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Abstract: Currently, there are no pharmacological treatments able to reverse nigral degeneration
in Parkinson’s disease (PD), hence the unmet need for the provision of neuroprotective agents.
Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective
agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we
undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs
and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE,
EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to
cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility
criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment
with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of
dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection
was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review
highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore
suggests their potential translation to human clinical trials to either ameliorate PD progression and/or
be implemented as a prophylactic means to reduce the risk of development of PD.

Keywords: cannabinoids; cannabis-derived phytocannabinoids; neuroprotection; resveratrol; Parkin-
son’s disease

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative motor disorder that primarily affects
the elderly. PD is progressive, and patients typically display a clinical triad of motor symp-
toms that are postural rigidity, bradykinesia, and resting tremor [1]. However, patients with
PD may also display non-motor symptomology and overlap of signs and symptoms with
atypical Parkinsonian syndromes such as multiple system atrophy (MSA) and dementia
with Lewy bodies, which renders absolute diagnosis challenging [2]. Approximately 1% of
the population over the age of 70 and an estimated 6.2 million individuals worldwide are
affected by PD, and this is expected to increase yearly in line with a burgeoning geriatric
population [3–5]. PD is characterized histopathologically by the loss of dopaminergic
neurons within the substantia nigra pars compacta (SNpc) and accumulation of protein
aggregates including α-synuclein within Lewy-bodies (LBs) [6–9]. The oligomeric and
aggregated forms of α-synuclein can be neurotoxic and can promote loss of dopamin-
ergic neurons [6–9]. PD is primarily an idiopathic disease, for which age is the major
risk factor [10]. However, other risk factors associated with lifestyle and environmental
exposures, such as alcohol intake and pesticide exposures have also been proposed; al-
though a causal relationship between these and disease pathogenesis has yet to be clearly
established [11,12]. Genetic vulnerability to PD has been observed in a minority of PD cases
(10–15%) via rare familial mutants, including those in α-synuclein that trigger early onset
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Parkinsonian phenotypes, and other inheritable gene mutations that may contribute to
cellular damage, oxidative stress, and neuroinflammation via microglial activation [13,14].

At present, there are no curative treatments for PD, just pharmacotherapy to manage
symptoms. The first-line treatment, levodopa, is employed to supplement dopamine
levels to mitigate the loss of dopaminergic innervations [15–17]. L-dopa administration is
usually accompanied by a decarboxylase inhibitor such as carbidopa, to limit its peripheral
metabolism [17–19]. Chronic administration of L-dopa is associated with dyskinesias and
reduced drug efficacy, thus making symptom management increasingly difficult with
disease progression [17,18]. Similarly, there are no standard neuroprotective medications in
PD treatment able to cease disease progression, although monoamine oxidase-B inhibitors
(MAO-B) or dopamine receptor agonists may have neuroprotective as well as symptomatic
effects [17–19].

1.1. Neurotoxin and Genetic Models of PD

Although the majority of cases of PD are idiopathic, environmental toxins can rapidly
induce Parkinsonian phenotypes. Hence, models of PD have invariably utilized chemical
neurotoxins that trigger damage to the SNpc, reduce dopamine levels, induce mitochon-
drial damage, redox stress, and neuroinflammation, and thereby reproduce many of the
elements of PD pathology. Commonly used chemical neurotoxins include rotenone, 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), and
paraquat [20–22].

Rotenone is an agricultural pesticide that can cross the blood-brain barrier (BBB) and
enter dopaminergic neurons independently of DA transporters and inhibits mitochondrial
complex I and associated ATP production via the coupling of the electron transport chain to
oxidative phosphorylation. Rotenone also generates redox stress and can induce α-synuclein
positive aggregations [20–22]. MPTP can cross the BBB where it is metabolized by monoamine
oxidase-B (MAO-B) in astrocytes into the potent neurotoxin, 1-methyl-4-phenylpyridimium
(MPP+), which behaves as a structural analogue to dopamine and enters dopaminergic neu-
rons via DA transporters. MPP+ is also a mitochondrial inhibitor and can trigger cellular
redox stress [20–22]. 6-OHDA is a dopamine analogue with a high affinity for dopamine
transporters but without BBB penetrance. Hence, 6-OHDA is usually administered via
unilateral intracerebral injection into the median foramen bundle or SNpc. Its neurotoxic
effects are attributed to its accumulation in the cytosol and mitochondria of neurons, lead-
ing to redox stress, and also in part via inhibition of mitochondrial complex I activity.
Additionally, the administration of 6-OHDA induces neuroinflammation [20–22]. Paraquat
is a divalent cationic herbicide similar in structure to MPP+ that is also capable of damaging
mitochondria and the induction of redox stress [20–22]. Reserpine blocks neurotransmitter
uptake into vesicles and can establish the akinetic symptomatology of PD [23]. Lipopolysac-
charide (LPS), an endotoxin from the outer membrane of Gram-negative bacteria, has been
used as a toxin to stimulate neuroinflammation, via the production of pro-inflammatory
cytokines and generation of reactive oxygen species (ROS) from microglia [21].

Despite the majority of PD being sporadic, genetic animal models of PD have proved
useful in establishing a causal relationship between certain genes and the development of
familial PD [21,22,24]. Genes implicated in familial PD development include autosomal
dominant α-synuclein mutants, such as the A30P, A53T, and E46K mutants. Autosomal
dominant mutants of LRRK2, as well as autosomal recessive mutations in Parkin, DJ-1 and
PINK 1, can also reproduce key features of PD pathology [21,22,24].

1.2. Cannabis-Derived Cannabinoids and Resveratrol as Neuroprotective Agents

There has been a recent upsurge in the potential use of dietary polyphenols as neuro-
protective agents in neurodegenerative diseases including PD [25–28] [Supplementary Fig-
ure S1]. Cannabis sativa is a natural herbaceous plant historically consumed or smoked for
recreational and therapeutic purposes [29]. Tetrahydrocannabinol (THC) and cannabidiol
(CBD) are major phytocannabinoid constituents of the cannabis plant and act on cannabi-
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noid receptors [29,30]. Cannabis sativa also contains a plethora of phytochemicals includ-
ing the minor phytocannabinoids β-caryophyllene (BCP) and tetrahydrocannabivarin
(THCV) [31,32]. BCP is a component of cannabis essential oil and essential oils from cin-
namon, black pepper, and oregano [31]. These compounds may display neuroprotective
activity via cannabinoid receptor-2 (CB2) agonistic effects, and without exhibiting the
psychoactive effects of THC [30–33]. BCP exerts anti-inflammatory activity via activation
of members of the nuclear receptor family of peroxisome proliferated activator receptors
(PPARs) [33,34].

Resveratrol (RSV) is a natural stilbene present in several dietary foodstuffs including
berries and grapes, as well as red wine, for which consumption of RSV is associated with a
number of purported health benefits [27,35,36]. RSV is also a component of the herbaceous
root Polygonum Cuspidatum, used in traditional Chinese herbal medicine, with recorded
anti-oxidative and anti-inflammatory effects [37].

CBD, THC, THCV, and RSV are polyphenols and therefore may provide useful neuro-
protective activity due to their antioxidant free radical scavenging ability. The structures
of these compounds and BCP are shown in Table 1. The neuro-modulatory potential of
these cannabis-derived phytocannabinoids (CDCs) and RSV overlap, such that both can be
consumed through recreational use as cannabis and alcoholic drinks including red wine,
respectively [26,27]. Therefore, a systematic literature review was undertaken to appraise
the experimental literature that has considered the potential neuroprotective effects of these
CDCs and RSV in pre-clinical animal studies of PD.

Table 1. Skeletal structures of the neuroprotective agents assessed in this review.

trans-Resveratrol (RSV)
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2. Materials and Methods

A systematic review of the literature was conducted following the guidance of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [38].

2.1. Search Strategy

An electronic literature search was performed using MEDLINE, EMBASE, PsychINFO,
PubMed, and Web of Science Core Collection to retrieve pre-clinical experimental studies
investigating the neuroprotective effects of these CDCs and RSV in animal models of
PD. A combination of Boolean operators (AND/OR) and field tags (multipurpose) were
employed for the following major search terms: Parkinson’s disease; Parkinson*; cannab*;
tetrahydrocannabinol; cannabidiol; β-caryophyllene; tetrahydrocannabivarin; resveratrol;
in vivo; pre-clinical; animal, primate, monkey, rodent, mice, mouse, rat. The full OVID
and PubMed search strategy is provided as Supplementary Data S2. The addition of hand-
searched studies from references and bibliographies of related publications was performed
secondarily.

2.2. Eligibility Criteria

All search results (n = 1034) were exported into EndNote (reference manager) for
removal of duplicate publications and text analysis with respect to predefined eligibility
criteria. Included articles were original, full-text publications, published in English between
database inception and January 2020 that investigated the neuroprotective effects of CDCs
or RSV in PD animal models in vivo, with no restriction on age, dosing, length of study or
outcome measures. Studies were excluded if the experiment was performed on non-rodent
animals or artificial CDCs or RSV derivatives were used.

2.3. Data Acquisition and Analysis

A total of 18 eligible publications were retrieved using the University of Nottingham
Library (NUsearch) facility or via an inter-library loan request from the British Library.
The following variables were extracted to an Excel data spreadsheet: author(s), year of
publication, the aim of the study, population, intervention, dosing, length of study, outcome
measures and results in order to generate a literature review. Both study authors reviewed
the included papers, independently considered the data extraction, and discussed all papers
that were included in the final review. Due to the qualitative nature and heterogeneity of
some of the study outcomes, a meta-analysis was not performed.

For methodological quality assessment, the Systematic Review Centre for Labora-
tory animal Experimentation (SYRCLE) risk of bias tool was considered (Supplementary
Table S1), which has been adapted in accordance with methodology used in animal stud-
ies [39].

3. Results

The preliminary data search generated 1021 results, reduced to 898 following the
removal of duplicates. The addition of 13 hand-searched studies from references and bibli-
ographies of related publications, resulted in a total of 911 papers, which were screened with

pubchem.ncbi.nlm.nih.gov
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respect to their titles and abstracts. Of these 911 papers, 836 did not meet the pre-defined
inclusion criteria and were excluded for the following reasons: irrelevant, performed on
non-rodent models, in vitro studies, focused on other neurodegenerative diseases, full-text
inaccessibility and lack of specificity. Full-text articles were read in full for 75 studies, of
which 57 were removed on the grounds of investigating synthetic cannabinoids, cannabi-
noid receptor agonists or resveratrol-related compounds, and therefore did not meet the
eligibility criteria. The remaining 18 studies fulfilled the eligibility criteria and were in-
cluded in the final analysis of this review (Figure 1). The majority of studies investigated
RSV (n = 12) and the remaining studies CDCs (n = 6); specifically, tetrahydrocannabinol
(THC) (n = 2), cannabidiol (CBD) (n = 2), tetrahydrocannabivarin (THCV) (n = 1), and
β-caryophyllene (BCP) (n = 2).
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3.1. Study Characteristics

Six strains from two different rodent species were assessed: Wistar rats (n = 252),
Sprague Dawley rats (n = 183), C57BL/6 mice (n = 156), Balb/C mice (n = 60), Swiss Albino
mice (n = 42), and A53T-α synuclein mice (n = 40). Two studies did not report the strain of
mice investigated (n = 39). An average of 43 rodents were used per study, with a median of
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41 and a range of 24–60. All rodents were male. The weight of rats and mice ranged from
180–350 g and 20–35 g, respectively.

3.2. Dosing

A number of different neurotoxic models were used to produce a Parkinsonian pheno-
type, and these have been divided by their intervention group (BCP, CBD, THC, THCV,
and RSV), and then neurotoxin model and ascending year of study (Table 2) [40–57]. 6-
Hydroxydopamine (6-OHDA) was administered to rats (n = 6), of which four studies used
a single administration with a dose of 8–15 µg, whilst two studies gave daily injections
over 14 days of 8 µg and 200 µg [40–45]. Unilateral 6-OHDA lesions were induced via
intracerebroventricular injection, striatal injection, medial forebrain bundle injection or
intraperitoneal injection [40–45]. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
was administered to mice at 20 or 30 mg/kg intraperitoneally (n = 6), acutely (4 doses
over 8 h) or daily for 4–7 days [52–57]. Rats were dosed with rotenone (n = 3) either daily
or every other day, at 1.5–2.5 mg/kg by intraperitoneal or subcutaneous routes, for a
duration of 21–35 days [47,48,50]. Reserpine was administered to rats (n = 1) at 1 mg/kg
subcutaneously twice over a 5 day period [49]. Haloperidol was administered intraperi-
toneally to mice at 1 mg/kg (n = 1) once daily for 18 days [46]. A single study used 5 µg of
lipopolysaccharide (LPS) via intracerebroventricular injection over 14 days in a subset of
mice [41], and one study did not utilize a neurotoxin, but instead assessed the effects of
RSV on transgenic A53T α-synuclein mice that naturally developed α-synuclein aggregates
at 9–16 months of age [51].

Table 2. Study characteristics and outcome summary.

Author and Year Species and Strain,
Study Population

Neurotoxin Model,
Dose, Route of
Administration,

Length of Dosing

Main Intervention
Groups: Compound,

Dose, Frequency

Outcomes in Main
Interventional Groups

Ojha et al. (2016) [47] Wistar rats. Four
Groups (n = 8)

Rotenone induced
(2.5 mg/kg bw per day,

i.p.); 28 days

BCP (50 mg/kg bw per
day dissolved in olive oil

i.p.); 28 days

↓, DAN loss
↓, OS markers
↓, Inflammatory

markers

Viveros-Paredes et al.
(2017) [57]

C57BL/6J mice. Six
groups (n = 6)

MPTP induced
(30 mg/kg bw per day,

i.p.); 5 days

BCP (10 mg/kg bw per
day i.p.); 5 days.

BCP (10 mg/kg bw per
day o.g.); 5 days

↓, pole test time (s), ↑,
stride length in gait test,
↓, time in beam test (s)
↑, TH–positive

neurones
↓, inflammatory

markers

Peres et al. (2016) [49] Wistar rats. Four
Groups (n = 10)

Reserpine induced
(1 mg/kg bw per day,

s.c.); 2 days

CBD (0.5 mg/kg and
5 mg/kg bw per day

dissolved in saline and
1% Tween-80, i.p.); 3 days

↓, catalepsy

Lastres-Becker et al.
(2005) [40]

SD rats. Four groups
(n = 7+)

6-OHDA induced (8 µg
m.f.b.i.); 14 days

CBD (3 mg/kg bw per
day dissolved

Tween-80:saline (1:16)
i.p.); 14 days

THC (3 mg/kg bw per
day, dissolved in

Tween-80:saline (1:16)
i.p.); 14 days.

↑, T H mRNA
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Table 2. Cont.

Author and Year Species and Strain,
Study Population

Neurotoxin Model,
Dose, Route of
Administration,

Length of Dosing

Main Intervention
Groups: Compound,

Dose, Frequency

Outcomes in Main
Interventional Groups

Abdel-Salam et al.
(2012) [46]

SA mice. Seven
groups (n = 6)

Haloperidol induced
(1 mg/kg bw per day,

i.p.); 18 days

Cannabis extract THC
(10 mg/kg and 20 mg/kg
bw per day, dissolved in
96% ethanol s.c.); 18 days

↓, catalepsy
↓, OS markers

Garcia et al. (2011) [41]

SD rats, CB2 −/−
mice, wild-type

littermates. Twelve
groups

(n = 5–6)

6-OHDA induced rats
(200 µg per day, i.c.v.);

14 days.
LPS induced mice

(5 µg, i.c.v.); 14 days

THCV (2 mg/kg bw
dissolved in

Tween-80:saline (1:16) i.p.,
single dose 14 days

post-lesion.)
THCV (2 mg/kg bw per

day dissolved in
Tween-80:saline (1:16)

i.p.); 14 days

↑, activity in CAA test
↓, DAN loss, ↑,

TH–positive neurons

Zhang et al. (2018) [51]

A53T α-synuclein
mice, wild-type
littermates. Five
groups (n = 8)

A53T α-synuclein
mouse model.

RSV (10 mg/kg and
50 mg/kg bw per day,

o.g.; 35 days)

↓, activity in open field
test,

↑, cognitive
performance, ↓,

hindlimb clasping, ↓,
time pole test (s)
↓, α-synuclein
↓, OS markers
↓, inflammatory

markers

Lu et al. (2008) [56] Balb/C mice. Four
groups (n = 15)

MPTP induced
(30 mg/kg bw per day,

i.p.); 7 days

RSV (20 mg/kg bw per
day, dissolved in 20%
ethanol i.v.); 7 days

↑, retention time on
rotarod,

↓, grasp strength
↓, OS markers

Anandhan et al. (2010)
[54]

Albino C57BL/6 mice.
Four groups (n = 12)

MPTP induced
(30 mg/kg bw per day

i.p.); 4 days

RSV (50 mg/kg bw per
day, p.o.); 7 days

↑, activity in open field
test,

↑, retention time on the
rotarod,

↓, time in beam test
↑, DA

↓, OS markers

Lofrumento et al. (2014)
[53]

C57BL/6N mice.
Four groups (n = 6)

MPTP induced
(20 mg/kg bw, 4 doses,

i.p.); 8 h

RSV (50 mg/kg bw per
day, o.g.); 21 days

↓,
apomorphine-induced

circling behavior
↓, DAN loss
↓, inflammatory

markers

Guo et al. (2016) [52] C57BL/6 mice. Four
groups (n = 12)

MPTP induced
(30 mg/kg bw per day,

i.p.); 5 days

RSV (100 mg/kg bw per
day i.g.; 33 days)

↑, activity in open field
test,

↑, catalepsy, ↑, rotarod
performance

↑, TH–positive neurons
↓, pro-apoptotic

markers

Xia et al. (2019) [55] Mice. Three groups
(n = 8)

MPTP induced
(20 mg/kg bw, 4 doses,

i.p.); 8 h

RSV (50 mg/kg bw per
day, i.g.); 21 days

↑, TH–positive neurons,
↓, α-synuclein



Brain Sci. 2021, 11, 1573 8 of 25

Table 2. Cont.

Author and Year Species and Strain,
Study Population

Neurotoxin Model,
Dose, Route of
Administration,

Length of Dosing

Main Intervention
Groups: Compound,

Dose, Frequency

Outcomes in Main
Interventional Groups

Jin et al. (2008) [42] SD rats. Six groups (n
= 10)

6-OHDA induced.
(10 µg s.i.)

RSV (10, 20 and
40 mg/kg in distilled

water bw per day, o.g.);
70 days

↓,
apomorphine-induced

circling behavior
↓, DAN injury
↓, inflammatory

markers

Khan et al. (2010) [43] Wistar rats. Four
groups (n = 8)

6-OHDA induced
(10 µg s.i.)

RSV (20 mg/kg bw per
day, dissolved in 20%
ethanol, i.p.); 15 days

↓,
apomorphine-induced

circling behavior, ↑,
performance in
stepping test, ↑,

retention time on the
rotarod
↑, DA
↑, DOPAC
↓, OS markers

Wang et al. (2011) [44] Wistar rats. Five
groups (n = 10)

6-OHDA induced
(15 µg i.c.v.)

RSV (1 mL, g.g.); 14 days
RSV liposome (20 mg/kg
bw per day, i.g.); 14 days

↓,
apomorphine-induced

circling behavior
↑, TH-positive neurons
↓, OS markers
↓, pro-apoptotic

markers

Huang et al. (2019) [45] SD rats. Five groups
(n = 10)

6-OHDA induced (8 µg
i.p.)

RSV (15 mg/kg and
30 mg/kg bw per day,

p.o.); 36 days

↑, activity in open field
test, ↑, catalepsy, ↑,

rotarod performance
↑, TH–positive neurons
↓, pro-apoptotic

markers

Gaballah et al. (2016)
[48]

Wistar Albino rats.
Four groups
(n = 10–15)

Rotenone induced
(1.5 mg/kg bw, 11
doses s.c.); 21 days

RSV (20 mg/kg bw per
day, o.g.); 21 days

↓, catalepsy, ↑,
retention time on

rotarod
↑, DA

↓, OS markers
↓, inflammatory

markers
↓, pro-apoptotic

markers

Palle and Neerati (2018)
[50]

Wistar Albino rats.
Four groups (n = 12)

Rotenone induced
(2 mg/kg bw per day

s.c.); 35 days

RSV (40 mg/kg bw per
day, p.o.)

RSV nanoparticles
(40 mg/kg bw per day,

p.o.); 35 days

↑, rearing count
↑, rotarod performance
↓, OS markers

Abbreviations: BCP, β-caryophyllene; bw, bodyweight; CBD, cannabidiol; CAA, computer-aided actimeter; DA, dopamine; DAN, dopamin-
ergic neurons; DOPAC, 3,4-Dihydroxyphenylacetic acid; g.g., gastric gavage; 6-OHDA, 6-Hydroxydopamine; i.c.v., intracerebroventricular
cannulation; i.g., intragastric gavage; i.p., intraperitoneal; i.v., intravenous; LPS, lipopolysaccharide; m.f.b.i., median foramen bundle
injection; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; o.g., oral gavage; OS, oxidative stress; p.o., per os; RSV, resveratrol; SA,
Swiss Albino; s.c., subcutaneous; SD, Sprague Dawley; s.i., striatal injection; TH, tyrosine hydroxylase; THC, ∆9-tetrahydrocannabinol;
THCV, tetrahydrocannabivarin. ↑, denotes an increase; ↓, denotes a decrease.

Six of the 18 studies investigated the neuroprotective effects of four different CDCs
(BCP, CBD, THC, and THCV) [40,41,46,47,49,57]. Rodents in two studies were given THC
(intraperitoneally or subcutaneously) at a dose of either 3, 10, or 20 mg/kg daily for 14–
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18 days [40,46]. THCV was administered intraperitoneally in one study (2 mg/kg, daily for
either 14 days or 14 days post-lesion) [41]. CBD was administered to rats in two studies at
0.5–5 mg/kg, intraperitoneally, for 3–14 days [40,49]. BCP was administered at 10 mg/kg
intraperitoneally or by oral gavage for 5 days in mice, or at a higher dose of 50 mg/kg
for 28 days in rats [47,57]. Twelve studies investigated the neuroprotective effect of RSV
using a dosing range of 10–100 mg/kg per day for 1 to 10 weeks [42–45,48,50–56]. The
most common route of administration was orally (per os and oral gavage) but intragastric
gavage, intraperitoneal and intravenous routes were also used [42–45,48,50–56].

The study outcomes have been divided into behavioral, cellular, and molecular
changes (Table 2).

3.3. Behavioral Outcomes

Fourteen studies utilized an array of behavioral outcome measures to observe cog-
nitive and motor changes in rodent PD models and assessed whether these impairments
were mitigated by the administration of CDCs or RSV. The results of these studies are listed
in Table 3 and have been divided by their intervention group (BCP, CBD, THC, THCV, and
RSV), and then ascending year of study.

Table 3. Summary of behavioral outcomes in PD model groups and interventions.

Author and Year Intervention
Behavioral Outcomes

in PD Model Group (vs.
Controls)

Level of
Significance

Behavioral Changes in
Main Intervention

Group (vs. PD Model
Group)

Level of
Significance

Viveros-Paredes
et al. (2017) [57] BCP

↑, pole test time (s)
↓, stride length in gait

test
↑, time in beam test (s)

(p < 0.001)
(p < 0.01)
(p < 0.01)

↓, pole test time (s)
↑, stride length in gait

test
↓, time in beam test (s)

(p < 0.01)
(p < 0.05)
(p < 0.01)

Peres et al. (2016)
[49] CBD

↓, activity in open field
test

↑, catalepsy
↑, vacuous chewing

(p < 0.05)

↑, memory deficit but
not locomotor activity in

open field test
↓, catalepsy

↓, vacuous chewing

(p < 0.05)

Abdel-Salam et al.
(2012) [46] THC ↑, catalepsy (p < 0.05) ↓, catalepsy (p < 0.05)

Garcia et al. (2011)
[41] THCV ↓, activity in CAA test (p < 0.05) ↑, activity in CAA test (p < 0.05)

Jin et al. (2008) [42] RSV ↑, apomorphine-induced
circling behavior - ↓, apomorphine-induced

circling behavior (p < 0.01)

Lu et al. (2008) [56] RSV
↓, retention time on

rotarod
↑, grasp strength

(p < 0.05)
↑, retention time on

rotarod
↓, grasp strength

(p < 0.05)

Anandhan et al.
(2010) [54] RSV

↓, activity in open field
test

↑, time in beam test
↓, retention time on

rotarod

(p < 0.05)

↑, activity in open field
test

↓, time in beam test
↑, retention time on the

rotarod

(p < 0.05)

Khan et al. (2010)
[43] RSV

↑, apomorphine-induced
circling behavior
↓, retention time on

rotarod
↓, performance in

stepping test

(p < 0.01)
(p < 0.001)
(p < 0.01)

↓, apomorphine-induced
circling behavior

↑, retention time on the
rotarod

↑, performance in
stepping test

(p < 0.05)
(p < 0.05)
(p < 0.05)

Wang et al. (2011)
[44] RSV ↑, apomorphine-induced

circling behavior (p < 0.01) ↓, apomorphine-induced
circling behavior (p < 0.01)
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Table 3. Cont.

Author and Year Intervention
Behavioral Outcomes

in PD Model Group (vs.
Controls)

Level of
Significance

Behavioral Changes in
Main Intervention

Group (vs. PD Model
Group)

Level of
Significance

Gaballah et al.
(2016) [48] RSV

↑, catalepsy
↓, retention time on

rotarod
(p < 0.05)

↓, catalepsy
↑, retention time on

rotarod
(p < 0.05)

Guo et al. (2016)
[52] RSV

↓, activity in open field
test

↓, stride length in gait
test

↑, time pole test (s)

(p < 0.001)
(p < 0.001)
(p < 0.01)

↑, activity in open field
test

↑, stride length in gait
test

↓, time pole test (s)

(p < 0.001)
(p < 0.001)
(p < 0.01)

Palle and Neerati
(2018) [50] RSV

↓, rearing count
↓,retention time on

rotarod
(p < 0.05)

↑, rearing count
↑, retention time on

rotarod
(p < 0.05)

Zhang et al. (2018)
[51] RSV

↑, activity in open field
test

↑, time pole test (s)
↑, hindlimb clasping
↓, cognitive performance

(p < 0.05)
(p < 0.001)
(p < 0.001)
(p < 0.05)

↓, activity in open field
test

↓, time pole test (s)
↓, hindlimb clasping
↑, cognitive

performance

(p < 0.05)
(p < 0.01)
(p < 0.05)
(p < 0.05)

Huang et al. (2019)
[45] RSV

↓, retention time on
rotarod

↓, activity in open field
test

↑, catalepsy

(p < 0.05)
(p < 0.01)
(p < 0.05)

↑, rotarod performance
↑, activity in open field

test
↓, catalepsy

(p < 0.05)
(p < 0.01)
(p < 0.05)

Abbreviations: BCP, β-caryophyllene; CAA, computer-aided actimeter; RSV, resveratrol; THC, ∆9-tetrahydrocannabinol. ↑, denotes an
increase; ↓, denotes a decrease; “-” denotes not determined.

3.3.1. Open Field Testing and Movement

A single study evaluated the neuroprotective effect of CBD in a risperidone-induced
PD rat model using an open field circular arena and concluded that the locomotor activity
of the risperidone group was significantly lower than the control group [49]. CBD treatment
ameliorated risperidone-induced memory deficits but not locomotor activity, although oral
movements as vacuous chewing were also reduced after treatment with CBD [49].

Motor activity was also examined using a computer-aided actimeter (CAA) and
reported a significant increase in distance travelled and mean velocity in THCV-treated
rodents when compared to the PD model [41].

PD model rodents displayed reduced velocity, rearing, and distance travelled and
these impairments were significantly improved by RSV treatment [45,50,52,54]. By contrast,
a single study reported increased velocity in a PD model (A53T α-synuclein mice), but that
was returned to control levels after treatment with RSV [51].

Rotational (circling) behavior was examined in three studies and demonstrated the
benefit of RSV treatment to reduce apomorphine-induced circling behavior [42–44].

3.3.2. Rotarod and Grasp Strength

A rotarod test was used to assess grip strength and balance. Measurements were
based on the time rodents remained on a rotating metal rod before falling off. Across
six studies that used this method, all investigated the effects of RSV, but with slightly
different experimental methods. The size of the rods ranged from 0.75–6 cm in diameter
and maximum rotational speed varied from 12–20 rotations per minute. All studies
showed reduced retention time on the rotarod in PD model groups relative to control
groups [43,45,48,50,54,56]. One study also assessed grasp strength, measured by having
rodents hold onto a horizontal bar over six trials. In comparison with the control group,
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the PD model group displayed increased grasp strength, indicating muscle rigidity, and
this grasp strength was reduced by RSV administration [56].

3.3.3. Pole and Beam Test

A pole test was used to assess bradykinesia and was performed by placing the rodent
at the top of a pole with its head facing upwards. The time that was taken for a rodent
to turn around and descend the pole was recorded. Of the three studies that used this
measure, the height of the pole varied from 50–55 cm. An average of at least three trials was
recorded per study. The beam test is similar, with rodents placed at one end of a narrow
beam, and the time taken to reach the other end measured. Rodents within the PD model
groups spent a significantly increased time in the beam and pole tests compared to controls,
whereas rodents that received BCP both orally and i.p., or RSV, displayed significantly
decreased beam and pole test times [51,52,54,57].

3.3.4. Gait Assessment and Stepping Test

Gait assessment was used to monitor a change in stride length by measuring the
distances between forepaw prints in rodents. A shortened stride length is observed for
rodent models of PD [58]. Provision of oral or i.p. BCP or administered RSV countered this
reduced stride length [52,57]. A stepping test was also performed in a single study, and
the number of adjusting steps taken when forced to walk on one forepaw was recorded.
There was a reduction of adjustment steps in the PD model group, which was significantly
rectified by RSV administration [43].

3.3.5. Catalepsy

Catalepsy, a decrease in movement and inability to correct abnormal posture, was
assessed by the bar test and the grid test across four studies. The bar test involved placing
a rodent’s hindlimbs on a bench and their forepaws on an elevated horizontal bar, and
quantification of the time that they remain in this position. Catalepsy was attenuated in
CBD and THC administered groups, resulting in a significantly decreased time spent in
the bar test [46,49]. Two studies employed a grid test in which rodents were hung from a
vertical grid approximately 0.5 m high. One study measured the time taken for the rodent
to initiate corrective movement [48], while the other measured the time taken to fall from
the grid [45]. Both studies showed significantly increased catalepsy in PD model groups,
and this was significantly rectified after receiving RSV [45,48].

3.3.6. Apomorphine-Induced Circling Behavior

Apomorphine-induced circling behavior was assessed in three studies. Apomorphine,
a non-selective DA receptor agonist influences rotational behavior in rodents [59]. Apo-
morphine was administered subcutaneously to rats and the net number of contralateral
rotations was measured over a time course. All studies demonstrated increased rotational
behavior in the PD model group of rats, and that RSV significantly decreased the number
of rotations [42–44].

3.4. Biochemical and Immunohistochemical Outcomes

Thirteen studies assessed the neuroprotective effect of CDCs or RSV via an assessment
of the levels of dopaminergic neurons and dopamine in the striatum of rodents, and
related metabolites such as 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic
acid (HVA) [40–42,44,45,47,48,51–55,57]. The results of these studies have been detailed in
Table 4 and have been divided by their intervention group (BCP, CBD, THC, THCV, and
RSV), and then ascending year of study. The striatal concentration of tyrosine-hydroxylase
(TH) markers were quantified in nine studies [40,41,44,45,51–53,55,57]. One study showed
a significant five-fold decrease in striatal dopamine levels in a 6-OHDA-induced PD
model, that was partially restored by THCV administration, although this did not reach
significance [41]. The same study showed a significant decrease in SNpc dopaminergic
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neurons in mice administered LPS, which was significantly restored via administration of
THCV or cannabidiol (CBD)-derived drug (HU-308) in interventional groups [41]. There
was a substantial decrease in striatal dopamine and DOPAC in 6-OHDA treated mice, in
addition to decreased TH-immunostaining and TH mRNA when compared to control
groups, and these decreases were significantly improved by administration of THC in
interventional groups [40]. TH immunoreactivity levels also showed a significant decrease
in two studies using neurotoxin-PD-induced Wistar rats and C57BL/6J mice, which was
significantly restored by BCP administration [47,57]. For markers of dopamine loss (DA
and DAN) or injury that had declined in PD model groups, all could be significantly
restored in interventional groups treated with RSV [42,47,48,53,54].

Table 4. Summary of biochemical and immunohistochemical analyses in PD model groups and interventions.

Author and Year Intervention

Changes in Dopamine
and α-Synuclein in PD

Model Groups (vs.
Control)

Level of
Significance

Changes in
Dopaminergic System

and α-Synuclein in
Main Interventional

Groups (vs. PD Model)

Level of
Significance

Ojha et al. (2016)
[47] BCP ↑, DAN loss (p < 0.05) ↓, DAN loss (p < 0.05)

Viveros-Paredes
et al. (2017) [57] BCP ↓, TH–positive neurons (p < 0.001) ↑, TH–positive neurons (p < 0.05)

Lastres-Becker
et al. (2005) [40] THC or CBD ↓, TH activity

↓, TH mRNA
(p < 0.05)
(p < 0.01)

↑, TH activity
↑, TH mRNA

(p < 0.05)
(p < 0.05)

Garcia et al. (2011)
[41] THCV ↑, DAN loss

↓, TH–positive neurons
(p < 0.05)

(p < 0.005)
↓, DAN loss

↑, TH–positive neurons
(p > 0.05)
(p < 0.05)

Jin et al. (2008) [42] RSV ↑, DAN injury - ↓, DAN injury -

Anandhan et al.
(2010) [54] RSV

↓, DA
↓, DOPAC
↓, HVA

(p < 0.05)
↑, DA
↑, DOPAC
↑, HVA

(p < 0.05)

Wang et al. (2011)
[44] RSV ↓, TH-positive cells (p < 0.05) ↑, TH-positive cells (p < 0.01)

Lofrumento et al.
(2014) [53] RSV ↓, TH immunoreactivity (p < 0.01) ↑, TH immunoreactivity (p < 0.01)

Guo et al. (2016)
[52] RSV ↓, TH–positive neurons (p < 0.001) ↑, TH–positive neurons (p < 0.01)

Gaballah et al.
(2016) [48] RSV ↓, DA (p < 0.05) ↑, DA (p < 0.05)

Zhang et al. (2018)
[51] RSV

↑, α-synuclein
↑, A-11 positive

oligomers
↑, W20 positive

oligomers
↓, TH–positive neurons

(p < 0.001)
(p < 0.001)
(p < 0.001)
(p < 0.01)

↓, α-synuclein
↓, A-11 positive

oligomers
↓, W20 positive

oligomers
↑, TH–positive neurons

(p < 0.001)
(p < 0.05)
(p < 0.05)

-

Huang et al. (2019)
[45] RSV ↓, TH–positive neurons (p < 0.05) ↑, TH–positive neurons (p < 0.05)

Xia et al. (2019)
[55] RSV ↓, TH-positive neurons

↑, α-synuclein (p < 0.05) ↑, TH–positive neurons
↓, α-synuclein (p < 0.05)

Abbreviations: BCP, β-caryophyllene; DOPAC, 3,4-dihydroxyphenylacetic acid; DA, dopamine; DAN, dopaminergic neurons; HVA,
homovanillic acid; RSV, resveratrol; TH, tyrosine-hydroxylase; THC, ∆9-tetrahydrocannabinol; THCV, tetrahydrocannabivarin. ↑, denotes
an increase; ↓, denotes a decrease; -, denotes not determined.
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3.5. The Effectiveness of CDCs or RSV to Combat Oxidative Stress

Nine studies investigated the effects of CDCs and RSV on oxidative stress in rodent
brain tissue [43,44,46–48,50,51,54,56] and included neurotoxin models [43,44,46–48,50,54,56],
and the α-synuclein genetic model of PD [51]. The results of these studies are shown in
Table 5 and have been divided by their intervention group (BCP, THC, and RSV), and
then ascending year of study. Protein carbonyl content (PCC), nitric oxide (NO) levels,
malondialdehyde (MDA) levels, and thiobarbituric acid reactive substances (TBARS) (by-
products of lipid peroxidation reactions), were investigated in studies researching the
effects of THC, BCP, and RSV. Levels of PCC, NO, MDA, and TBARS were increased in PD
model groups relative to controls, and these were significantly attenuated by treatment
with THC, BCP, or RSV [43,46–48,50,51,54]. Increased ROS and dihydroxybenzoic acid
(DHBA) levels are indicative of elevated free radical levels, and these were increased in the
PD model groups for three studies investigating the effects of RSV. These increases were
significantly attenuated by RSV administration [44,51,56].

Table 5. Summary of biochemical and immunohistochemical analysis for oxidative stress markers in PD model groups and
interventions.

Author and Year Intervention
Changes in Oxidative

Stress in PD Model
Group (vs. Control)

Level of
Significance

Changes in Oxidative
Stress Markers in Main
Intervention Group (vs.

PD Model Group)

Level of
Significance

Ojha et al. (2016)
[47] BCP

↓, GSH
↑, MDA

↓, SOD and CAT
(p < 0.01)

↑, GSH
↓, MDA

↑, SOD and CAT
(p < 0.05)

Abdel-Salam et al.
(2012) [46] THC

↑, MDA
↑, NO
↓, GSH

(p < 0.05)
↓, MDA
↓, NO
↑, GSH

(p < 0.05)

Lu et al. (2008) [56] RSV ↑,DHBA (p < 0.05) ↓,DHBA (p < 0.05)

Anandhan et al.
(2010) [54] RSV

↓, GSH
↑, SOD and CAT
↑, TBARS
↓, GPx

(p < 0.05)

↑, GSH
↓, SOD and CAT
↓, TBARS
↑, GPx

(p < 0.05)

Khan et al. (2010)
[43] RSV

↑,TBARS
↑, PCC
↓, GSH
↓, GPx
↓, GR
↓, SOD
↓, CAT

(p < 0.001)
(p < 0.01)
(p < 0.01)
(p < 0.01)
(p < 0.05)
(p < 0.05)
(p < 0.01)

↓, TBARS
↓, PCC
↑, GSH
↑, GPx
↑, GR
↑, SOD
↑, CAT

(p < 0.01)
(p < 0.05)
(p < 0.05)
(p < 0.05)
(p < 0.05)
(p < 0.01)

(p < 0.001)

Wang et al. (2011)
[44] RSV ↓, TAOC

↑, ROS (p < 0.01) ↑, TAOC
↓, ROS (p < 0.01)

Gaballah et al.
(2016) [48] RSV

↑, XO
↑, PCC
↓, GPx

↑, Nrf-2 DNA-binding
activity

(p < 0.05)

↓, XO
↓, PCC
↑, GPx

↑, Nrf-2 DNA-binding
activity

(p < 0.0001)

Zhang et al. (2018)
[51] RSV

↑, ROS
↑, MDA

↓, SOD and CAT
(p < 0.01)

↓, ROS
↓, MDA

↑, SOD and CAT
(p < 0.01)
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Table 5. Cont.

Author and Year Intervention
Changes in Oxidative

Stress in PD Model
Group (vs. Control)

Level of
Significance

Changes in Oxidative
Stress Markers in Main
Intervention Group (vs.

PD Model Group)

Level of
Significance

Palle and Neerati
(2018) [50] RSV

↓, SDH
↓, CS

↓, aconitase
↓, MC-I activity
↓, GSH
↓, CAT
↑, MDA

(p < 0.05)

↑, SDH
↑, CS

↑, aconitase
↑, MC-I activity
↑, GSH
↑, CAT
↓, MDA

(p < 0.05)

Abbreviations: BCP, β-caryophyllene; CAT, catalase; CS, citrate synthase; DHBA, dihydroxybenzoic acid; GPx, glutathione peroxidase;
GR, glutathione reductase; GSH, glutathione; MC-I, mitochondrial complex I; MDA, malondialdehyde; NO, nitric oxide; PCC, protein
carbonyl content; ROS, reactive oxygen species; RSV, resveratrol; SDH, succinate dehydrogenase; SOD, superoxide dismutase; TAOC, total
antioxidant capacity; TBARS, thiobarbituric acid reactive substances; THC, ∆9-tetrahydrocannabinol; XO, xanthine oxidase. ↑, denotes an
increase; ↓, denotes a decrease.

Endogenous anti-oxidative agents including reduced glutathione (GSH), and the
enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glu-
tathione peroxidase (GPx), xanthine oxidase (XO), as well as the citric acid cycle enzymes
aconitase, citrate synthase (CS), and succinate dehydrogenase (SDH) were investigated as
markers of oxidative stress across seven studies that investigated the effects of BCP, THC,
and RSV [43,46–48,50,51,54]. These studies showed decreased antioxidant capacity in PD
model groups, which could be significantly mitigated by BCP, TCH, or RSV administra-
tion [43,46–48,50,51,54], except for the study of Anandhan et al. (2010) [54] that reported
elevated SOD and CAT activities in their PD model. Total antioxidant capacity (T-AOC)
was also increased in response to RSV treatment in the intervention group [44]. One study
also monitored mitochondrial complex-I (MC-1) activity, which was decreased in the PD
model group but significantly increased by RSV treatment [50]. The cellular antioxidant
defense was driven by increased Nrf-2 DNA binding activity in the RSV-treated group
relative to the PD model group [48].

3.6. The Effectiveness of CDCs or RSV to Combat Neuroinflammation

Seven studies investigated the effects of RSV and CDCs on neuroinflammation in ro-
dent brain tissue of the striatum and SNpc [41,42,47,48,51,53,57], and included neurotoxin
models [42,47,48,53,57], a genetic model [51], as well as specific induction of neuroinflam-
mation via LPS treatment [41]. The results of these studies are summarized in Table 6 and
have been divided by their intervention group (BCP, THCV, and RSV), and then ascending
year of study. Five studies showed increased markers of microglia and astrocytes activation
via quantification of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adap-
tor molecule 1 (Iba-1) protein or mRNA levels, and these were significantly reduced via
administration of THCV, BCP, or RSV [41,47,51,53,57]. Inflammatory protein markers and
their complementary mRNA levels were significantly increased in the PD model groups
and this was significantly countered with BCP or RSV treatment [42,47,48,51,53,57]. The
suppressor of cytokine signaling protein 1 (SOCS-1) was detected in α-synuclein transgenic
mice and was significantly upregulated by RSV treatment [53].
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Table 6. Summary of biochemical and immunohistochemical analysis for inflammatory mediators in PD model groups and
interventions.

Author and Year Intervention
Inflammatory Changes
in PD Model Group (vs.

Control)

Level of
Significance

Inflammatory Changes
in Main Intervention
Group (vs. PD Model

Group)

Level of
Significance

Ojha et al. (2016)
[47] BCP

↑, GFAP
↑, Iba-1
↑, IL-1β
↑, IL-6
↑, TNF-α

(p < 0.05)

↓, GFAP
↓, Iba-1
↓, IL-1β
↓, IL-6
↓, TNF-α

(p < 0.05)

Viveros-Paredes
et al. (2017) [57] BCP

↑, GFAP-IR cells
↑, Iba-1-IR cells
↑, IL-1β
↑, IL-6
↑, TNF-α

(p < 0.01)
(p < 0.05)
(p < 0.01)
(p < 0.05)
(p < 0.05)

↓, GFAP-IR cells
↓, IBA-1-IR cells
↓, IL-1β
↓, IL-6

(p < 0.01)
(p < 0.01)
(p < 0.01)
(p < 0.05)

Garcia et al. (2011)
[41] THCV ↑, microglial activation (p < 0.005) ↓, microglial activation (p < 0.05)

Jin et al. (2008) [42] RSV ↑, COX-2
↑, TNF-α mRNA (p < 0.01) ↓, COX-2

↓, TNF-α mRNA (p < 0.01)

Lofrumento et al.
(2014) [53] RSV

↑, GFAP mRNA
expression
↑,

CD11-immunoreactivity
↑, IL-1β mRNA
↑, TNF-α mRNA
↑, IL-6 mRNA
↑, IL-1β R1
↑, TNF-α R1
↑, IL-6Rα
↓, SOCS-1

(p < 0.01)
(p < 0.01)
(p < 0.01)
(p < 0.01)
(p < 0.05)
(p < 0.05)
(p < 0.05)
(p < 0.01)
(p < 0.01)

↓, GFAP mRNA
expression
↓, CD11-

immunoreactivity
↓, IL-1β mRNA
↓, TNF-α mRNA
↓, IL-6 mRNA
↓, IL-1β RI
↓, TNF-α RI
↓, IL-6Rα
↑, SOCS-1

(p < 0.01)
(p < 0.05)
(p < 0.01)
(p < 0.05)
(p < 0.01)
(p < 0.05)
(p < 0.05)
(p < 0.05)
(p < 0.01)

Gaballah et al.
(2016) [48] RSV ↑, striatal IL-1β levels (p < 0.05) ↓, striatal IL-1β levels (p < 0.05)

Zhang et al. (2018)
[51] RSV

↑, GFAP
↑,Iba-1
↑, IL-1β
↑, IL-6
↑, TNF-α

(p < 0.001)
(p < 0.001)
(p < 0.01)
(p < 0.001)
(p < 0.05)

↓, GFAP
↓, Iba-1
↓, IL-1β
↓, IL-6
↓, TNF-α

(p < 0.05)
(p < 0.01)
(p < 0.05)
(p < 0.05)
(p < 0.01)

Abbreviations: BCP, β-caryophyllene; COX-2, cyclooxygenase-2; GFAP, glial fibrillary acidic protein; GFAP-IR, glial fibrillary acidic
protein immunoreactive cells; Iba-1, ionized calcium-binding adaptor molecule-1; Iba-1-IR, ionized calcium-binding adaptor molecule
immunoreactive cells; IL-1β, interleukin-1 beta; IL-1β R1, interleukin-1 beta receptor 1; IL-6, interleukin-6; IL-6Rα, interleukin-6 receptor
alpha; RSV, resveratrol; TNF-α, tumor necrosis factor-alpha; TNF-α R1, tumor necrosis factor-alpha receptor 1; SOCS-1, suppressor of
cytokine signaling 1. ↑, denotes an increase; ↓, denotes a decrease.

3.7. The Anti-Apoptotic Effects of CDCs or RSV

Four studies assessed the anti-apoptotic effects of RSV [44,45,48,52], all of which
utilized neurotoxin models [44,45,48,52]. A summary of the RSV studies is included in
Table 7 and have been divided by the ascending year of study. One study observed
upregulation of apoptotic mediators in the PD model group that was decreased by RSV
administration, with reduced neuronal apoptosis [44]. Procaspase and activated caspase-3
as key inducers of neuronal apoptosis were assessed by three studies, and all displayed
increased caspase levels in PD model groups relative to controls [45,48,52]. Caspase levels
were significantly decreased in groups receiving RSV treatment [45,48,52]. Bcl-2-associated
X protein (Bax) and other pro-apoptotic regulators from the B-cell lymphoma 2 (Bcl-2)
family were upregulated in PD model groups and were significantly reduced by RSV
administration [45]. Increased p62 in nuclear factor kappa beta (NF-κβ) induced autophagy
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and increased acetylated microtubule-associated protein 1A/1B-light chain 3 (LC3-II) were
countered with RSV treatment [52]. Increased C/EBP homologous protein (CHOP) and
glucose regulated protein (GRP78), both apoptotic markers of endoplasmic reticulum (ER)
related oxidative stress, were significantly reduced by RSV treatment [48]. Although CDCs
may exert anti-apoptotic effects, this was not investigated in the studies captured in this
literature review.

Table 7. Summary of biochemical and immunohistochemical analysis for markers of apoptosis PD model groups and
interventions.

Author and Year Intervention
Apoptotic Changes in
PD Model Group (vs.

Control)

Level of
Significance

Apoptotic Changes in
Main Intervention

Group (vs. PD Model
Group)

Level of
Significance

Wang et al. (2011)
[44] RSV ↓, apoptotic nigral cells (p < 0.01) ↓, apoptotic nigral cells (p < 0.01)

Gaballah et al.
(2016) [48] RSV

↑,CHOP and GRP78
↑, striatal caspase-3

activity
(p < 0.05)

↓, CHOP and GRP78
↓, striatal caspase-3

activity
(p < 0.05)

Guo et al. (2016)
[52] RSV

↑, cleaved caspase 3
↓, deacetylated LC3-II

↑, p62

(p < 0.001)
(p < 0.001)
(p < 0.01)

↓, cleaved caspase 3
↑, deacetylated LC3-II

↓, p62

(p < 0.01)
(p < 0.001)
(p < 0.001)

Huang et al. (2019)
[45] RSV

↑, Bax
↑, activated caspase 3

↓, Bcl-2
↓, Pro-caspase-3

expression

(p < 0.01)
(p < 0.01)
(p < 0.05)
(p < 0.01)

↓, Bax
↓, activated caspase 3

↑, Bcl-2
↑, Pro-caspase-3

expression

(p < 0.01)
(p < 0.01)
(p < 0.05)
(p < 0.01)

Abbreviations: Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; CHOP, C/EBP homologous protein; GRP78, glucose regulated
protein 78; LC3-II, microtubule-associated protein 1A/1B-light chain 3; RSV, resveratrol. ↑, denotes an increase; ↓, denotes a decrease.

4. Discussion

This literature review considered the neuroprotective effects of certain CDCs and RSV
for a range of rodent models of PD. Since degeneration of dopaminergic neurons (in the
SNpc) is one of the key pathological hallmarks of PD, quantitative analysis of dopamine
levels and dopaminergic neurons was utilized as a primary indicator for neuroprotection.
The in vivo rodent studies supported the hypothesis that these agents were neuroprotec-
tive against PD and resulted in increased dopamine and dopaminergic neuron levels in
response to CDCs or RSV treatment, consistent with a recent meta-analysis [60]. Collec-
tively, the molecular mechanisms associated with neuroprotection reflected anti-oxidative,
anti-inflammatory, and anti-apoptotic capabilities (Figures 2 and 3).
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Figure 2. Schematic summary of the neuroprotective effects of CDCs or RSV following induction of PD in rodents.
Abbreviations: Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; CAT, catalase; CD11-IR, CD11 immunoreactivity;
CDCs, cannabis-derived cannabinoids; CHOP, CCAAT/enhancer binding protein homologous protein; CS, citrate synthase;
COX-2, cyclooxygenase-2; DHBA, dihydroxybenzoic acid; GFAP, glial fibrillary acidic protein; GPx, glutathione peroxidase;
GR, glutathione reductase; GRP78, glucose-regulated protein 78; GSH, glutathione; 6-OHDA, 6-Hydroxydopamine; Iba-1,
ionized calcium-binding adaptor molecule-1; IL-1β, interleukin-1 beta; IL-6, interleukin-6; LC3-II, microtubule-associated
protein 1A/1B-light chain 3; MC-1, mitochondrial complex 1; MDA, malondialdehyde;; MPTP, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; NO, nitric oxide; Nrf-2 DNA-BA, Nrf-2 DNA binding activity; PCC, protein carbonyl content; ROS,
reactive oxygen species; RSV, resveratrol; SDH, succinate dehydrogenase; SOCS-1, suppressor of cytokine signalling-1; SOD,
superoxide dismutase; TAOC, total antioxidant capacity; TBARS, thiobarbituric acid reactive substances; TNF-α, tumor
necrosis factor-alpha; XO, xanthine oxidase. ↑„ denotes an increase; ↓,denotes a decrease.

4.1. Neuroprotective Effects and Mechanisms
4.1.1. Behavioral Improvements Indicative of Neuroprotection

The reduction in motor and cognitive functions in PD mice models were attributed
to neurotoxin-induced dopaminergic neuron loss within the SNpc, resulting in a dys-
functional striatal pathway and overstimulation of GABAergic neurons innervating the
thalamus [61]. Reduced interconnectivity between the cerebral cortex and basal ganglia
results in an impairment of motor functions [62], and this was evidenced via reduced
performance in rodent behavioral tests. Treatment with CDCs or RSV improved motor
performance and reduced PD symptoms associated with bradykinesia, rigidity, and pos-
tural control. Animals treated with neuroprotective agents displayed reduced catalepsy,
reduction in abnormal behaviors and an overall improvement in movement, strength,
speed, or balance [41–46,48–52,54,56,57].
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Figure 3. Schematic summary of the potential neuroprotective mechanisms of CDCs or RSV in
neurons following induction of PD. Redox stress and the production of reactive oxygen species (ROS)
can damage mitochondria and this can further exacerbate ROS production and trigger the release of
mitochondrial cytochrome-c and induction of apoptosis. ROS also damages cellular protein targets
and induces lipid peroxidation. ROS levels are also elevated in response to inflammatory mediators
released by microglia and astrocytes. CDCs and RSV are neuroprotective and scavenge free radicals
to reduce the levels of ROS and associated cellular redox stress. CDCs or RSV promotes the activity
of PPARs, SOCS-1, and Nrf-2 to reduce inflammation and the induction of ROS.

4.1.2. Anti-Oxidative Effects of Neuroprotective Agents

Neurons are vulnerable to oxidative damage but can mitigate redox stress through
enzymatic and non-enzymatic defense mechanisms [63,64]. THC, BCP, and RSV displayed
anti-oxidative effects via reduced ROS, DHBA, and NO production, with decreased MDA
formation, lipid peroxidation, and PCC, and restoration of tricarboxylic acid cycle enzyme
activities [43,44,46–48,50,51,54,56]. CDCs and RSV promoted upregulation of endogenous
anti-oxidative enzymes and GSH levels to counter cellular redox stress, in part mediated via
increased Nrf-2 activity [43,44,46–48,50,51,54]. However, Anandhan et al. [54] also reported
reduced activity of SOD and CAT with RSV intervention. The polyphenolic structure
of CBD, THC, THCV, and RSV provides a basis for free radical scavenging to mitigate
oxidative stress, although interestingly, BCP was also still able to reduce the production of
MDA [47], a marker of free radical damage to lipid bilayers.

4.1.3. Anti-Inflammatory Effects of Neuroprotective Agents

Neuroinflammation, mediated by activation of astrocytes and microglia, has a critical
role in neurodegenerative diseases including PD [13,65,66], and this may in part relate
to activation of human endogenous retroviruses [66]. Treatment with CDCs and RSV
proved effective at reducing neuroinflammation in rodent PD models, as quantified by
decreased levels of inflammatory protein markers and/or mRNA levels, as well as markers
of activation of astrocytes and microglia [41,42,47,51,53,57]. The anti-inflammatory activity
of CDCs and RSV may reflect activation of PPARs [33,34,67], and arise as a consequence of
reduced oxidative stress [68,69].
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4.1.4. Anti-Apoptotic Effects of RSV

RSV displayed anti-apoptotic effects against nigral degeneration, with increased
apoptotic markers Bcl-2 and pro-caspase 3 observed that paralleled decreased Bax and
activated caspases [45,48,52]. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)
signaling pathway was upregulated by RSV to reduce dopaminergic neuron injury [45].
Akt is involved in homeostatic regulation and is recruited to cell plasma membranes in
response to cell stress, where it is phosphorylated by PDK1 at serine-437 and threonine-
308 [70]. Akt activation can reduce Bax and activate caspase-3 levels to inhibit apoptosis.
RSV treatment resulted in the upregulation of proteins involved in this pathway, and
induced an increased p-Akt (ser437), PI3K-110α, and PDK-1 level, thus inhibiting neuronal
apoptosis in PD rodents [45]. Consistent with a role for Akt, reduced p-Akt was detected
in dopaminergic neurons from the SN in PD patients after analysis of post-mortem brain
tissue [71].

In addition to anti-apoptotic effects, RSV reduced neuronal degradation by induction
of autophagy of misfolded α-synuclein and p62 [52,72]. RSV treatment led to activated
SIRT1, an NAD+-dependent deacetylase that deacetylates LC3-II intracellularly and results
in increased cytoplasmic levels to break down α-synuclein aggregates [52,72,73]. Although
not assessed by the captured references in this review, CDCs may also be cytoprotective
via activation of autophagy [74].

Endoplasmic reticulum (ER) stress occurs in response to an imbalance in ER home-
ostasis as a result of a prolonged accumulation of misfolded or damaged proteins such
as α-synuclein [75]. ER stress activates the unfolded protein response (UPR), and the
apoptotic division of the UPR pathway contributes to the loss of striatal dopaminergic
neurons in PD [76,77]. RSV treatment was able to reduce ER stress through downregula-
tion of the glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein
homologous protein (CHOP) [48,77]. GRP78 forms a complex with misfolded proteins,
in turn initiating the UPR pathway. Overexpression of CHOP in ER stress stimulates the
activation of the pro-apoptotic Bax protein facilitating activation of caspases. This may
be one of the potential mechanisms influencing the beneficial decrease in apoptotic nigral
cells following RSV treatment in rodent studies [44,45,48,52].

4.2. Pro-Dopaminergic Properties of CDC’s May Involve Cannabinoid Receptors

THC is a major cannabinoid constituent of the Cannabis sativa plant and interacts
with the G-protein-coupled cannabinoid receptor 1 (CB1-R) and has a weak affinity for
the cannabinoid receptor 2 (CB2-R) [78]. It might be expected that the attenuation of DA
neuron loss in rodents would arise via stimulation of CB1 receptors in the CNS; however, a
similar neuroprotective response was demonstrated using CBD [40], yet CBD has a low
affinity for CB1 receptors. This suggests that the increase in TH-positive neurons and
reduction in dopaminergic neuron loss could in part be mediated by a CB1-independent
mechanism [40]. This was further supported by a demonstration that the minor phyto-
cannabinoid THCV, which at low dose is a CB1R antagonist and a CB2R agonist, proved
effective at countering a reduction in dopaminergic neuron levels with neuroprotective
effects not attributed to CB1 binding, as a similar result was observed using a CBD derived
drug [41]. Furthermore, the pro-dopaminergic action of THCV as a CB2 receptor agonist
proved viable in an LPS-mediated inflammatory model of PD and demonstrated its anti-
inflammatory potential for treatment in PD [41]. The stimulation of the CB1R by THC
offers symptomatic relief against resting tremor in PD, but there are concerns regarding its
ability to worsen hypokinesia and exhibit unwanted psychotropic effects [79]. In contrast,
CBD is effective at attenuating dopaminergic neuron loss in a PD model [40] and may
not induce the symptomatic complications associated with THC. Furthermore, the poten-
tially beneficial immunomodulatory actions of cannabinoids such as CBD are associated
with agonism to CB2 receptors [80]. Collectively, the neuroprotective effects of CBD may
also be mediated via a number of non-endocannabinoid signaling pathways including
G-protein-coupled receptors, a ligand-gated ion channel, as well as via PPAR-γ [81].
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4.3. Clinical Trials Using Cannabinoids and RSV

Although there is a growing body of evidence from preclinical animal studies that
support the neuroprotective effects of CDCs and RSV for PD, there remains a lack of
corresponding human clinical trials that consider the effects of BCP, THC, THCV, or
RSV. A search of human clinical trials (https://clinicaltrials.gov/ct2/home (accessed on:
21 November 2021) revealed only two studies that investigated the effects of CBD in PD,
with study characteristics summarized in Table 8. An open-label dose-escalation study that
investigated the efficacy of CBD in individuals with PD reported that CBD administration
improved motor movement and sleep quality, evidenced via increased Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) scores, with only mild
adverse effects but with evidence of hepatotoxicity [82]. An exploratory double-blind trial
investigating CBD reported no significant changes in movement scores, although there
was an improvement in the Parkinson’s Disease Questionnaire (PDQ) scores and overall
emotional well-being [83].

Table 8. Summary of the characteristics of clinical human trials investigating the use of CBD in patients with PD.

Author & Year Study Type Population Intervention Study Outcome

Leehey et al. (2020) [82]
NCT02818777

Safety and tolerability
of CBD in PD, open
label dose-escalation

study

13
participants,
mean age 68
(SD = 6) with

PD

CBD: (Epidiolex;
100 mg/mL); 5 to

20–25 mg/kg/day;
10–15 days

Improved MDS-UPDRS scores.
Improved sleep and emotional

dyscontrol scores.
Mild adverse effects including
diarrhea, somnolence, fatigue,

weight gain, dizziness, abdominal
pain, weight loss, headache, nausea,

anorexia, increased appetite.
Increase liver enzyme profile,

cholestatic in nature.

Chagas et al. (2014) [83]
NCT unavailable

CBD as a treatment for
patients with PD,

exploratory
double-blind trial

119
individuals;

PD

CBD; 75 mg/day or
CBD 300 mg/day;

36 days

No significant changes in UPDRS
scores, plasma BDNF levels or

H1-MRS measures.
Improved PDQ scores and overall

emotional well-being.

Abbreviations: BDNF, brain-derived neurotrophic factor; CBD, cannabidiol; H1-MRS, proton magnetic resonance spectroscopy; MDS-
UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; PD, Parkinson’s disease; PDQ, Parkinson’s Disease
Questionnaire; SD, standard deviation.

Bioavailability of CDCs and RSV

The efficacy of CDCs and RSV has been demonstrated in rodent studies and data from
clinical trials has supported the potential safety of CBD and RSV in humans. Nonetheless,
compounds such as RSV have limitations associated with relatively rapid metabolism and
low bioavailability, although this may be combatted by acute dose escalation and/or more
chronic dosing regimens, or utilization of derivatives of RSV [84–88].

Epidiolex, an oral solution of pure CBD has been approved therapeutically, but details
regarding the pharmacokinetics and bioavailability of CBD are limited, with a report
of 31% after smoking [89,90], however, when consumed orally, the bioavailability may
only be as low as 6% [89,91]. Similarly, the oral bioavailability of THC is relatively low
at 6% but increases to 27% when inhaled [92]. Sativex, a cannabis extract oromucosal
spray that contains both ∆9-THC and CBD (and other cannabinoids) also has similar oral
bioavailability to THC alone [93]. Due to the lipophilic nature of CBD, it is also often
prescribed as an oromucousal spray or gel-encapsulation [89]. Moreover, the lipophilicity
of CBD can be intentionally exploited when it is consumed, given that it can dissolve in
high-fat nutrients to form micelle-structures favorable for gastrointestinal tract transport,
thus increasing solubility and bioavailability [91]. However, whether these modifications
result in increased bioavailability remains largely undetermined in humans, and also of
concern is whether increased bioavailability impacts upon side effects, as short-term use of

https://clinicaltrials.gov/ct2/home
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medicinal cannabinoids has a risk of non-serious adverse events and long-term use is as
yet poorly characterized [94].

4.4. Study Limitations

A general limitation of the majority of PD models described is that the neurotoxins
used to induce PD are fast acting and cause a relatively rapid depletion of dopaminergic
neurons, typically within a period of several days, whereas in humans, disease progres-
sion is much slower, and may take two decades for dopaminergic neuron depletion and
establishment of clinical sequelae. Thus, although the described models have proved
useful in establishing pharmacological effects of CDCs and RSV to combat PD pathology,
the acute action of the neurotoxins will not replicate a long-term disease course and the
associated symptomology observed in humans. Therefore, one cannot predict the extent
of the protective effects of CDCs or RSV in the early to moderate stages of PD. Indeed,
an extension of the length of studies may prove useful to evaluate better the behavioral
changes in motor and cognitive function in rodents, as well as increasing the validity of
outcome measures. To that end, there may be a benefit to the use of genetic models of PD
to establish subtle development of the disease over time.

In addition, individual variability with respect to patient age, co-morbidities, and
genetic influences on disease progression cannot be anticipated using rodent models.
Furthermore, although these neurotoxin models produce overlapping endpoints such as
reduced dopamine and dopaminergic neuron levels that mirror the disease pathology,
patients with PD also display non-motor symptoms such as sleep and psychiatric disorders
and clinical overlap with patients with atypical Parkinsonian syndromes; complex sequelae
that have yet to be suitably modelled in vivo.

There is also a risk of experimental and publication bias in these pre-clinical animal
trials. For example, a lack of details concerning blinding in allocation and outcome assess-
ments. Furthermore, all studies cited in this review only performed experiments with male
rodents, and there may well be sex-specific differences in PD pathology. Lastly, although
the majority of studies employed oral and intragastric administration, particularly for RSV,
some of the studies used subcutaneous, intraperitoneal, or intravenous administration
routes, ones less likely to be adopted routinely by humans, and that will also influence
compound bioavailability and pharmacokinetic data.

5. Conclusions and Future Perspectives

To our knowledge, this is the first systematic review that has directly considered the
effects of both selective CDCs and RSV in the neuroprotective treatment of PD. Collectively,
in vivo rodent studies have demonstrated that these natural compounds are efficacious in
their neuroprotection of PD and produced symptomatic benefits. However, there remains
a need to expand these studies to more chronic models and ones able to better reproduce
motor and non-motor symptoms of PD, and for additional studies that consider the benefits
of formulations and derivatives of neuroprotective agents with improved bioavailabil-
ity. Ultimately, further human clinical trials are required to consider the usefulness of
neuroprotective agents for patients with early stage or early onset PD.
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