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A Bayesian framework to account for
uncertainty due to missing binary
outcome data in pairwise meta-analysis

N. L. Turner, S. Dias, A. E. Ades and N. J. Welton*

Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs),
which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing
outcome data also threaten the validity of any meta-analysis that includes them. A conceptually simple Bayesian
framework is proposed, to account for uncertainty due to missing binary outcome data in meta-analysis. A
pattern-mixture model is fitted, which allows the incorporation of prior information on a parameter describing
the missingness mechanism. We describe several alternative parameterisations, with the simplest being a prior
on the probability of an event in the missing individuals. We describe a series of structural assumptions that
can be made concerning the missingness parameters. We use some artificial data scenarios to demonstrate the
ability of the model to produce a bias-adjusted estimate of treatment effect that accounts for uncertainty. A meta-
analysis of haloperidol versus placebo for schizophrenia is used to illustrate the model. We end with a discussion of
elicitation of priors, issues with poor reporting and potential extensions of the framework. Our framework allows
one to make the best use of evidence produced from RCTs with missing outcome data in a meta-analysis, accounts
for any uncertainty induced by missing data and fits easily into a wider evidence synthesis framework for medical
decision making. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Systematic reviews identify, appraise and synthesise all information relevant to a specific research ques-
tion [1] and are increasingly used to guide healthcare policy and clinical decisions [2]. The results from
randomised controlled trials (RCTs) identified in a systematic review may be summarised by pooling
them in a meta-analysis to obtain a single estimate of treatment effect that reflects uncertainty based on
the existing RCT evidence [3]. Whilst RCTs are considered the highest quality evidence to inform relative
treatment effect estimates, they may still be subject to bias [4], and any bias in an individual RCT will also
be present in any meta-analysis that includes it [5]. One common threat to the validity of a trial is missing
outcome data, which can lead to biased relative effect estimates [6]. In some cases, it may be appropri-
ate to assume the outcomes are missing at random (MAR), meaning that missingness is dependent on
observed data (e.g. covariates), but not dependent on the unobserved data. Under MAR, an analysis that
restricts to the observed data only (complete case analysis) provides an unbiased central estimate of the
treatment effect, and there is increased uncertainty due to the smaller numbers included. However, the
existence of incomplete outcome data brings with it additional uncertainty concerning treatment effec-
tiveness, which is not reflected in a complete case analysis [6] and which can lead to misleadingly precise
estimates. If the MAR assumption does not hold, then a complete case analysis will produce biased, as
well as overly precise estimates.
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The Cochrane Collaboration [1] and National Institute for Health and Care Excellence [7, 8] provide
recommendations on how missing data should be handled within a meta-analysis in an attempt to account
for this potential bias and uncertainty around treatment estimates induced by missing data. The first
recommendation is that a judgement on the level of risk of bias due to missing data in each individual
trial be made. The next recommendation is to explore the impact of this potential bias. Finally, it is
suggested that a number of sensitivity analyses are carried out making different assumptions about the
missing outcomes. For example, for binary outcomes, where we are measuring whether treatment is a
success or a failure, first carry out the meta-analysis assuming that all of the missing outcomes in the
data are treatment failures, that is, non-events (an ‘all failures’ analysis) and then repeat the analysis
assuming that all missing outcomes are treatment successes, that is, events. Another option is to carry out
treatment arm-specific sensitivity analyses; a ‘worst-case’ meta-analysis assumes that all missing data in
the intervention arms of trials are treatment failures, but the missing outcomes in the control arms are
successes. Conversely, a ‘best-case’ meta-analysis makes the opposite assumption; that is, missing data in
the intervention arms are treated as successes, whilst the missing data in the control arms are assumed to
be failures [1]. These approaches are useful to put limits on how extreme the effects of missing outcome
data may be; however, they focus mainly around data manipulation to provide (deterministic) sensitivity
analyses to assumptions about the distribution of events and non-events in missing participants, which
are unlikely to be realistic in practise. For decision making, what is required is a single credible estimate
of treatment effect, together with an estimate of its uncertainty accounting for the strength of evidence
and missing data, which can be used as an input to a decision model.

In this paper, we present a statistical model to account for the bias and quantify uncertainty in treat-
ment effect estimates induced by missing data [1]. We take a decision-making perspective, so that the
quantity (estimand) we are interested in estimating is the effect that we would expect to see in the pop-
ulation of all patients that were randomised, which is attributable to the treatment they were initially
randomised to. This focus on effectiveness, rather than efficacy, is termed a de facto hypothesis in the lit-
erature on longitudinal RCTs [9—11], and our estimand of interest corresponds to estimand 6 described by
Mallinckrodt et al. [10].

A Bayesian statistical approach naturally allows for uncertainty due to missing data in the meta-
analysis through the use of suitable prior distributions [12, 13]. A two-stage Bayesian approach to account
for uncertainty due to missing binary outcomes has previously been proposed [5] that firstly adjusts study-
specific estimates of treatment effect and its associated variance using prior beliefs on the missingness
mechanism (using the informative missingness odds ratio (IMOR); see Section 3.3.2), and then pools
these adjusted estimates in a meta-analysis [5]. A key disadvantage of taking such a two-stage approach
is that the adjustment is ‘fixed’, and there is no potential for the observed data to inform the missingness
parameter estimates nor to borrow strength across studies. Other limitations of this approach include that
it makes an a priori assumption that the IMOR is independent of the amount of missingness and of other
parameters, and it requires arbitrary ‘fixes’ when cell counts are zero. Furthermore, a one-stage approach
that simultaneously incorporates prior beliefs and pools evidence across trials is conceptually simpler
and allows the methods to be extended to more complex situations, for example, network meta-analysis
[14]. A one-stage Bayesian approach has previously been proposed that puts a hierarchical model on the
IMORs and attempts to estimate them from the observed data for both pairwise [15] and network meta-
analyses [16]; however, this approach is complex to apply, is very computationally intensive and is found
to have limited ability to identify the IMORs from the observed data [15, 16].

To date, the work on incorporating uncertainty due to missingness in binary outcomes in meta-analysis
has focussed on the IMOR [5, 15]. However, there may be other missingness parameters on which we have
prior information. In particular, if we have no prior information at all on the missingness mechanism, the
most natural way to reflect this is through a flat prior on the probability of an event conditional on being
missing. This will directly propagate the prior uncertainty in the true value of the missing outcomes into
the analysis.

The aim of this paper is to present a general framework to reflect the uncertainty arising from missing
binary outcome data in RCTs included in the meta-analysis. We present a conceptually simple one-stage
Bayesian approach that allows priors (including minimally informative priors) to be given for parameters
describing the missingness mechanism in a variety of ways, including the probability of success given a
subject was missing, the IMOR [17], probability success ratio and the response probability ratio [18].

The paper is structured as follows. In Section 2, we introduce a motivating example meta-analysis of
haloperidol versus placebo for schizophrenia with missing binary outcome data [19]. In Section 3, we
begin by presenting the standard pairwise meta-analysis model for binary data and common deterministic
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sensitivity analyses that are conducted. We then present our general framework to account for uncertainty
due to missing binary outcome data in meta-analysis when no prior information on the missingness mech-
anism is available and outline how to apply the framework for some common missingness parameters for
which prior information may be available or elicited. In Section 4, we explore the ability of the model to
learn about the missingness parameters using artificial data scenarios. We then present the results from
the motivating example in Section 5 and end with a discussion.

2. Motivating example: haloperidol versus placebo for treatment of schizophrenia

We illustrate our framework using a meta-analysis of 17 RCTs comparing haloperidol with placebo in
the treatment of schizophrenia [17]. Trials involving schizophrenic patients often report high levels of
missing data because of treatment side effects, poor treatment compliance and strict execution of the
RCT protocols. For each study, i, we have for each arm, k, the number of observed events (defined as the
number of patients ‘improved’), r;;, the total number of individuals randomised in each arm, n; ;, and the
number of missing individuals, m;,, where k = 1 indicates the placebo arm and k = 2 the haloperidol
arm. The number of individuals in each arm for whom an outcome was actually observed (the complete
cases) is therefore ¢;;, = n;; — m;; (Table I). In this dataset, six of the 17 RCTs contained no missing
data, and overall, there was proportionately more missing data in the control group, possibly because of
lack of efficacy [16].

3. Methods

3.1. Pairwise meta-analysis in the absence of missing data

In the absence of missing outcome data, the pairwise meta-analysis model for binary outcomes [14,20,21]
is as follows. The number of events in study i arm &, Tio is assumed to have a binomial likelihood
determined by the total number of individuals randomised to that arm, n; ;, and the probability of an event

occurring in all randomised individuals, ﬂ?}(li

r;x ~ Binomial (”ilkl’ni,k) (1)
Table I. Data from a meta-analysis of 17 trials comparing haloperidol with placebo for the treatment of
schizophrenia [19].
Placebo Haloperidol
No. of No. No. of Total no. No. of No. No. of Total no.

Trial events missing complete cases randomised events  missing  complete cases randomised
i Ti m; Cil N Tin m;, Cip )

1 18 0 (0%) 51 51 25 2 (4%) 50 52

2 20 34 (50%) 34 68 29 22 (32%) 47 69

3 2 1 3%) 30 31 12 1 3%) 29 30

4 0 0 (0%) 12 12 3 0 (0%) 12 12

5 3 0 (0%) 22 22 10 0 (0%) 21 21

6 1 0 (0%) 15 15 11 0 (0%) 19 19

7 4 1 (4%) 25 26 7 1 (4%) 25 26

8 3 0 (0%) 13 13 8 0 (0%) 17 17

9 14 2 (3%) 64 66 19 2 (3%) 64 66

10 0 0 (0%) 10 10 1 1 (10%) 9 10

11 0 0 (0%) 13 13 11 3 (8%) 34 37

12 2 0 (0%) 11 11 20 0 (0%) 29 29

13 7 18 (62%) 11 29 17 11 (38%) 18 29

14 0 1 (7%) 13 14 4 0 (0%) 14 14

15 0 1 (13%) 7 8 2 0 (0%) 16 16

16 1 0 (0%) 12 12 11 0 (0%) 12 12

17 0 1 (3%) 29 30 9 1 3%) 29 30

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2062-2080



Statistics
N. L. TURNER ET AL.

The logit link function is used to model 7[:1}(1 to ensure that the probabilities lie on (0,1) as follows:

O k=1
logit( 1) = { s ko )

where y; are the study-specific log-odds of the outcome on treatment 1 (the control) and are treated as
unrelated nuisance parameters.

For a fixed effects model, we assume each study i to be estimating the same underlying treatment
effect. For a random effects model, we instead assume that the study-specific treatment effects, §;, are
exchangeable and come from a common normal population of treatment effects. Thus,

N(d,c?) Random effects model

6; ~
6,=d Fixed effects model

3)
where d is the pooled log-odds ratio and o is the between studies standard deviation.

3.2. Sensitivity analyses in the presence of missing data

When data are missing, different analyses can be carried out to assess the sensitivity of results to varying
assumptions on the missing outcomes. A complete case analysis can be carried out using the standard
pairwise meta-analysis model (Equations 1-3) where the denominator n;, in Equation 1 is replaced by the
number of complete cases c; ;. Similarly, best-case and worst-case scenarios can be obtained by replacing
r;x in Equation 1 by

rbest — { Tik ifk=1 worst _ { Tik +mi,k ifk=1

: . and r}
Bk rig +my ifk=2 ik re  ifk=2

Finally, an analysis where all missing data are assumed to be failures (non-events) can be obtained using
Equations 1-3 directly.

3.3. General framework to account for missing data

We extend the standard meta-analysis model described earlier to account for the uncertainty introduced by
missing outcome data. We propose a pattern-mixture model where the outcome is modelled conditional
on whether or not it is missing [22]. The approach assumes that the data are MAR with non-ignorable
missingness [23]. Our general model is illustrated in a directed acyclic graph in Figure 1. We assume that
m; ., the number of missing observations in arm k of study 7, has a binomial likelihood:

m;; ~ Binomial (q,-,k» ni,k) @

where g;, is the probability of being missing. Then, conditional on being observed, the number of
events, r; ., are assumed to have a binomial likelihood with the total number of patients observed, Ciy» a8
the denominator:

.4 ~ Binomial (;:;f}f, c,.,k) 5)

where 7[2}:5 is the probability of an event conditional on an individual being observed.

The model for the probability of an event for the population of all individuals (whether observed or
missing) in arm k of trial i, nf}(l is as set out in Equation 1. Our challenge is therefore to link the parameters
all
ik
by defining a ‘missingness’ parameter 0;;, which describes our belief about the missingness process and

°bs a5 a function of {n’f’}(‘, q;x and Gi,k} (Figure 1), so that the observed data can be

ik i,
used to estimate zrf‘}j the key parameter of interest.

Various options for the missingness parameter 6;, have been proposed [15, 17]. If we have no prior
information on the missingness process, then the most straightforward option is to set 8, = ﬂ;j;jss the
probability of an event in the individuals with missing outcomes, which can be given a flat prior to reflect
the uncertainty in this probability. If we do have prior information on the missingness process (e.g. from

obs

we can estimate from the observed data, { ik }, to the key parameter of interest, z%, . This is achieved

allows us to write
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Figure 1. Directed acyclic graph (DAG) of our missing data framework: y; , is the study-specific log-odds of the
outcome in treatment 1 (the control), g, is the log-odds ratio, zrl“}(l = p(success), ﬂlfi’s = p(success | observed),
r; is the number of observed events, c;, is the number of observed outcomes, 8, is the missing data parameter,
q;x = p(missing), m;, is the number of missing outcomes and n; ; is total number randomised. Ellipses denote
stochastic parameters or observed data. Small boxes denote constants. The two large boxed (‘plates’) represent
indexing of studies i and treatments k. Single line arrows denote stochastic relationships, and double-line arrows
denote logical relationships. Note that ¢;, = n;;, — m; ;; however, we omit the logical relationship between these
parameters in the DAG, as c;; is constant conditional on the observed number of missing outcomes.

experts), then it may be easier to use other missingness parameters that allow beliefs to be expressed
on the likelihood of an event in the missing individuals relative to the observed individuals. We first
describe our approach for the case where 6, = ﬂ;,“kiss. We then describe how the framework can also
incorporate alternative definitions for 6; , in which we may have, or be able to elicit, prior information and

show how to link ﬂf}(’s to {nf}:, q;x and 0, ¢ for some specific definitions of ¢, that have been used in
the literature.

3.3.1. Probability of success given missing, 7" When 6, = [}, we can write the probability of an
event in all individuals as a weighted average of an event in the missing and observed individuals:

all __ miss obs
T =y + (1- qi,k)ﬂi’k

Rearranging this formula gives us the following linking equation:
all _ —miss
gobs _ ik Tig ik ©)
ik~
(1- ‘]i,k)

Equations 2—6, with either a fixed or random effects model for the 6;, determine the model.

Beta priors are a natural choice for probability parameters, such as ﬂ;fl](iss, because they are constrained to
(0,1). When no prior information is available, (unrelated) Beta(1,1) priors for each ﬂf}jgs will appropriately
reflect the uncertainty in the probability of an event in the missing individuals.

If the observed data do not provide any information on the missingness mechanism, then the uncer-
tainty in the prior will be propagated to the treatment effect estimate. In this case, values for 6;, are
simulated ‘forward’ from their prior (as in probabilistic sensitivity analysis commonly used in economic
evaluation), as opposed to the deterministic sensitivity analyses where values for 6 are assumed fixed
at a particular value. However, in some cases, the information available on the relative treatment effects
from studies where few or no data are missing, will allow the prior distribution for 7™ to be updated,

ik . ;
so that we ‘learn’ about the missingness mechanism from the data. This approach means that trials with
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no missing values will have relatively more influence on the estimated treatment effect than those with
large amounts of missing data.

3.3.2. Alternative definitions of the missingness parameter, 6, . Although 0,, = zr;f‘]jss is a natural param-
eter on which to place an uninformative prior, it is not a natural parameter on which to elicit informative
priors, because it is an absolute, rather than relative measure. If prior information is available on the
missingness process, then it may be easier to elicit that information using an alternative definition for the
missingness parameter. In this section, we describe some alternative missingness parameters and give the

linking equation to replace Equation 6, in our general framework.
3.3.3. 0;; = Informative missingness odds ratio. The IMOR [5, 15] is defined as the ratio of the odds

of the outcome among participants for whom the outcome is missing to the odds of the outcome among
observed participants:

IMORi,k = Qi =

Appendix A shows that the linking equation can be written as

2
~((au-=2) =@ -1) - \/ ((gu= 7)1 =@ = 1) = 42801 .00 = 9,)
ﬂg]l:s - (7)
b 2(1= g, )(1= ;)
Equations 2-5 and 7, with either a fixed or random effect model for §;, determine the model. Normal
priors on log(IMOR; ) are a natural choice; however, sensible and informative priors are required for
robust results to be obtained.

3.34. 0, = Response probability ratio. Defining w;; as the response probability ratio (RPR) [18],

we obtain
p(observed| success)
RPR;, = w;; = -
’ ’ p(observed| failure)

Applying Bayes’ rule and rearranging, we obtain the linkage function:

all all
Dk (”ik/l B ”ik)
obs _ ’ ’
Tik =
’ all all
1 +w;, (ﬂi’k/l - ﬂi’k>

Equations 2-6 and 8, with either a fixed or random effect model for §;, determine the model. Normal
priors on log(w; ;) are a natural choice.

®)

3.3.5. 0, = Success probability ratio. Another option could be to instead define 6,, = p;, as the ratio
of the probability of success given a subject was missing to the probability of success given a subject
was observed
miss
Pik = -
B 7[3}?5

T

Substituting into Equation 6 and rearranging, we obtain the linkage function:

all
Tk

T = ©)
=g (1= i)

Equations 2—6 and 9, with either a fixed or random effect model for &;, determine the likelihood. Normal
priors on log(p; ;) are a natural choice.

3.3.6. More structured models for the missingness parameter. Earlier, we have assumed independent but
identical priors for 6, across studies and arms. These can be modelled in a variety of more structured
ways. Here, we give some suggested structural assumptions that could be made, but note that these should
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be informed by expert opinion, and different sets of assumptions will be appropriate in different applica-
tions. Prior distributions could be (i) the same across trial arms but different between trials, (ii) different
between trial arms but the same between studies or (iii) different between arms and studies. Furthermore,
these different prior distributions across arm and study may be independent, hierarchical or common
across trials/arms.

Estimates of treatment effect will be affected by the structure of the missingness model, including prior
distributions, as this will determine how much can be ‘learnt’ about the missingness parameters. The
stronger the assumptions made in the priors, the more potential for learning, but the validity of the results
relies on the validity of the assumptions. Therefore, the choice of model structure should be an informed
one and be a part of any elicitation exercise to obtain priors for the missingness parameters [24]. For
example, if from clinical experience, those who drop out of an active treatment arm are expected to have
stopped taking the medication (non-compliers); it may be considered reasonable to use a model structure
where there is an arm-specific missingness parameter, but that the missingness parameter on the active
arm is set equal (or similar) to that for observed outcomes in a placebo arm [25].

3.4. Priors and implementation

For all models, we assign a Uniform(0,1) prior distribution to the probability of being missing g,
and a Normal(0,100%) prior distribution for the trial-specific baselines ;. In random effects models,
we give a Uniform(0,5) prior for the between studies standard deviation, o. However, it is well doc-
umented that results can be sensitive to the form of prior assumed for random effects variances [26].
We therefore explored the sensitivity of the results to the prior for o using the alternative priors: Uni-
form(0,2) distribution for ¢ and also an informative log Normal(—2.34, 1.62%) prior distribution for
o2, as suggested for a meta-analysis of a pharmacological treatment versus placebo/control where the
outcome is subjective (as is the case here) by Turner et al. [27]. Possible priors for the missingness
parameters, 6, ,, have already been indicated in Section 3.3; the specific priors that are used in the
applications are described in Sections 4 and 5, and we return to consider prior specification further
in the discussion.

We estimated the model using Markov Chain Monte Carlo simulation implemented in WinBUGS 1.4.3
[28]. The WinBUGS code to fit our missing data models for each of the proposed definitions of the
missingness parameter can be found in Appendix B. The stability of the parameter estimates, Brooks—
Gelman—Rubin statistics, auto-correlation and level of Monte Carlo (MC) error was assessed for each
model to determine convergence and the simulation sample size for inference [21].

3.5. Model fit and comparison

To assess the fit of an individual model, we calculated the posterior mean of the residual deviance, D,
We sum over data points (conditional on being observed) in the calculation of residual deviance, so that
models with D, close to the number of observed independent data points (conditional on being observed)
can be considered an adequate fit to the observed data, whereas models with D, much bigger than this
indicate a lack of fit [3,14,21,29].

4. Exploring uncertainty and learning

We explored the effect of different proportions of missing data and distribution of missing data across
trial arms on the resulting estimates of nl?f‘]jss using two fictitious data scenarios. We chose an illustrative
meta-analysis of 11 trials with a binary outcome (mortality) [30] for which a fixed effect model is known
to be appropriate [30] and manipulated the data in two ways. In the first scenario, we investigate the
effect of fitting our model to a dataset where missing outcomes were not associated with the outcome or
treatment arm. We therefore removed 20% of outcomes evenly across arms for eight of the 11 trials.

In the second scenario, we investigate the effect of fitting our model to a dataset where missing
outcomes were associated with outcome and treatment arm, but only some trials had missing data.
We expect that there is more scope for learning about the treatment effect in this scenario because (i)
the missing data depends on outcome and arm, and (ii) there are more trials with complete data to help
identify the missingness parameters. We removed 20% of outcomes from each arm of some of the trials
(trials 2, 5, 6, 8,9 and 11), but the proportion of events missing differed between arms for some studies.
See Appendix C for the data used in these scenarios.
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4.1. Models

We carried out a fixed effects meta-analysis on each of our two scenarios listed in Section 4. For each
scenario, a complete case model was run and the results compared with those obtained for our miss-

Table II. Results from artificial data scenarios.

Posterior mean ®  Posterior median odds

Scenario Model residual deviance ratio (95% CI)
Scenario 1: Missingness not Complete case analysis 19.7 0.80 (0.62, 1.04)
associated with outcome Missing data framework, prior: 194 0.80 (0.50, 1.23)
or treatment arm ﬂ;f‘]{iss ~ Beta(l, 1)

Complete case analysis 26.0 0.74 (0.58, 0.95)

Scenario 2: Missingness

associated with arm and outcome Missing data framework, prior: 18.5 0.80 (0.57, 1.11)

™ ~ Beta(l, 1)

2Compare with 22 data points. Values larger than this are indicative of lack of fit.

Probability of an event given missing: Scenario 1

10 | [1,101.2] [4.114,2] (10,1010,
. [2.2] 5,1 711 81 F11
o B el o 11921 b1
. [3.2] *
[8.2]

[5.2]

[
I
I

0.5 |

LTI

Study arm [i,k] for trial i, arm k

0.0

Probability of event given missing: Scenario 2

1101110201 1)

1.0 | [1,1)01.21 [2,21[3.11[3‘2][4-11[4,2][5‘1] 7.117,2)
T 16,112 B 911, [11.2]

[2.1] (82

[5.2]

05

L LT

Study arm [i,k] for trial i, arm k

0.0 |

Figure 2. Box-plots of posterior distribution for ﬁ?’]jss for each study arm [i, k] for trial i, arm k. Plotted for
scenarios 1 and 2, respectively. Boxes represent inter-quartile range, the whiskers represent the 95% CI and line

within the box represents the median.
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ing data model (Equations 2-6), where we put priors on the probability of an event, given missing,
3% ~ beta(l, 1).

4.2. Results from artificial data scenarios

4.2.1. Scenario 1: Missingness not associated with outcome or treatment arm. According to the posterior
mean residual deviance, there is little difference between the model fit of the complete case model and
the Beta(1,1) missing data model (Table II). In terms of treatment effect, the odds ratio is the same in the
two models (median OR 0.80 in both the complete case analysis and in the missing data model), as we
would expect because data were assumed MAR. However, the Cls around the treatment effect estimate
from the missing data model are wider (Table II), reflecting the uncertainty induced by missing data.
Figure C.1 in Appendix C shows the posterior mean and 95% Cls for the probability of missing, g,
which is close to 0 in studies with no missing data (studies 1, 4 and 10), and approximately 0.2 in the
other studies, as expected because missingness was introduced by removing approximately 20% of the
observed outcomes evenly across arms. Figure 2 shows box-plots of the estimated posterior distribution
for n",‘(‘” It can be seen that whilst there is a large degree of uncertainty in these parameters, in some
cases, the posterior distribution has moved away from the prior (Beta(1,1) centred on 0.5), showing that
the model has ‘learnt’ about the p(success | missing) parameter (Figure 2), albeit only weakly.

4.2.2. Scenario 2: Missingness associated with arm and outcome. According to the posterior mean resid-
ual deviance, the missing data model is a better fit than the complete case model (Table II). In terms of
treatment effect, the odds ratio is different between the two models (median OR 0.74 in the complete
case analysis and 0.80 in the missing data model), which together with the model fit results, suggests that
the missing data model allows a bias adjustment that explains the lack of fit seen in the complete case
model. As in scenario 1, the CI around the treatment effect estimate is wider in the missing data model,
reflecting the uncertainty induced by missing data. As with scenario 1, the proportion of missing data
is well estimated (Figure C.1 in Appendix C). It can be seen from the box-plots of the estimated poste-
rior distributions for ﬂ“}(‘“ shown in Figure 2 that although there is a large degree of uncertainty in these
parameters, there are some study arms where the posterior has moved away from the prior. This suggests
that the model has ‘learnt’ about the 7™ parameters, producing a bias-adjusted estimated of treatment

ik
effect that accounts for the uncertainty introduced by missing data.

5. Application to schizophrenia example

miss

5.1. Prior distributions for ' o

We begin by considering the case where there is no prior information on the missingness pattern, and
so we use independent Beta(1,1) priors for each n“}jss as the base case. We then illustrate the impact of
using more informative priors. The priors chosen are just illustrative; however, in practise, they would
be based on clinical expert opinion. We first explore the impact of increasing the certainty in the prior to
Beta(5,5), and then of changing the central estimate by using a Beta(3,7). We then look at the case where
there are two different priors for the different arms Beta(3,7) for arm 1 (placebo) and Beta(5,5) for arm 2
(haloperidol). Finally, we use an informative N(0,1) prior on the log(/MOR), to illustrate the impact of a
prior belief of MAR (log(IMOR) = 0). For comparison, we also present the standard sensitivity analyses
proposed for missing data: complete case, best-case and worst-case scenarios and assuming all missing
data are failures.
All other prior distributions are as described in Section 3.4.

5.2. Results

For each model, we used at least a 20 000 iteration burn-in period with at least 60 000 sampling itera-
tions. The posterior mean residual deviance [29,31] suggests that a random effects model is a better fit
to the data than a fixed effects model in all cases (Table III). Within the different fixed effects models, all
of the missing data models seem to be a better fit than the standard complete case analysis (Table III).
Trial 2, which is one of the trials with the highest proportion of missing data, has the greatest improve-
ment in model fit, with each arm contributing about 4 to the residual deviance in the complete case
model, and only about 1 in the missing data model. Table I shows that the majority of the trials have
only a small amount of missing data. This is likely to be the reason why the estimate of treatment effect
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Table III. Model fit results from applying the standard models and our missing data model to the schizophrenia
meta-analysis example.

Fixed effect models Random effects models
Posterior mean Posterior mean
residual deviance residual deviance
Event data Number Event data Number
(given observed)* missing® (given observed)® missing®
Complete cases 62.9 NA 32.6 NA
Standard models All missing are failures 60.4 NA 335 NA
Best-case scenario 66.1 NA 32.3 NA
Worst-case scenario 1154 NA 33.0 NA
ﬂl‘“k‘“ 0 57.7 489 33.5 46.8
7:"““ ~ Beta(l, 1) 46.8 49.4 30.7 46.2
Missing data 71'““55 ~ Beta(5, 5) 50.6 49.5 30.4 46.1
framework nmm ~ Beta(3,7) 53.0 49.1 31.2 46.3
models priors m‘“ ~ Beta(3,7) and 7™ ~ Beta(5, 5) 527 47.8 31.1 45.9
log(IMOR ) = log ((p k) Normal(0, 1) 56.5 48.0 32.7 47.6

2Compare with 34 data points. Values larger than this are indicative of lack of fit.

Table IV. Treatment effect estimates results from applying the standard models and our missing data model
to the schizophrenia meta-analysis example.

Fixed effect models Random effects models
Posterior median Posterior median

(95%CTI) (95%CI)
Between studies
Odds ratio Odds ratio standard deviation
Complete cases 3.75(2.66,5.37)  8.51(3.63,30.66) 1.41(0.70, 2.80)
Standard models All missing are fgilures 3.65(2.65,5.09) 7.60(3.48,26.80) 1.27 (0.58, 2.66)
Best-case scenario 6.16 (4.40,8.74) 12.92 (5.42,48.38) 1.44(0.72,2.86)
Worst-case scenario 1.69 (1.26,2.29)  4.39(1.60, 14.96) 1.81 (1.11, 3.15)
71:1'“,{‘bs =0 3.59(2.63,497) 7.06(3.38,21.63) 1.19(0.56,2.41)
;r‘“'“ ~ Beta(l, 1) 3.76 (2.67,5.37) 5.80(2.96,15.34) 1.01 (0.37,2.12)
Missing data 71:““Ss ~ Beta(5,5) 335(2.44,4.62) 5.41(2.83,14.05) 1.05(0.46,2.12)
framework 7r"““ ~ Beta(3,7) 346 (2.52,4.77) 5.92(3.02,15.71) 1.08 (0.50, 2.15)
models priors m'“ ~ Beta(3,7) and 7" ~ Beta(5,5)  3.89(2.83,537)  6.53(3.37,17.64) 1.05(0.48,2.16)

log(IMOR,k)—log((p k) Normal(0,1)  4.09 (2.86,5.90)  8.60 (3.64,35.41)  1.39 (0.66, 3.00)

is so similar between the complete case model and the Beta(1,1) missing data model (Table IV). The
box-plot of the posterior distribution for p(success | missing) for trial 2 with a high amount of missing-
ness illustrates that the model is ‘learning’ about p(success | missing) as the posterior differs from the
Beta(1,1) prior (Figure 3). The missing data model is providing a bias-adjusted estimate, but because
of the small amount of missing data, this estimate is very similar to that produced by the complete
case analysis.

Within the random effects models, there is little difference in fit between any of the models (Table III).
These results were expected as random effects models are flexible models that generally fit very well.
However, in the random effects missing data models, the between-study heterogeneity estimates are
reduced compared with the standard models, with the exception of the log(IMOR) model (Table IV).
There are two possible explanations for this. Firstly, increased uncertainty in the study-specific treat-
ment effect estimates is consistent with lower heterogeneity, and secondly, adjusting for the missingness
mechanism allows for some of the heterogeneity to be explained. In the random effects missing
data models, there was also a reduction in the estimate of treatment effect, with the exception of
the log(IMOR) model (Table IV). These results are likely because there is only a small amount of
missing data, but proportionately, there was more missing data in the control arms of the trials.
Increasing the certainty in the prior, by using a Beta(5,5) distribution, resulted in a reduction in the
estimate of treatment effect in both the fixed and random effects models. Similarly, changing the
central estimate of the prior, using a Beta(3,7) distribution, reduced the estimate of treatment effect
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Probability of success given missing: Schizophrenia Fixed Effect Model
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Figure 3. Box-plots of posterior distribution for ng}j“ for each study arm [i, k] for trial i, arm k in the schizophrenia

meta-analysis [19]. Plotted for fixed and random effect models where a missing data model is used with Beta(1,1)

priors for 7:{33”. Boxes represent inter-quartile range, the whiskers represent the 95% CI and line within the box
represents the median.

(Table IV). The log(IMOR) prior we used was informative and compatible with a belief of MAR. The
results from this prior are therefore in line with those from a complete case analysis (Table IV). The
meta-analysis results were sensitive to the choice of prior placed on the heterogeneity parameter; how-
ever, the same pattern in the results was found between the complete case and missing data models
(results not shown).

Setting ﬂf‘kiss equal to zero with no uncertainty makes the missing data model similar to an ‘all missing
are failures’ analysis. These two models make the same underlying assumption but are not exactly the
same. One fixes the observations, stating that all missing outcomes were failures, whereas the other fixes
the parameter that generates the data stating that the probability of success in the missing individuals is
zero. The two models produce similar results, although the between-trial standard deviation is reduced
when accounting for the missingness parameter in the missing data model.

e ___________________________________________________________________________________________|
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2062-2080



Statistics
N. L. TURNER ET AL.

6. Discussion

We have proposed and illustrated a conceptually and computationally simple Bayesian framework for
handling missing binary outcome data in pairwise meta-analysis. Our model provides an estimate of
treatment effect that accounts for uncertainty due to missing outcomes, to provide information for clini-
cians and local and national health policy makers. The missingness parameter can be parameterised in a
variety of formats, including the IMOR, and can be viewed as a one-stage version of the model presented
by White et al. [5]. This differs from the model presented in White et al., [12] which is a one-stage,
hierarchical selection model, rather than the pattern-mixture model proposed here.

Our framework does, however, require prior information on the missingness parameter. In the absence
of any such prior information, we recommend using a Beta(1,1) prior on the probability of an event
given missingness. Note that by using such a flat prior, the missingness parameters may only be weakly
identified. However, in the absence of prior information, the uncertainty introduced by missing data will
be reflected in the relative effect estimate. If prior information is available, we recommend that it is used.
In particular, if the outcome is a rare event, then implicitly, there is prior information that the probability
of an event is low regardless of whether the outcome is missing or not, and this information should
be incorporated.

A difficulty that arises in all methods that utilise informative prior beliefs is how these beliefs should be
obtained [32]. If the aim is to simply reflect the uncertainty around missingness, then a flat, uninformative
prior will achieve this. One option for eliciting informative prior distributions for unknown outcome
parameters is to ask experts to assign a total weight of 100 over several categories of potential options for
the unknown parameter and then to model this distribution of weights [12]. A similar approach was used
by Turner et al. to elicit priors based on asking experts to mark a range of believable values on a scale
[33], whilst Mavridis et al. suggest a method based on eliciting the lowest and highest values an expert
would conceivably expect [34]. White ef al. [5] suggest that a more realistic prior about the missingness
might be obtained by providing an expert with a plausible estimate for the probability of success given
a subject was observed (perhaps based on a previous study) and from that, asking their opinion on the
probability of success given a subject was missing. From this, the IMOR can then be calculated [5].
Other potential options for §;, in our framework (i.e. probability success ratio and probability success
difference) could also be elicited this way. Ideally, prior beliefs about unknown parameters should be
elicited from experts within the appropriate field. It could be argued that in this context, the investigators
of each individual trial may be in the best position to inform the prior distributions required for our
models; however, priors elicited from individuals who were involved in the design, running or analysis
of the trials may not be objective. It may be more appropriate to elicit prior distributions based on the
beliefs of the clinical members of the meta-analysis team who were not involved personally with any
of the trials being used in the analysis. To date, the only study we are aware of that has elicited priors
to inform missingness parameters in a meta-analysis is the work of White ez al. [9], although there is
work on eliciting opinion for individual trials [12, 35, 36]. There is clearly a need for further empirical
elicitation studies, to explore the value of this approach in different clinical areas (where reasons for
missingness may be very different) and where the proportion of missingness varies (there may be less
value in elicitation if there is high power within the meta-analysis to estimate the missingness pattern).
The papers identified in the systematic review may describe methods to adjust for missing data, which
may indicate whether there is likely to be informative missingness, and the potential direction of any bias
and thus providing further prior information. A recent review of how missing data was handled in RCTs
published in top medical journals [37] noted that about 86% of the included studies stated a reason for
missingness, with some RCTs reporting specific explanations for missingness. These may be useful to
inform priors. Note that, as the posterior distribution for ;, will in many cases be heavily dependent on
the prior assigned to it, it is essential that sensitivity analyses are carried out varying this prior distribution.
In addition, the ability of the model to learn about the missingness parameter will diminish with increasing
heterogeneity, although the missingness mechanism may potentially explain heterogeneity, as seen in the
artificial example.

Another issue that can occur in all meta-analyses is poor reporting of trials. Trials may not specifically
mention missing data, but this does not necessarily mean that outcomes were observed for all participants;
there may just have been poor reporting. In some cases, even after close inspection of the text, tables
and CONSORT diagram, it may still be unclear whether there are missing data. Because we estimate the
probability of a subject being missing, g;, for all studies, our model will estimate g, , as non-zero even
when there are no missing data in that trial, and there will be uncertainty in this estimate (Figure C.1
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Table V. Examples of prior structures for the missingness parameter.

Model structure for

01 Arm-specific  Trial-specific Example

1 Independent No No 0 ~f()
2 Independent Yes No 0. ~ i ()
3 Independent No Yes 0 ~ i)
4 Independent Yes Yes 0 ~ fix ()
5 Hierarchical No No O ~fm), n~g()
6 Hierarchical Yes No 0 ~f(m), m ~ g:(+)
7 Hierarchical No Yes O ~fm), m; ~ g
8 Identical No No O =1, n~fC)
9 Identical Yes No 0 = 1> M ~fi ()
10 Identical No Yes O =15 1 ~ i)
11 Identical Yes Yes 0 = Mige» Mg ~Jir ()

Given prior information on the missingness mechanisms, combinations of these prior
structures can be chosen for subsets of the trials included in the meta-analysis.

f and g represent generic distributions with given parameters values or depending on a
vector of parameters # or scalar #.

in Appendix C). In some applications, this may be appropriate, as some trials may not report missing
observations when there are in fact some. Again, clinical input can be helpful to assess whether there are
likely to be unreported missing observations. The Cochrane risk of bias tool [1] includes an assessment
of risk of bias due to missing data. In theory, these assessments could be incorporated into the modelling
framework either as covariates or to inform priors; however, this is a notoriously difficult dimension of
risk of bias to assess.

The Bayesian approach we have taken is essential in order to be able to specify prior distributions for
the missingness parameters and also has the advantage of easy extension from pairwise to network meta-
analysis [14]. In network meta-analysis, because of the consistency assumption, there is the potential
to be able to estimate the missingness parameter with more certainty, although the power to do so may
still be low [16, 38]. This power could be increased by making some of the structural assumptions set
out in Table V. This is an area for further work. The Bayesian approach also allows for the results from
the meta-analysis to be easily integrated into decision models [39, 40]. In cost-effectiveness analyses,
estimating the uncertainty in the optimal decision is vital to inform policy decisions. Our framework
provides a treatment effect estimate that reflects the uncertainty introduced by missing data, can correct
for bias induced by the missing data and can be viewed as a probabilistic sensitivity analysis.

This paper has restricted to the case where the outcome of interest is binary. Dealing with missing
data where there are continuous outcome measures is more complex. Different studies may report results
using different imputation methods (e.g. last observation carried forwards, baseline observation carried
forwards or multiple imputation techniques), which raise challenges for evidence synthesis. Recent work
[41] has extended the concept of the IMOR to continuous outcomes, defining the informative missingness
difference of means and the informative missingness ratio of means, and proposed a pattern-mixture
model for pairwise and network meta-analysis, using a two-stage estimation procedure. Extending our
framework together with the ideas from Mavridis et al. [41] is an exciting area for further work.

In conclusion, the framework outlined here provides a simple method for the best utilisation of evi-
dence produced from RCTs that accounts for any uncertainty induced by missing data, allows for the
incorporation of prior information on a variety of different missingness metrics and fits easily into the
wider evidence synthesis model for medical decision making [42].

Appendix A: The linking equation when the missingness parameter is the IMOR

By definition [17], the IMOR, which we shall denote @i s is

(i /(1= 21))
b. b:
(= /(1=22))
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If @, = 1, then 7r = ﬂr‘,‘j“ so that Equation (6) gives the linking equation 7[",'35 = na}(l

for @, # 1, rearrangmg (A.1) and substituting into Equation (6) gives the linking equation:

T R Y [ ooty e gt
ik 2(1 = g = @)

Otherwise,

(A.2)

However, we need to identify which is the correct root to take. If we define (dropping the ik subscript
for convenience)

A=1-" =g (p-1)
B=2(1-q9)(1-¢)
so that (A.3)

o _ AVAZ — 2Bz

B

then very careful consideration of the following scenarios shows that:

(1) IfA <0and @ < 1 then 72! < 0, which is impossible.

(2) If A > 0 and @ < 1 then the negative root lies on the interval [0,1], whereas the positive root is
always greater than 1. 7°° must lie between 0 and 1, and so we take the negative root.

3) IfA <0, > 1 (= B < 0), then the negative root lies on the interval [0,1], whereas the positive root
is always less than 0. We therefore take the negative root.

4) If A > 0, p; > 1 (> B < 0), then the negative root lies on the interval [0,1], whereas the positive
root is always less than 0. We therefore take the negative root.

In all cases, we therefore take the negative root, giving the linking equation:

2
(gm0 -e0-1) - \/ (=) =@ = 1) =470 = ,00 = 9,)
0Ds
Lk 2(1 - 4= @)

(A4)

Appendix B: WinBUGS code

# Binomial likelihood, logit link, pairwise meta-analysis (2 treatments)

# Random effects model

Model # Program starts

{

for(i in 1:ns) # Loop through studies

delta[i,1] <- 0 # Treatment effect is zero for control arm

mul[i] ~ dnorm(0,.0001) # Vague priors for all trial baselines

for(k in 1:2) # Loop through arms

rli,k] ~ dbin(pi_obsl[i,k], c[i,k]) # Binomial likelihood for the number of observed events
mli,k] ~ dbin(q[i,k], n[i,k]) # Binomial likelihood for the number of missing observations
logit(pi_all[i,k]) <- mu[i] + delta[i,k] # Model for linear predictor

pi_obsJi,k] <- max(0, min(1,(pi_all[i,k] - (pi_miss][i,k] * q[i,k])) / (1 - q[i,k]))) # Linking equation*
q[i,k] ~ dunif(0,1) # Uninformative prior for the probability of being missing
pi_missl[i,k] ~ dbeta(1,1) # Beta(1,1) prior distribution for p(success|missing)

rhat[i,k] <- pi_obs[i,k] * c[i,k] # Expected value of the numerators (observed data)

devli,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat]i,k])) # Deviance contribution (observed data)

+ (c[i,k]-rfi,k]) * (log(cfi,k]-r[i,K]) - log(c[i,k]-rhat[i,k])))

mO[i,k] <- m[i,k]+0.01*equals(m[i,k],0)

rhat_miss[i,k] <- q[i,k] * n[i,k] # Expected value of the numerators (missing data)

dev_missJi,k] <- 2 * (mO[i,k] * (log(mO[i,k])-log(rhat_miss][i,k])) # Deviance contribution (missing data)
+ (n[i,k]-mO[i,k]) * (log(n[i,k]-mO[i,k]) - log(n[i,k]-rhat_missl[i,k])))

}
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delta[i,2] ~ dnorm(d[2],prec) # Trial specific LOR distributions

resdev[i] <- sum(dev[i,]) # Summed residual deviance contribution for this trial (observed data)
resdev_miss]i] <- sum(dev_miss]i,]) # Summed residual deviance contribution for this trial (missing data)
totresdev <- sum(resdev(]) # Total residual deviance (observed data)

totresdev_miss <- sum(resdev_miss|[]) # Total residual deviance (missing data)

d[1]<-0 # Treatment effect is zero for reference treatment

d[2] ~ dnorm(0,.0001) # Vague prior for treatment effect

tau ~ dunif(0,5) # Vague prior for between trial SD

tau.sq <- tau*tau # Between trial variance = between trial SD?

prec <- 1/(tau.sq) # Between trial precision = (1/between trial variance)

OR <- exp(d[2]) # Convert to odds ratio scale = exponential(treatment effect)

# Program ends
#Data
list(ns=17)

11 mi1l (A1 o1l 2] m(2] n[2]  c[2]
51 51 25 2 52 50

18 0

20 34 68 34 29 22 69 47
2 1 31 30 12 1 30 29
0 0 12 12 3 0 12 12
3 0 22 22 10 0 21 21
1 0 15 15 1" 0 19 19
4 1 26 25 7 1 26 25
3 0 13 13 8 0 17 17
14 2 66 64 19 2 66 64
0 0 10 10 1 1 10 9
0 0 13 13 1" 3 37 34
2 0 11 11 20 0 29 29
7 18 29 1" 17 1" 29 18
0 1 14 13 4 0 14 14
0 1 8 7 2 0 16 16
1 0 12 12 1" 0 12 12
0 1 30 29 9 1 30 29

END

*Linking equations for alternative models with other missingness parameters:
IMOR

pi_obs[i,k] <- max(0, min(1,( (-((q[i,k] - pi_all[i,k])*(1 - phi[i,k]) - 1) - sart((pow(((a[i,k] - pi_all[i,k])*(1 - phili,k]) -
1).2)) - ((4*pi_all[i.k])*(1 - qli.kD)*(1 - philik]))) ) / (2°(1 - q[i.k])*(1- phili.k]) )))

Response probability ratio

a[i,k] <- omegali,k]*(pi_all[i,k] / (1 - pi_all[i,k]))
pi_obs[i,k] <- max(0, min(1, (a[i,k)/ (1 + a[i,k])) ))
Success probability ratio

afi,k] <- (pi_all[i,k]) / (1 - ((ali.k])*(1 - rholi,k])))

pi_obsli,k] <- max(0, min(1, (a[i,k])))

Appendix C Artificial data scenarios:

Original dataset

Trial Arm 1 Arm 2
No. of events  Total no. randomised No. of events Total no. randomised

i r; 1 (%) n; 1,5 (%) n,
1 3 (5.5%) 55 1 (1.8%) 55
2 10 (10.6%) 94 3(3.2%) 95
3 40 (7.0%) 573 32 (5.7%) 565
4 2 (3.3%) 61 3 (4.8%) 62
5 16 (3.8%) 419 20 (4.8%) 421
6 5(7.2%) 69 3 (4.2%) 71
7 5(6.7%) 75 5(6.7%) 75
8 59 (7.5%) 782 52 (6.6%) 790
9 5(6.2%) 81 2 (2.5%) 81
10 16 (7.1%) 226 12 (5.3%) 225
11 8 (12.1%) 66 6 (8.5%) 71

e _________________________________________________________________________________________
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2062-2080




Statistics

(e
%o}
S
9
(o]
O
S
N
<t
o
)
~
D
N
<
=
-
Rl
2
S
[95)

'L 8’8 1L LS 14! S 14! €1l 99 €S el 9 11
1 Y4 ¢TC 0 Cl ['L 9¢C 9T 0 91 01
€9 Sl 18 <9 91 I €9 9 18 <9 91 14 6
€9 99 06L €9 861 (4% L'L SL 8L 979 961 LY 8
L9 L9 SL 09 Sl 14 L9 L9 SL 09 Sl 14 L
'L e 1L LS 14! 4 'L €L 69 9 1 14 9
8 LY Iy LEE 78 91 9'¢ 6'¢ 61 cee 18 el S
8V 9 9 0 € £e 19 19 0 4 14
(Y 8¢ S9¢ [45% ell 9T 0L 0L €LS 8SY Sl (43 €
(Y 9C S6 9L 61 4 S0l L0l 6 SL 61 8 4
81 SY SY 0 I ¢¢ S 9 0 € 1

SSTW UI $qo ur Ty Tl sosed Thu (45 SSTuI Ut $qo ur Iy "5 soseo iy "1 sjuoao
SJUOAD sjuoAd  postwopuel  o)o[dwod  Sulssnu SJUAAD SJUQAD sjuoAd  postwopuel  opdwoo  Surssiw JO "'ON [eLIL,

% % "ou [el0] Jo oN ON  JO'ON % % ‘ou [elo] Jo oN ON
iy [y

N. L. TURNER ET AL.

LI JUSWEBAI] JO QUW0DINO0 YIIM PIIBIOOSSE J0U SSQUTUISSIJA] :JOSBIEP | OLIBUIIS

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.



Statistics

N.L. TURNER ET AL.

0 ol 1L LS Pl 9 174! ¢ll 99 €S el 9 1T
1Y 6T 6T 0 cl I'L 9¢¢C 9C¢C 0 91 ol
0 1'¢ 18 <9 91 4 €9 9 I8 <9 91 14 6
€9 99 06L €9 8¢C1 (474 0 7’6 8L 979 9¢1 6§ 8
L9 SL SL 0 S L9 SL SL 0 S L
el 81 IL LS 14! I ['L €L 69 4 14! 14 9
8V LY 1y LEE 8 91 'L 0¢ 611 cee 8 0] S
8V a9 9 0 € £e 19 19 0 4 14
LS S9¢ S9¢ 0 [43 0L €LS €LS 0 oy €
Sor el S6 9L 61 1 0 eel 6 SL 61 01 4
81 SY Y 0 I Y SY Y 0 € I
Surssiw [0 Ty sosed Thy Tl 'y '3 sases U 1 syuone
ur poA1dsqo  postwopuel  9[dwod  JuIsSIW  SJUSAD s sqour  posmwopuer  apdwodo  Fussiw 1O 'ON UL
SJUQAD Ul SJUAD “0U [RI0] JO "ON ‘ON JO "ON ur SJUQAD ‘OU [RI0] JO "ON “ON
% % SIUAAD 9, %
iy [y

QWOJ)NO PUE ULIE Y)IM PAJBIOOSSE SSQUSUISSIJA] :Jasejep g OLIBUSIS

Statist. Med. 2015, 34 2062-2080

S
=
—
w)
=
9)
%)
]
>
Q
W
=
=
)
2
>
)
=
Q
<=
iz
iz
el
=
-9
v
B
2
=
=
B
I
O
2
Rl
=
3
3
A
%
e
9]
g
=
<
Q
=
T
v
—
)
Q
©



Statistics
N. L. TURNER ET AL.
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Figure C.1. Caterpillar plots showing posterior mean (dot) and 95% Cls (line) of p(missing) for each trial arm in

the artificial data scenarios. Indices [i, k] represent arm k (k = 1 = placebo; k = 2 = active treatment) of trial i.

(a) Scenario 1 —trials 2, 3, 5, 6, 7, 8, 9 and 11 had 20% of outcomes removed (from the observed events) from
each arm. (b) Scenario 2 — trials 2, 5, 6, 8, 9 and 11 had 20% of outcomes removed from each arm.
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