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Migration in Human Non-Small-Cell Lung Cancer
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Lung cancer is the most common cancer all around the
world, with high morbidity and mortality. Long noncoding
RNA (lncRNA) has been reported to have a critical role in
non-small-cell lung cancer (NSCLC) proliferation and migra-
tion. In the present study, we analyzed The Cancer Genome
Atlas (TCGA) data, and we found that lncRNA Small Nucle-
olar RNA Host Gene 17 (SNHG17) was upregulated in
NSCLC driven by the amplification of copy number, indi-
cating the special role of SNHG17 in NSCLC. The full exact
length of SNHG17 was determined by rapid amplification of
cDNA ends (RACE). We modulated SNHG17 expression by
RNAi and a series of functional assays were performed.
Flow cytometry was used to explore the involvement of
SNHG17 in NSCLC cell apoptosis. Results showed that the
knockdown of SNHG17 inhibited the proliferation and
migration and promoted the apoptosis of NSCLC cells. We
acquired the global gene expression profile regulated by
SNHG17 in A549 through RNA sequencing (RNA-seq) as-
says. We found 637 genes were upregulated while 581 genes
were downregulated. We selected three genes (FOXA1,
XAF1, and BIK) that were closely related to proliferation
and apoptosis, and we confirmed their altered expression
in A549 and PC-9 cells treated with small interfering RNA
si-SNHG17. Our findings indicated gene amplification-
driven lncRNA SNHG17 promotes cell proliferation and
migration in NSCLC, suggesting its potential value as a
biomarker in NSCLC.
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INTRODUCTION
As the most common cancer all around the world, lung cancer is the
leading cause of cancer-related death in the United States.1 NSCLC
accounts for 85% of all lung cancer.2 In spite of recent advances in
the comprehensive treatments like surgical operation, molecular tar-
geted therapy, chemotherapy, and radiation treatment, the overall
5-year survival rate for NSCLC patients remains as low as 15%.3

Thus, a better understanding of the underlying mechanisms and
molecular pathways in NSCLC development and progression is sig-
nificant for the precise treatment of NSCLC.
Molecular Therapy
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With the development of high-throughput transcriptome analysis in
the last few years, it was found that over 90% of the total mamma-
lian genome can be transcribed but does not encode proteins.4 As a
new class of noncoding RNA (ncRNA), long ncRNA (lncRNA) of
>200 nt was found to be promoted or reduced in some diseases,5,6

particularly in cancer.7–10 Aberrant expressions of lncRNAs exert
oncogenic and suppressive functions in cancer like breast can-
cer,11,12 gastric cancer,13 urothelial tract cancer,14 and NSCLC.15,16

SNP-mediated activation of lncRNA PCAT19 interacts with
HNRNPAB to promote prostate cancer growth and metastasis.17

Growing evidence indicates that lncRNAs play a vital role in the
proliferation18,19 and migration20,21 of NSCLC.22–24 For example,
LINC0026 can regulate activation of the DNA damage response
via phosphorylation in NSCLC.25

Small Nucleolar RNA Host Gene 17 (SNHG17, a 1,186-nt lncRNA)
is located on 20q11.23. It has been reported to be an unfavorable
prognostic factor in colorectal cancer (CRC), and it promotes
CRC cell proliferation by epigenetically silencing P57.26 However,
the expression and function of SNHG17 in NSCLC remain unclear.
Also, the exact sequence of SNHG17 hasn’t been reported yet. So
we focused on its specific character in NSCLC. In this study, we
found that gene amplification of SNHG17 could induce the over-
expression of SNHG17 in NSCLC, by analyzing The Cancer
Genome Atlas (TCGA) database; and, we acquired the exact
sequence of SNHG17. Then, we found that knockdown of
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Figure 1. Expression of SNHG17 in NSCLC and

Pancancer

(A) Data collected from TCGA database showed relative

expression of SNHG17 in LUAD (n = 488) and LUSC (n =

220) tissues and nontumorous tissues (n = 58, n = 17). (B)

Data collected from TCGA database of pan-cancer

showed relative expression of SNHG17 in several cancers

and nontumorous tissues. *p < 0.05 and **p < 0.01.
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SNHG17 could inhibit the proliferation and migration and pro-
mote the apoptosis of NSCLC cells. In addition, we screened out
the potential downstream gene of SNHG17 by RNA sequencing
(RNA-seq) assays after knockdown of SNHG17 in NSCLC cells.
Our data demonstrated the important roles of SNHG17 in NSCLC
oncogenesis, and it might serve as a target for NSCLC diagnosis
and therapy.
RESULTS
Gene Amplification-Driven SNHG17 Overexpression in NSCLC

To identify the various expressions of SNHG17 between lung tumors
and normal tissues, we analyzed TCGA data of NSCLC. We included
488 lung adenocarcinoma (LUAD) and 58 normal tissues; 220 lung
squamous cell carcinoma (LUSC) and 17 normal tissues in TCGA
were also analyzed. Overexpression of SNHG17 in NSCLC was
confirmed, both LUAD and LUSC included (Figure 1A). In addition,
the higher expression of SNHG17 in multiple cancers was proven by
pan-cancer analysis, indicating that SNHG17 may play a comprehen-
sive role in tumorigenesis (Figure 1B).

We also found that the expression of SNHG17 was significantly corre-
lated with the copy number level in LUAD (N = 486, Cor = 0.39, p <
2.2e�16) and LUSC (N = 220, Cor = 0.30, p = 4.331e�6) (Figure 2A).
It indicated that the increase in SNHG17 in NSCLCmay be partly due
to the amplification of copy number. As a lncRNA, the exact sequence
of SNHG17 in NSCLC hasn’t been identified yet. We performed rapid
amplification of cDNA ends (RACE), and we determined its full exact
length is 1,118 nt in the A549 cell (Figure 2B).
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Downregulation of SNHG17 Inhibits NSCLC

Cell Proliferation and Migration

We modulated SNHG17 expression by RNAi.
After 48h post-transfection, SNHG17 expression
was knocked down in A549 and PC-9 cells when
compared with control (Figure 3A). To investi-
gate the influence of SNHG17 knockdown on
NSCLC cell proliferation, we performed the
methylthiazol tetrazolium (MTT) assay. The
result of theMTT assay showed that the silencing
of SNHG17 greatly inhibited both A549 and
PC-9 cell proliferation (Figure 3B). Moreover,
the colony formation assays also proved this
result. The clonogenic survival of A549 and PC-
9 cellswas reducedby the SNHG17decrease (Fig-
ure 3C). Ethynyldeoxyuridine (EdU) staining assays also demonstrated
that the proliferation capacity of A549 was reduced by the knockdown
of SNHG17 (Figure 4A). Transwell assays were used to explore migra-
tionofNSCLCcells.As shown inFigure 3D, themigrations ofA549 and
PC-9 cells were remarkably inhibited after the knockdown of SNHG17.
These results indicated that the inhibition of SNHG17 significantly
reduced the NSCLC cell proliferation and migration.

SNHG17 Regulates NSCLC Cell Proliferation by Affecting the

Cell Apoptosis

Apoptosis has crucial roles in the proliferation of cancer cells.27 To
figure out the role of apoptosis in NSCLC cell proliferation after the
knockdown of SNHG17, we used flow cytometry to explore the
involvement of SNHG17 in NSCLC cell apoptosis. Figure 4B shows
that the percentages of apoptotic cells in A549 cells transfected with
small interfering RNAs si-SNHG17 1 and si-SNHG17 2 were signif-
icantly higher compared to the cells treated with scrambled control.
Our findings suggested that the downregulation of SNHG17 signifi-
cantly increased NSCLC cell apoptosis in A549 cells. SNHG17 could
regulate NSCLC cell proliferation by affecting the cell apoptosis.

The Global Gene Expression Profile Regulated by SNHG17 in

NSCLC Cells

Although former reports have confirmed the function of SNHG17 in
CRC,26 the exact downstream global gene expression profile of
SNHG17 still has remained unknown. To figure out the potential
downstream gene of SNHG17, we used RNA-seq assays to
acquire the global gene expression profile regulated by SNHG17.
The RNA-seq experiment was performed after SNHG17 knockdown



Figure 2. The CNV and Sequence of SNHG17 in NSCLC

(A) A positive correlation between SNHG17 gene copy number and its RNA expression was observed in TCGA data of LUAD (N = 486, Cor = 0.39, p < 2.2e�16) and LUSC

(N = 220, correlation coefficient [Cor] = 0.30, p = 4.331e�6). (B) The 30 RACE of SNHG17 and the 50 RACE of SNHG17, the full-length amplification of SNHG17, and the full

sequence of SNHG17 confirmed by RACE. *p < 0.05 and **p < 0.01.
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by si-SNHG17 in A549 cells. We found 637 protein-coding genes
were upregulated while 581 protein-coding genes were downregu-
lated (p < 0.05; data are available in Table S2).

Gene ontology (GO) terms of all significant genes demonstrated that
most of these genes were related to the proliferation and apoptosis of
cells (Figure 5A). We selected three genes (FOXA1,28 XAF1,29 and
BIK30) that were closely related to proliferation and apoptosis. Reports
demonstrated that FOXA131 was increased while XAF132 and BIK33

were decreased in lung cancer. FOXA1 couldbe upregulatedby lncRNA
LOC730100 to promote cancer proliferation.34 Overexpression of
XAF1 induced apoptosis in lung cancer cells.29 BIK could antagonize
the pro-proliferative activity of ERK1/233 in lung cancer. So we per-
formed qRT-PCR and western blot to confirm their altered expression
in A549 and PC-9 cells treated with si-SNHG17. FOXA1 was inhibited
while XAF1 and BIKwere promoted at the mRNA and protein expres-
sion levels after the SNHG17 knockdown (Figures 5B and 5C).

DISCUSSION
As the leading cause of death all around the world, lung cancer has
attracted lots of attention, and it is urgent to figure out the underlying
mechanism. Recent studies reported the great significance of
lncRNAs in the development of NSCLC, such as PVT124and
HOTAIR,35 indicating their specific roles in NSCLC. In our study,
we focused on lncRNA SNHG17. We confirmed the upregulation
of SNHG17 in pan-cancer, especially in NSCLC. Then we identified
its exact full-length sequence in NSCLC through RACE. The loss-
of-function experiments proved that knockdown of SNHG17 in-
hibited the proliferation and migration of NSCLC cells. Apoptosis
was promoted after the knockdown of SNHG17. We also acquired
the global gene expression profile regulated by SNHG17 in A549 cells,
and we confirmed several downstream genes that may contribute to
the proliferation and apoptosis. The lncRNA SNHG17 has been re-
ported to be an oncogene in CRC.26 It contributed to the proliferation
of CRC cells, which was consistent which our results. However,
they didn’t report the full length of SNHG17 and the global gene
expression profile affected by SNHG17. Our findings can provide
more information about SNHG17 in cancer cells.

Williams and Farzaneh36 proposed that the SNHG family might
contribute to the etiology of cancer. The SNHG family was proven
to interact with classic tumor-related genes like MYC37 and p53.38
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Figure 3. Downregulation of SNHG17 Inhibits NSCLC

Cell Proliferation and Migration

(A) qRT-PCR assays examined the knockdown of

SNHG17 in A549 and PC-9 cells by small interfering RNA

(siRNA). (B) MTT assays were performed to detect the

viability of A549 and PC-9 cells treated with si-SNHG17.

(C) Colony formation assays were used to determine the

proliferation of si-SNHG17-treated A549 and PC-9 cells.

(D) The migration ability of A549 and PC-9 cells was tested

by Transwell assays. *p < 0.05 and **p < 0.01.
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SNHG1, a typical example of the SNHG family, can directly regulate
various genes’ expressions both in trans and in cis.39 In common
with other lncRNAs, SNHG1 also can act as a competing endogenous
RNA (ceRNA) to interact with several microRNAs and, consequently,
exert influence on cancer cells. Xiao et al.40 demonstrated that a high
expression of SNHG1 correlated with poor clinical outcomes in eight
solid tumors, including NSCLC, osteosarcoma, and CRC. SNHG20 is
another vital member of the SNHG family and acts as an oncogene. It
can regulatemalignant behaviors of tumor by spongingmicroRNAs.41
408 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
SNHG20 can interact with HER2, which is an
important biomarker in breast cancer therapy,
via miR-495.42 Our group also revealed that
SNHG20 promotes the tumorigenesis of NSCLC
by epigenetically silencing P21.43 From the above,
we can see the complicated molecular mecha-
nism and clinical significance behind the SNHG
family in cancer.

In our study, we have proven the high expression
and the function of SNHG17 in NSCLC. The un-
derlying downstream gene was screened through
RNA-seq assays. We authenticated three poten-
tial downstream genes (FOXA1, XAF1, and
BIK), which showed differential expressions after
the transfection with si-SNHG17 by qRT-PCR
and western blot. They may be the potential tar-
gets of SNHG17 in NSCLC for their contribu-
tions to the proliferation and apoptosis of can-
cer.28–30 FOXA1 has been well reported to be a
promising prognostic marker in cancer like
breast cancer.44 It can also enhance the chemo-
resistance in NSCLC via interacting with non-
coding RNAs.45,46 In our study, FOXA1 was
also downregulated along with the knockdown
of SNHG17. It indicated the synergistic effect be-
tween SNHG17 and FOXA1.

On the contrary, XAF1 and BIK were confirmed
to be overexpressed after the inhibition of
SNHG17. XAF1 has been well proven to be a tu-
mor suppressor, which can promote the
apoptosis of cancer cells.47 Its expression was
markedly reduced in NSCLC tumor samples.32 Previous study
confirmed that XAF1 overexpression can promote the apoptosis of
A549 cells both in vivo and in vitro.48 Our result confirmed the upre-
gulation of XAF1 induced by SNHG17 knockdown. SNHG17 may
contribute to the carcinogenesis of NSCLC through the inhibition
of XAF1. BIK, a member of the Bcl2 family, has been recognized as
a tumor suppressor for its key role in pro-apoptosis.30 The suppres-
sion of BIK can be seen in cigarette smokers, and it leads to the devel-
opment of lung cancer via multiple mechanisms like ERK1/2.33



Figure 4. SNHG17 Regulates NSCLC Cell Proliferation by Affecting the Cell Apoptosis

(A) Proliferous A549 cells were displayed by EdU immunostaining assays. (B) Apoptotic rates of A549 cells were detected by flow cytometry assays. *p < 0.05 and **p < 0.01.
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Reports showed that classic chemotherapeutic agents such as doxoru-
bicin could activate BIK expression.49 The activation of BIK has been
confirmed to induce significant cancer cell death both in vivo and
in vitro.30 Moreover, gene therapy targeted on BikDD, a constitutively
active mutant form of BIK, caused immune anticancer response in
lung cancer.50 Since our results revealed significant upregulation of
BIK after SNHG17 knockdown, they indicate that the SNHG17/
BIK axis has great potential in NSCLC gene-targeting therapy.

In summary, we found that SNHG17 was upregulated in lung cancer
driven by the amplification of copy number, and we identified its
exact sequence. We demonstrated that the downregulation of
SNHG17 inhibited cell proliferation and migration and promoted
apoptosis. We also gained the global gene expression profile regulated
by SNHG17 by RNA-seq assays, and we confirmed three underlying
downstream genes. Hence, our study elucidates the function of
SNHG17 and explores its potential target genes in NSCLC. lncRNA
SNHG17 plays a vital role in NSCLC and needs further investigation
to find out its specific underlying mechanism.

MATERIALS AND METHODS
Cell Lines and Culture Conditions

The human NSCLC cell lines (A549 and PC-9) were purchased from
the Institute of Biochemistry and Cell Biology of the Chinese Academy
of Sciences (Shanghai, China). A549 cells were cultured in RPMI 1640
medium, and PC-9 cells were cultured in DMEM (Gibco-BRL, Invitro-
gen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin (Invitrogen,
Carlsbad, CA, USA) at 37�C and 5% CO2.

RACE

5ʹ RACE and 3ʹ RACE were performed using SMART RACE cDNA
Amplification Kit (Clontech Laboratories, Palo Alto, CA, USA), ac-
cording to the manufacturer’s instructions.
RNA Extraction and qRT-PCR Assays

Total RNA was isolated with Trizol reagent (Invitrogen, Carlsbad,
CA, USA), according to the manufacturer’s instructions. Total RNA
(1,000 ng) was reverse transcribed in a final volume of 10 mL using
random primers under standard conditions for the PrimeScript RT
reagent kit (TaKaRa, Dalian, China). We used the SYBR Premix Ex
Taq (TaKaRa, Dalian, China) to determine SNHG17 expression
levels, following the manufacturer’s instructions. Results were
normalized to the expression of glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH). (Data are available in Table S1.) Results were
analyzed and expressed relative to threshold cycle (CT) values, then
converted to fold changes.

Cell Transfection

The small interfering RNAs si-SNHG17 and si-NC were transfected
into PC-9 and A549 cells. A549 and PC-9 cells were grown in
6-well plates until confluent, then transfected with Lipofectamine
2000 (Invitrogen, Shanghai, China), according to the manufacturer’s
instructions. At 48 h post-transfection, cells were harvested for qRT-
PCR. The sequences of siRNAs are shown in Table S1.

Cell Proliferation Assays

Cell proliferation was monitored using a Cell Proliferation Reagent
Kit I (MTT) (Roche, Basel, Switzerland). A549 and PC-9 cells trans-
fected with si-SNHG17 (2,000 cells/well) were grown in 96-well
plates. Cell proliferation was assessed every 24 h following the man-
ufacturer’s protocol. For the colony formation assays, a certain num-
ber (1,000 cells/well) of transfected cells was placed into each well of a
6-well plate andmaintained inmedia containing 10% FBS for 2 weeks,
replacing the medium every 4 days. Colonies were fixed with meth-
anol and stained with 0.1% crystal violet (Sigma-Aldrich, St. Louis,
MO, USA) in PBS for 15 min. The colony formation was determined
by counting the number of stained colonies. Triplicate wells were
measured in each treatment group.
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Figure 5. The Global Gene Expression Profile Regulated by SNHG17 and Potential Target Genes

(A) Mean-centered, hierarchical clustering of gene transcripts altered (R2-fold change) after the knockdown of SNHG17 in A549 cells, with three repeats. Gene ontology

analysis was performed for all genes with altered expressions after the knockdown of SNHG17. (B) The alteredmRNA levels of genes were selectively confirmed by qRT-PCR

after SNHG17 knockdown in A549 and PC-9 cells. (C) The altered protein levels of genes were detected by western blot after SNHG17 knockdown in A549 and PC-9 cells.

*p < 0.05 and **p < 0.01.
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Cell Migration Assays

For the migration assays, at 24 h post-transfection, 2*104 cells in
serum-free medium were placed into the upper chamber of an insert
(8 mm; BD Biosciences). Medium containing 10% FBS was added to
the lower chamber. After incubation for 24 h, the cells remaining on
410 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
the upper membrane were removed with cotton wool. Cells that had
migrated or invaded through the membrane were stained with meth-
anol and 0.1% crystal violet, imaged, and counted using an IX71 in-
verted microscope (Olympus, Tokyo, Japan). Experiments were inde-
pendently repeated three times.
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EdU Analysis

Proliferating cells were assessed using an EdU-labeling/detection kit
(Ribobio, Guangzhou, China), based on the manufacturer’s protocol.
Cells were grown in 24-well plates at 2 � 104 cells/well. At 48 h after
transfection, 50 mM EdU-labeling medium was added to cell culture
and incubated for 2 h at 37�C under 5% CO2. Next, the cultured cells
were treated with 4% paraformaldehyde (pH 7.4) and then 0.5%
Triton X-100 for 30 min and 20 min, respectively, at room tempera-
ture. Then the cells were stained with anti-EdU working solution and
subsequently incubated with 300 mL Hoechst 33342 (5 mg/mL). The
percentage of EdU-positive cells was observed under laser-scanning
confocal microscopy.

Flow Cytometry Analysis

A549 cells were harvested 48 h post-transfection by trypsinization.
Using the fluorescein isothiocyanate (FITC) Annexin V Apoptosis
Detection Kit (BD Biosciences), double staining with FITC-Annexin
V and propidium iodide (PI) was performed following the protocol.
Then the cells were analyzed by flow cytometry (FACScan, BD Biosci-
ences) with CellQuest software (BD Biosciences). Cells were classified
into viable, dead, early apoptotic, and apoptotic cells, and the ratio of
early apoptotic cells was compared with the control for each experi-
ment. All of the samples were assayed in triplicate.

Whole-Transcriptome Deep Sequencing

Total RNAs from the A549 cells with SNHG17 knockdown and con-
trol A549 cells were isolated and quantified. The concentration of
each sample was measured by NanoDrop 2000 (Thermo Scientific,
USA). The quality was assessed by the Agilent2200 (Agilent, USA).
The sequencing library of each RNA sample was prepared by using
Ion Proton Total RNA-Seq Kit version (v.)2, according to the proto-
col provided by the manufacturer (Life Technologies, USA). Mapping
of the single-end was read. Before read mapping, clean reads were ob-
tained from the raw reads by removing the adaptor sequences, reads
with >5% ambiguous bases (noted as N) and low-quality reads
containing more than 20% of bases with qualities of <13. The clean
reads were then aligned to the human genome (version GRCh38) us-
ing the MapSplice program (v.2.1.8). HTseq51 was used to count
genes and the reads per kilobase per million mapped reads (RPKM)
method was used to determine the gene expression. We applied the
DESeq52 algorithm to filter the differentially expressed genes after
the significant analysis, p value, and FDR analysis under the following
criteria:53 (1) fold change >2 or <0.5 and (2) FDR < 0.05. We depos-
ited the sequencing data in GEO: GSE131543 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE131543). Data are available in
Table S2.

GO Analysis

GO analysis was performed to facilitate elucidating the biological im-
plications of unique genes in the significant or representative profiles
of the target gene of the differentially expressed mRNA in the exper-
iment.54 We downloaded the GO annotations from NCBI (https://
www.ncbi.nlm.nih.gov/), UniProt (https://www.uniprot.org/), and
Gene Ontology Resource (http://geneontology.org/). Fisher’s exact
test was applied to identify the significant GO categories and FDR
was used to correct the p values.
Western Blot

The cells were lysed using mammalian protein extraction reagent ra-
dioimmunoprecipitation assay lysis buffer (RIPA; Beyotime, Haimen,
China), supplemented with protease inhibitor cocktail (Roche) and
PMSF (Roche). 50 mg of the protein extractions was separated by
10% SDS-PAGE, transferred to 0.22-mm nitrocellulose (NC) mem-
branes (Sigma-Aldrich), and incubated with specific antibodies. The
autoradiograms were quantified by densitometry (Quantity One soft-
ware). Anti-FOXA1 (ab23738), Anti-BIK (ab52182), and Anti-XAF1
(ab17204) were from Abcam. Results were normalized to the expres-
sion of GAPDH.
Statistical Analysis

Student’s t test (two tailed), paired t test, and one-way ANOVA test
were used to analyze data with SPSS 16.0 software (IBM, Chicago,
IL, USA); p values less than 0.05 were considered statistically
significant.
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