO8PS was built

with Prime 2.1 (Schrodinger, LLC) using primarily the X-ray

structure of Nm. KDO8PS (PDB 2QKF) as template, and that of Aa.

KDO8PS (PDB 1FWW) only to build the residues missing in the

Nm. structure. The ensemble for the MD simulation was constructed

with Desmond (D.E. Shaw Research) [97] by solvating the enzyme

with SPC water [98] inside an orthorhombic box of 87.7, 110.0,

105.4 Å: a minimum distance of 12 Å was left between any protein

atom and the edge of the box. The final ensemble contained a

tetramer of Nm. KDO8PS, approximately 26,000 solvent molecules,

72 Na and 72 Cl ions in the solvent regions to neutralize charges on

the proteins and to achieve a final salt concentration of 150 mM.

Prior to additional steps the ensemble was subjected to energy

minimization under periodic boundaries condition with a totals of

2,000 iterations first with the steepest descent (SD) method until a

gradient threshold of 25 kcal/mol/Å was achieved, and then with

the LBFGS method [99] until a convergence threshold of 1 kcal/

mol/Å was met. The 2005 release of the OPLS-AA force-field [100]

was used in this and all subsequent calculations. Short range

Coulombic interactions were calculated with a cutoff radius of 9.0

Å, while long range interactions were calculated with the smooth

particle mesh Ewald method [101] using an Ewald tolerance of

1e29. A 12 nanoseconds (ns) MD simulation of the solvated

tetrameric Nm. KDO8PS was carried out with Desmond in the

NPT ensemble at 300 K. For this purpose the Nose-Hoover

thermostat method [102] with a relaxation time of 1.0 picoseconds

(ps), and the Martyna-Tobias-Klein barostat method [103] with

isotropic coupling of the cell along all three axes to a reference

pressure of 1.01325 atm and a relaxation time of 2 ps were used.

Integration was carried out with the RESPA integrator [104] using

time steps of 2.0 fentomseconds (fs), 2.0 fs, and 6.0 fs for the bonded,

van der Waals and short-range, and long-range electrostatic

interactions. SHAKE constraints [105] were imposed on all the

heavy-atom-hydrogen covalent bonds. Coulombic interactions were

calculated as for the minimization protocol. Coordinates were saved

every 4.8 ps. Before the 12 ns productive run of the simulation, the

ensemble was relaxed using the following protocol: 1) 12 ps in the

NVT ensemble at 10 K with a fast relaxation constant and non-

hydrogen solute atoms restrained; 2) 12 ps in the NPT ensemble at

10 K and 1 atm, with a fast temperature relaxation constant, a slow

pressure relaxation constant, and non-hydrogen solute atoms

restrained; 3) 24 ps at 300 K and 1 atm with other conditions as

in step 2; 4) 24 ps at 300 K and 1 atm with a fast temperature

relaxation constant and a fast pressure relaxation constant.

Conformational clustering based on the cross-RMSDs between

the frames contained in the 6–12 ns interval was carried out with

the program X-Cluster (Schrodinger, LLC).

FoldX calculations of protein stability
DDG changes associated with introducing any one of the 20

possible amino acids at each position in all four monomers of a

tetramer (the biological unit) of Nm. KDO8PS were calculated

with FoldX v3.0b4 [22,29] following the procedure described in

[106]. First, each of the representative structures of Nm. KDO8PS

derived from the MD simulation was optimized using the repair

function of FoldX. Then, structures corresponding to each of the

point mutants were generated and their energies calculated using

the FoldX energy function. Finally, the energy of the optimized

wild-type structure was subtracted from that of the mutant. Each

calculation was carried out in duplicate to ensure convergence: in

this case the FoldX algorithm repeated the same mutations twice

changing the rotamer set used and the order of moves such that

alternative solutions could be explored.

Mutual Information Analysis
Correlation coefficients were calculated with the Statistics

Toolbox of Matlab 7.10 (The MathWorksTM). Mutual Informa-

tion (MI) and Symmetric Uncertainty (SU) were calculated with

the Information Theory Toolbox v.1.0 for Matlab developed by

Joaquin Goni (Dept. of Physics and Applied Mathematics,

University of Navarra, Pamplona, Spain), and available for

download at Matlabcentral (www.mathworks.com/matlabcentral).

Z-scored cross-product positional MI, Zpx [63], product based Z-

scored residual MI, ZRes [61], Z-scored-product normalized MI,

ZNMI [62] were implemented according to the published

algorithms as Matlab programs. All the data sets and Matlab

programs required to reproduce the results of the study are

available from the authors upon request. Figures were generated

with Matlab 7.10 and Pymol 1.2r3 (Schrodinger, LLC).

Supporting Information

Figure S1 Derivation of the stability landscape of Nm.
KDO8PS. A. MD simulation of tetrameric Nm. KDO8PS at

300K. The Ca root mean square deviation, Ca-RMSD, from the

structure at time t = 0 is shown in the upper trace colored in blue

(0–6 ns) and red (6–12 ns). The fluctuations around the average

structure (Ca root mean square fluctuation, Ca-RMSF) that occur

during the 6–12 ns part of the simulation are shown in the lower

green trace, and reflect the degree of mobility in the solution

structure. B. DDG changes associated with mutating every amino

acid of all four subunits of Nm. KDO8PS to all 20 possible amino

acids (a total of 5600 mutations in each subunit) were calculated in

duplicate for each of the three main conformers (PDB S1, PDB S2,

PDB S3) observed in the 6–12 ns part of the MD simulation.

Values derived from these three representative configurations were

then merged (magenta trace; see also Energy Matrix S1) according

to their contribution (relative ratio of 58:24:18 for PDB S1:PDB

S2:PDB S3) to the solution ensemble. Standard deviations of the

DDG values are shown as a black trace.

(TIF)

Figure S2 Effect of redundancy in the MSA of KDO8PSs
on the identification of coevolving pairs. A. MI with ZRes

scoring was calculated for the original data set of 348 sequences

(maximum 99% identity between any two sequences) and for a

series of smaller MSAs in which the highest level of identity between

any two sequences was 98, 96, 94, 92, 90, 88, 86, 84, 82, 80%. The

total number of coevolving positions (left panel) or unique

coevolving pairs (right panel) is shown for different s levels in the

MI matrix. B. The level of contrast in the MI matrix is expressed as

the ratio between the number of coevolving positions (left panel) or

unique coevolving pairs (right panel) at 5 and 1 s, respectively.

(TIF)

Table S1 Correlation coefficients between the histogram vectors

derived from the MI matrices and the HMM vector of a MSA of

165 KDO8PS sequences (MSA S3) in which the highest identity

allowed between any two sequences is 86%.
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(DOC)

Table S2 Contribution to KDO8PS stability from coevolving

pairs with score .5 s in the ZRes matrix of a MSA of 165

KDO8PS sequences (MSA S3) in which the highest identity

allowed between any two sequences is 86%. DDG’s are in kcal/

mol. Rows in which |DDG(i2j)|.DDG(i+j) are shown in bold.

(DOC)

Table S3 Correlation coefficients between the vectors of MI scores

for i,j pairs above a threshold s value and the vectors representing the

average effect of those pairs on the stability of KDO8PS, based on a

MSA of 165 KDO8PS sequences (MSA S3) in which the highest

identity allowed between any two sequences is 86%.

(DOC)

MSA S1 MSA in fasta format of all KDO8P synthases.

(FASTA)

MSA S2 MSA in fasta format of all KDO8P synthases with only

the positions corresponding to the sequence of Nm. KDO8PS

(Uniref entry 9JZ55) retained.

(FASTA)

MSA S3 MSA in fasta format of KDO8P synthases with no more

than 86% identity between any two sequences. Only the positions

corresponding to the sequence of Nm. KDO8PS (Uniref entry

9JZ55) were retained.

(FASTA)

Table S4 Correlation coefficients between the vectors of MI

scores (based on a MSA of 249 sequences) for i,j pairs above a

threshold s value and the vectors representing the average effect

of those pairs on the stability of Atp12p.

(DOC)

Table S5 Correlation coefficients between the vectors of MI

scores (based on a MSA of 145 sequences) for i,j pairs above a

threshold s value and the vectors representing the average effect

of those pairs on the stability of B1 type metallo b-lactamases.

(DOC)

PDB S1 Atomic coordinates in pdb format for the structure of

Nm. KDO8PS which, based on a clustering procedure, is the most

representative conformer of all the states sampled during the 6–

12 ns part of the MD run shown in Figure S1.

(PDB)

PDB S2 Atomic coordinates in pdb format for the structure of

Nm. KDO8PS which, based on a clustering procedure, is the 2nd

most representative conformer of all the states sampled during the

6–12 ns part of the MD run shown in Figure S1.

(PDB)

PDB S3 Atomic coordinates in pdb format for the structure of

Nm. KDO8PS which, based on a clustering procedure, is the 3rd

most representative conformer of all the states sampled during the

6–12 ns part of the MD run shown in Figure S1.

(PDB)

Energy Matrix S1 FoldX energy matrix. The rows (1–280, top

to bottom) of the matrix correspond to the amino acid sequence of

Nm. KDO8PS. The columns (1–20, left to right) of the matrix

correspond to the 20 common amino acids in the following order:

G A L V I P R T S C M K E Q D N W Y F H. DDG values are in

kcal/mol.

(TXT)
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