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Abstract: A novel two-branched twistacene (PyDN) has been designed and synthesized for applica-
tion on ultrafast optical limiting. This twistacene exhibits excellent two photon absorption and two
photon absorption-induced excited singlet state absorption, which was systematically investigated
with a femtosecond Z-scan experiment, transient absorption spectrum, and two-photon excited
fluorescence experiments. The admirable two photon absorption is attributed to the high degree of π
electron delocalization in twistacene which is caused by introduction of two strong donors. The ex-
cited singlet state absorption cooperates with two-photon absorption to provide an excellent ultrafast
optical limiting behavior with high linear transmittance, where the thresholds are 2.3–5.3 mJ/cm2

in the spectral region of 532–800 nm of femtosecond laser and 133 mJ/cm2 for picosecond pulse at
532 nm. These thresholds are lower than that of most of the optical limiters reported previously,
which indicates PyDN is a promising candidate for ultrafast optical limiting.

Keywords: twistacenes; optical limiting; two photon absorption; excited singlet state absorption

1. Introduction

With the advancement of advanced laser techniques, ultrafast lasers have been widely
applied to various fields such as machining, energy conversion, imaging, communications,
surgery, and medicine [1–3]. Developing optical limiting (OL) materials to protect human
eyes and sensitive instruments from high-intensity ultrafast lasers damage is increasingly
important. In recent years, great efforts have been devoted to various OL materials such
as graphene families [4,5], nanomaterials [6,7], organic compounds [8,9], and so on [10].
Among them, organic π-conjugated compounds have received more attention due to their
structural flexibility, the easy fabrication of devices and strong nonlinear optical absorption.
For most OL materials, optical nonlinear response is based on nonlinear scattering or excited
triplet state absorption of materials [11,12]. These materials are usually highly efficient for
long laser pulses (nanoseconds), but are weak for ultrashort laser pulses (femtoseconds and
picoseconds for examples). In this case, utilizing two-photon absorption (TPA) induced
excited singlet state absorption to realize ultrafast broadband OL behavior is one feasible
way to avoiding this disadvantage. Moreover, if the lifetime of the excited-state lifetime in
these materials falls into the long pulse duration of the laser, an OL response for different
laser pulses could be realized. The TPA is a broadband absorption behavior and can cover
a wide spectral region from visible to near-infrared. Together with a broadband excited
state absorption (ESA), OL performance will be significantly improved under the various
wavelengths, which is a key factor to realize the broadband response to different input
laser wavelengths. In addition, the zero contribution of one photon absorption in this
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process will provide a high optical transparency, avoiding the loss of light under low laser
beam intensity caused by linear absorption [13–16]; however. constructing these materials
remains a challenge.

Twistacenes, as a member of polyclic aromatic hydrocarbons (PAHs) families, con-
tain rigid pyrene units and terminal linked acenes [17,18], which possess a very large π

conjugate system and exhibit excellent electro-optical activity [19–22]. Interestingly, the
formed twistacenes exhibit the excellent nonlinear absorption (NLA) properties, which
are favorable for OL application, and have attracted our attention. Chen et al. found that
end-modified unsymmetrical twistacenes possessed broadband excited state absorption
behavior [23]. Then, Wu et al. reported a series of spindle-type conjugated twistacenes
dimer, where the TPA-induced excited singlet state absorption of these twistacenes was
investigated and confirmed. Moreover, extending the π-conjugated framework in these
twistacenes can enlarge the ESA on singlet state, while it retains its broad excited-state
absorption spectrum [24]. Song et al. reported a class of phenylacetylene-functionalized
twistacenes and twistfuranacenes, and found that the two-photon absorption performance
of materials was heavily dependent on the terminal substituted group. The triphenylamine
decorated twistacenes exhibited enhanced two-photon absorption behavior, which was
ascribed to the introduction of a strong donor into the twistacene unit, which efficiently
improved the degree of delocalization of π electrons in twistacenes [25]. These observa-
tions inspired us to construct new twistacenes with strong a NLA ability for ultrafast
OL application.

In this work, we designed and synthesized a novel twistacene (PyDN in Scheme 1),
which contains of a twistacene unit and two strong donors (N,N-dimethylaniline), and
systematically investigated the TPA and excited-state dynamics of PyDN with a fem-
tosecond Z-scan experiment, transient absorption, and two-photon excited fluorescence
experiments. Benefiting from the good overlap of TPA and ESA, PyDN exhibits excellent
ultrafast broadband OL performance in femtoseconds and picoseconds regimes.
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Scheme 1. Molecular structures of PyDN.

2. Results and Discussion
2.1. Molecular Design and Synthesis

Nonlinear optical properties of organic materials originate from the efficient delocal-
ization of the π-electron. Extending π-conjugated frameworks of a system and introduction
of donor or acceptor groups are well-known strategies to improve the NLA property of
materials [16,26]. Previous reports showed that the introduction of a strong donor into the
twistacene unit could efficiently enhance two-photon absorption capacity in one-branched
twistacenes [25]. In addition, a multi-branched structure could provide a larger conjugate
system than a one-branched structure, which is expected to improve the OL performance of
materials [27,28]. Hence, we designed a two-branched twistacene structure by decorating
the strong donor group (N,N-dimethylaniline) with acetylene bond as π bridge in adjacent
position. This structure possesses an extended π-conjugated system and strong donor,
which is expected to improve the OL performance of twistacene. A synthetic route to
PyDN is depicted in Scheme 2. PyDN was prepared from disubstituted twistacene 1 and
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4-ethynyl-N,N-dimethylaniline, catalyzed by Pd(PPh3)2Cl2 via a Sonogashira reaction.
PyDN was characterized by 1H NMR, 13C NMR spectroscopy and mass spectroscopy (See
the Supplementary Material).
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2.2. Electronic Structure Analysis

To gain insight into the NLA properties of PyDN, theoretical calculations were con-
ducted using a Gaussian 09 software package [29]. The ground states molecule were
optimized using the B3LYP/6-31G(d,p) level of density functional theory (DFT), and the
excitation energy was calculated by using the time-dependent density functional theory
(TD-DFT) at same level. After that, the natural transition orbitals (NTOs) calculation was
performed to describe the electronic structure characteristics on the excitation states. The
calculated result is illustrated in Figure 1.
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The optimized structures show these two modified groups are almost coplanar with
the terminal acene structure of twistacene unit. Even though these two modified groups
are decorated in adjacent positions of one benzene ring of a twistacene, the introduction
of acetylene bonds as a π bridge results in almost no steric hindrance effect between both
modified groups. This planar conformation does not cause the twisted intramolecular
charge transfer, which is beneficial to the enhancement of TPA [30]. The result of NTOs
shows that hole orbital is mainly localized on whole molecular skeleton including the
twistacene unit and two modified groups, whereas the distribution of electron orbitals
is more localized on the twistacene unit. These observations show that the absorption
mainly originates from π–π* transitions, including a certain amount of π electron transfer
from modified group to twistacene unit in the process of absorption. The distribution of
hole orbitals indicates that the whole molecular skeleton participates in the NLA process,
thus resulting in larger delocalization area, which is conducive to the enhancement of
TPA. Moreover, transferring a certain amount of π electrons to a twistacene will activate
the activity of twistacene with a large conjugated system, which is a benefit to π electron
delocalization. Compared withs other twistacenes [23,25], the two-branched twistacene
PyDN possess a higher degree of π electron delocalization, which is mainly caused by the
extending conjugated plane of the system. To further research the substituent effects, a
class of similar twistacenes are designed and calculated for comparison, and the calculated
results are illustrated in Figure S2. The distributions of orbitals in these three twistacenes are
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wider than their corresponding one-branched structures [25], indicating the two-branched
architectures can provide more of an NLA response. An obvious charge separation in
NTOs can be observed in the twistacene with strong acceptor moieties (4-nitrobenzene),
which will provide a small distribution of delocalized π electrons and is unfavorable to
the enhancement of NLA [30]. In addition, the charge transfer from substituent group
to twistacene unit is enhanced by increasing the electron-donating ability of substituent
groups, which will be better to activate the large conjugated twistacene units and cause a
higher degree of π electrons delocalization. These results show that PyDN possesses a high
degree of π electron delocalization, and thus, it could maybe provide excellent NLA [16,26].

2.3. UV-Vis Absorption and Emission

The UV-vis absorption and emission spectra of PyDN were investigated in toluene
solution (1 × 10−5 M) at ambient condition. As shown in Figure 2, compounds of PyDN
show obvious absorption in the spectral region of 300–481 nm with absorption bands
at 342 nm, 359 nm, and 375 nm, which are assigned to the n–π* and π–π* transition of
the skeleton. Compared with single modify group decorated twistacenes [25], there is a
slight red shift, which is caused by the extending conjugated system. When excited at
359 nm, PyDN emitted light centered at 459 nm with quantum yields (ΦF) of 0.38, using
9,10-diphenylanthracene (ΦF = 0.95 in ethanol) as a standard. The optical energy gaps (Eg)
were calculated to be 2.60 eV, according to the absorption edges at 480 nm in toluene.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 12 
 

 

PyDN possess a higher degree of π electron delocalization, which is mainly caused by the 
extending conjugated plane of the system. To further research the substituent effects, a 
class of similar twistacenes are designed and calculated for comparison, and the calculated 
results are illustrated in Figure S2. The distributions of orbitals in these three twistacenes 
are wider than their corresponding one-branched structures [25], indicating the two-
branched architectures can provide more of an NLA response. An obvious charge separa-
tion in NTOs can be observed in the twistacene with strong acceptor moieties (4-nitroben-
zene), which will provide a small distribution of delocalized π electrons and is unfavora-
ble to the enhancement of NLA [30]. In addition, the charge transfer from substituent 
group to twistacene unit is enhanced by increasing the electron-donating ability of sub-
stituent groups, which will be better to activate the large conjugated twistacene units and 
cause a higher degree of π electrons delocalization. These results show that PyDN pos-
sesses a high degree of π electron delocalization, and thus, it could maybe provide excel-
lent NLA [16,26].  

2.3. UV-vis Absorption and Emission 
The UV-vis absorption and emission spectra of PyDN were investigated in toluene 

solution (1×10−5 M) at ambient condition. As shown in Figure 2, compounds of PyDN 
show obvious absorption in the spectral region of 300–481 nm with absorption bands at 
342 nm, 359 nm, and 375 nm, which are assigned to the n–π* and π–π* transition of the 
skeleton. Compared with single modify group decorated twistacenes [25], there is a slight 
red shift, which is caused by the extending conjugated system. When excited at 359 nm, 
PyDN emitted light centered at 459 nm with quantum yields (ΦF) of 0.38, using 9,10-di-
phenylanthracene (ΦF = 0.95 in ethanol) as a standard. The optical energy gaps (Eg) were 
calculated to be 2.60 eV, according to the absorption edges at 480 nm in toluene. 

 
Figure 2. UV-vis absorption (red line) and emission (blue dots) spectra of PyDN in toluene. Insets 
is photograph achieved under black back light with excitation at 365 nm in toluene. 

2.4. Open Aperture Z-scan and Transient Absorption Spectrum Experiments 
NLA response of PyDN in toluene with a concentration of 2.4×10−3 M was investi-

gated by an open aperture Z-scan experiment. Yb:KGW fiber laser equipment (Light Con-
version, PHAROS-SP) with an optical parametric amplifier (OPA, Light Conversion), 
which delivers tunable wavelength with ~190 fs pulses, was used as a laser light source, 
where laser frequency was set at 20 Hz to exclude NLO response from thermal effect. The 
background signal of toluene solvent was tested to guarantee an NLA signal in the Z-scan 
that comes from PyDN. A broadband NLA is more favorable for the application of ultra-
fast OL, hence NLA capacity of PyDN was investigated in a wide optical window from 
532 nm to 800 nm. The transmittance of the sample was recorded by a power meter, and 
the experimental data were shown in Figure 3a. PyDN possesses excellent reverse satura-
ble absorption behavior in the wide spectral region, suggesting that PyDN is a good 
broadband optical limiting material. To investigate the mechanism of absorption, the 

Figure 2. UV-vis absorption (red line) and emission (blue dots) spectra of PyDN in toluene. Insets is
photograph achieved under black back light with excitation at 365 nm in toluene.

2.4. Open Aperture Z-scan and Transient Absorption Spectrum Experiments

NLA response of PyDN in toluene with a concentration of 2.4 × 10−3 M was inves-
tigated by an open aperture Z-scan experiment. Yb:KGW fiber laser equipment (Light
Conversion, PHAROS-SP) with an optical parametric amplifier (OPA, Light Conversion),
which delivers tunable wavelength with ~190 fs pulses, was used as a laser light source,
where laser frequency was set at 20 Hz to exclude NLO response from thermal effect.
The background signal of toluene solvent was tested to guarantee an NLA signal in the
Z-scan that comes from PyDN. A broadband NLA is more favorable for the application
of ultrafast OL, hence NLA capacity of PyDN was investigated in a wide optical window
from 532 nm to 800 nm. The transmittance of the sample was recorded by a power meter,
and the experimental data were shown in Figure 3a. PyDN possesses excellent reverse
saturable absorption behavior in the wide spectral region, suggesting that PyDN is a good
broadband optical limiting material. To investigate the mechanism of absorption, the open-
aperture Z-scan experiments with different input intensities of laser beams were carried
out at 532 nm and shown in Figure 3b.
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The nonlinear absorption coefficient at can be calculated by using the following
equation [31],

T(z) =
∞

∑
m=0

[
−βe f f ILe f f /(1 + z2/z2

0)
]m

(m + 1)3/2 (1)

where I is the input intensity of the laser beam, βeff is effective NLA coefficients, α0 is the
linear absorption coefficient, Le f f = [1 − exp(−α0L)]/α0 represents the sample thickness,
and z0 and z represent the diffraction length of the beam and the propagation axis coordi-
nate, respectively. The calculated βeff is nearly proportional, thus increasing the function of
input intensity I (Figure 3c), which indicates that there is not only mechanism of third-order
nonlinear absorption but also a contribution from a higher-order nonlinear response. Con-
sidering the zero contribution from one-photon absorption under selected wavelengths, the
absorption process of PyDN may be assigned to a two-photon (TPA)-induced excited state
absorption [14,32]. As three photons are absorbed in the process, TPA-induced excited-state
absorption is therefore an effective fifth-order nonlinear absorption.

To validate this absorption process, a femtosecond transient absorption experiment
was carried out to investigate the dynamics of excited state in PyDN, and the wavelength of
pump light was set to 400 nm to ensure that the sample can be efficiently excited. Moreover,
the probe beam is the white light produced in a 2 mm thick Ti sapphire plate. As shown
in Figure 4, PyDN exhibits a broadband excited state absorption (ESA) behavior (OD > 0)
in a spectral region from 476 nm to 760 nm with a strong absorption peak at 662 nm. The
negative signal centered at 458 nm is ascribed to the superposition of stimulated emission
signal with ESA (Figure 2). During the entire delay time, the curve shape of ESA remains
the same with a time depend decay of OD, indicating that the ESA originates from an
excited singlet state and there is no additional transition process In addition, the decay of
extracted dynamics traces at 458 nm is similar to that at 662 nm (Figure S1), suggesting that
the ESA is derived from the fluorescent states and there is no additional transition process
occurring [33–35]. This ESA behavior is appreciated in ultrafast OL.

The dynamics process can be well fitted throughout the global analysis and two
processes were successfully extracted, with a fast process with a time constant of 0.38 ps
and a slow process with a lifetime of 3.6 ns (selected dynamic traces and fitting process in
Figure S1). Under photoexcitation, the whole transition process can be described as PyDN
first being pumped to an excited state (S1) by absorbing a photon, then other photons
are absorbed to transfer to a higher excited state instantaneously (ESA process). After
that, molecules in a higher excited state decay to S1 through the vibrational relaxation
of the hot exciton with a lifetime of 0.38 ps, and finally back to the ground state with a
lifetime of 3.6 ns. To further validate the process, a transient fluorescence experiment of
PyDN in toluene was performed. The dynamic curve of fluorescence can be well-fitted by
using a mono-exponential function with a lifetime of 3.5 ns (Figure S3), which is in good
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agreement with the long lifetime in TAS. This result provides more proof to excited singlet
state absorption.
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Figure 4. Femtosecond transient absorption spectrum.

These results imply that the NLA of PyDN originates from TPA and TPA-induced
ESA in a spectral region from 532 nm to 800 nm. Based on this process, the absorption
coefficient can be presented with following equation [36],

α = α0 + βI + γI2 (2)

where β and γ represent the TPA coefficient and three-photon absorption coefficient (TPA-
ESA absorption), respectively. Additionally, the TPA cross-sections can be calculated by
using the equation: σTPA = hωβ/N, where hω represents the photon energy at the selected
wavelength and N is the number density of PyDN in toluene. The TPA cross-sections
and three-photon absorption coefficient at the selected wavelengths can be obtained by
fitting the open-aperture Z-scan data using Equations (1) and (2) again. As shown in
Table 1, DyPN exhibits good two-photon absorption behavior with a maximum absorption
cross-section of 2476 GM.

Table 1. The parameters of TPA and TPA induced ESA of PyDN under selected wavelengths achieved
from Z-scan measurements.

532 nm 600 nm 700 nm 800 nm

β [10−2 cmGW−1] 9.57 5.00 1.41 0.54
σTPA [GM] 2476 1147 277 93

γ [10−4 cm3GW−2] 6.50 2.98 2.13 1.21

2.5. Two-Photon-Excited Fluorescence (TPEF) Experiment

To further investigate the TPA behavior of PyDN, the two-photon-excited fluores-
cence (TPEF) experiment was conducted. PyDN was freshly dissolved in toluene with
a concentration of 1 × 10−4 M for this measurement. The laser source is same with the
z-scan experiment, and the repetition rate is set at 6 kHz. The intensity level of the laser
beam was carefully controlled to prevent saturation of absorption and photodegradation of
PyDN in the process of measurement. The excitation wavelength of this measurement was
selected in spectral region from 610 nm to 900 nm, as the shorter wavelengths will interfere
with the collection of the fluorescence signals, resulting in large discrepancies between the



Molecules 2022, 27, 3564 7 of 12

experimental results and real results in our measurement system. PyDN exhibits bright
and observable emissions by an unfocused femtosecond laser beam at selected wavelengths
(Figure 5a). The intensity of emission shows obvious power-squared dependence on the
input excitation intensity under selected wavelength, which confirms that the observed
fluorescence emission at a selected wavelength is mainly induced by TPA rather than
another absorption process (Figure 5b). In addition, the shape and position of fluorescence
emission is identical to the one photon excited fluorescence band, which indicates that
the final excited states of TPA is the same as that of one photon absorption, and that no
excitation process participates in the TPA-induced fluorescence emission.
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The TPA cross-sections of PyDN were obtained by using fluorescein in water at pH 11
as a standard, and were calculated using the following equation [37]:

δs =
SsCrΦrηr

SrCsΦsηs
· δr (3)

where s and r represent the measured sample and reference sample, respectively. S is
the detected fluorescence integral area, C is the concentration of the sample, Φ represents
the fluorescence quantum yield of sample, η represents the collection efficiency of the
experimental instruments. The PyDN sample and the reference sample were placed into a
10 mm spectroscopic quartz cuvette, and every measurement for these two samples was
conducted under the same experimental conditions. The obtained TPA spectra (Figure 6)
agrees with that of one photon absorption, which confirms that the transition of TPA is
the same as that of one photon absorption (S0–S1 transition). The maximum value of the
TPA cross-section is 1620 GM at 610 nm, which is larger than the corresponding value
from Z-scan experiment at same wavelength. This observation may be resulted from the
partial bleaching of high concentration samples used in Z-scan experiment [38]. Compared
with single modify group decorated twistacenes [25], the TPA cross-section of PyDN from
both methods was been greatly improved, which may have been caused by extending the
conjugate system introduced by the strong donor decorated two-branched structure.
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2.6. Ultrafast Optical Limiting

It is well known that an ideal optical limiting device is expected to possess some
characteristics, including high linear transmittance, strong reverse saturated absorption
ability, temporally agile response to incident laser pulses, and a broadband response
to various wavelengths. Among various NLO mechanisms employed for OL, TPA is a
most promising process to meet these requirements, where a zero contribution of linear
absorption will make materials transparent to the incident laser pulse under a low intensity,
and the quadratic dependence on the input laser intensity can produce good reverse
saturated absorption behavior. In addition, an outstanding overlap between the TPA and
excited state absorption can efficiently improve the reverse saturated absorption ability
of materials to achieve better control to high intensity laser. Under these considerations,
PyDN possesses the TPA and TPA-induced excited state absorption properties which are
excellent candidates for application on ultrafast broadband OLs.

The OL behavior of an organic solution depends on both the reverse saturated absorp-
tion ability of materials and the concentration of organic compounds in a solution. Hence,
a nearly saturated PyDN solution in toluene was prepared to evaluate the OL performance.
The apparatus for OL measurement was similar to the open-aperture Z-scan experiment,
where a computer-controlled energy flow modulator consisting of a half wave plate and a
linear polarizer was added to modulate the incidental energy flow of the sample. A PyDN
solution in a 5 mm spectroscopic quartz cuvette was placed in front of lens. Femtosecond
laser pulses with wavelengths at 532 nm, 600 nm, and 800 nm were employed to charac-
terize TPA-based optical power that was suppressing properties of PyDN. Although the
OL performance in femtosecond regime has been mentioned in terms of the open aperture
Z-scan experiment, the detailed limiting threshold has not been discussed. The result is
illustrated in Figure 7.

Obviously, high transmittance at low incident energy (T > 90%) quickly decreases
with the increasing of incident laser fluence, indicating an effective suppression of a high
intensity laser pulse. The limiting threshold (Fth, defined as the incident fluence where the
true transmittance reduces to half of the linear transmittance) is estimated to be 2.3 mJ/cm2

(532 nm), 3.2 mJ/cm2 (600 nm), and 5.3 mJ/cm2 (800 nm). In addition, PyDN exhibits an
excited singlet state absorption behavior, which breaks the limit of intersystem crossing for
application on ultrafast OLs. The optical-power restriction behavior under the irradiation of
picosecond laser pulses was also measured and investigated by employing a mode-locked
Nd:YAG laser (15 ps) with a repetition rate of 10 Hz. As shown in Figure 7b, PyDN also
exhibits an excellent OL performance with the picosecond pulse, and the threshold is
estimated to be 133 mJ/cm2. The ultrafast optical–control performance of PyDN under
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femtosecond and picosecond laser pulses is comparable, or better than, previously reported
graphene oxides [39], semiconductors [40], pyrene-based molecules [41], and hydrazone
derivatives [15], indicating that twistacene derivatives are excellent candidates for ultrafast
OL applications.
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3. Materials and Methods
3.1. General Method

Materials used in this paper were purchased from commercial companies. Dry tri-
ethylamine was obtained by distilling over calcium hydride (CaH2). Tetrahydrofuran was
distilled over sodium-benzophenone ketyl. 1H NMR and 13C NMR spectra were recorded
in 400 MHz for 1H and 100 MHz for 13C at room temperature. UV-vis spectra were obtained
by using SPECORD 210 plus spectrophotometer. Fluorescence spectra were finished by
using HITACHI (F-7000) spectrofluorometer.

3.2. Synthesis

A mixture of compound 1 (145 mg, 0.2 mmol), 4-ethynyl-N,N-dimethylaniline (70 mg,
0.48 mmol, 2.4 equiv), triphenylphosphine (5.6 mg, 0.024 mmol), CuI (4.5 mg, 0.024 mmol)
and Pd(PPh3)2Cl2 (14 mg, 0.02 mmol) in a Et3N/THF (15 mL/5 mL, v/v = 1:1) was stirred
for 16 h at 80 ◦C under a nitrogen atmosphere. After cooling to room temperature, brine
was added and extracted with dichloromethane. The organic layers were collected, dried
with Na2SO4, and concentrated under reduced pressure. The residue was purified on
silica gel column to afford a yellow solid compound PyDN (116 mg, 68%). 1H NMR
(400 MHz, CDCl3) δ = 7.99–7.98 (d, J = 1.2 Hz, 1H), 7.93–7.87 (s, 7H), 7.70–7.68 (d, J = 7.2 Hz,
2H), 7.63–7.56 (m, 4H), 7.53–7.38 (m, 4H), 7.37–7.03 (m, 1H), 6.73–6.71 (d, J = 8.8 Hz, 2H),
6.60–6.58 (d, J = 8.8 Hz, 2H), 3.05 (s, 6H), 3.00 (s, 6H), 1.16 ((s, 18H)). 13C NMR (101 MHz,
CDCl3) δ = 150.16, 149.57, 147.34, 147.00, 142.31, 141.85, 136.58, 136.01, 135.40, 133.35, 133.03,
132.86, 132.81, 132.62, 130.72, 130.70, 130.21, 129.53, 129.37, 129.31, 129.19, 128.76, 128.40,
127.74, 127.60, 127.42, 126.96, 126.74, 124.17, 123.85, 122.40, 122.17, 120.68, 111.85, 111.31,
110.00, 100.85, 91.97, 87.77, 87.36, 40.25, 34.73, 31.43. MS (MALDI-TOF, m/z): calculated for
C64H56N2, 853.14; Found, 853.17.

4. Conclusions

In summary, we have successfully designed and synthesized a two-branched deco-
rated twistacene PyDN, and systematically investigated the nonlinear optical properties.
The introduction of two strong donors into a twistacene effectively extends the π-conjugated
plane and the degree of π electron delocalization, causing excellent nonlinear optical absorp-
tion behavior. The absorption mechanism based on TPA and TPA-induced excited singlet
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state absorption is confirmed by the femtosecond Z-scan experiment, transient absorption,
and two-photon excited fluorescence experiments. Benefiting from the spectral overlap
between two photon absorption and the excited singlet state absorption, PyDN exhibits
admirable ultrafast broadband OL performance in femtosecond and picosecond regimes
with high transmittance and low thresholds, which is a promising candidate for ultrafast
OL applications. In addition, the strategy of constructing twistacene by the introduction of
multiple donors is very efficient route to improve the OL performance of materials, and it
inspired us to construct new twistacenes for ultrafast OL applications in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27113564/s1, Figure S1: Dynamics traces of PyDN at 458 nm and
662 nm. The dots represent the experimental data and solid lines were theoretical fitted curves by global
analysis; Figure S2: The natural transition orbitals in the first excited state (S1) of designed twistacenes;
Figure S3: The emission spectra of PyDN in toluene under different incident laser energies at 400 nm. Insets
is that linear dependence of one-photon-excited fluorescence intensity on the laser in-tensity; Figure S4:
Fluorescence decay of PyDN in toluene. The solid line was fitted lifetime of 3.5 ns; Figure S5: 1H NMR
spectrum of PyDN; Figure S6: 13C NMR spectrum of PyDN; Figure S7: MALDI-TOF spectrum of PyDN.
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