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ABSTRACT The best way to combat influenza virus infection is to prevent it. However, the continual evolution of circulating in-
fluenza virus strains and the constant threat of newly emerging viruses forces the public health community to annually update
seasonal influenza vaccines while stockpiling potential pandemic virus vaccines. Thus, there is an urgent need to develop a “uni-
versal” influenza vaccine that affords protection against all strains. In their recent article, L. M. Schwartzman et al. (mBio
6:e01044-15, 2015, doi:10.1128/mBio.01044-15) demonstrated that intranasal immunization of mice with a cocktail of viral-like
particles (VLPs) expressing distinct influenza virus hemagglutinin (HA) proteins can broadly protect against infection not only
with the same viral strains but also with unrelated strains. These findings suggest a promising strategy for developing a broadly
protective “universal” influenza vaccine.

Outbreaks of influenza virus infections continue to cause con-
siderable morbidity and mortality worldwide. Each year, in-

fluenza results in 3 to 5 million severe illnesses and 500,000 deaths
(1), with higher estimates during a pandemic. Arguably, the best
means to prevent influenza infection is through vaccination, and
each year, approximately 40 to 50% of adults (18 to 64 years of
age) in the United States are vaccinated against seasonal influenza
viruses (2). Unfortunately, due to the evolution of the major outer
viral surface protein hemagglutinin (HA) through antigenic drift,
the annual vaccine components must be frequently updated in
order to provide protection against emerging viral strains (3). Fur-
ther, these vaccines are unlikely to protect against antigenically
divergent strains, especially a new pandemic virus with a novel HA
subtype (antigenic shift). To date, sixteen HA subtypes in various
combinations with NA (H1N1, H3N2, etc.) have been found in
nature, primarily in wild birds, the reservoirs for influenza viruses
and ultimate source of pandemic viruses (4). Although humans
are predominantly infected with H1 and H3 viruses, continual
spillover of H5, H7, H9, and occasionally H10 and H6 strains
highlights the ever-present risk of a new pandemic (5). Thus, there
is a great deal of interest in developing a “universal” vaccine that
can protect against all influenza A virus (IAV) strains.

The hunt for a universal influenza vaccine has been under way
for decades (6–8). A number of strategies have been explored,
including approaches to target individual viral proteins, such as
the highly conserved viral matrix (M2) ectodomain and nucleo-
protein (NP) (9), as well as neuraminidase (NA) (10) (Fig. 1).
More recently, vaccines targeting the conserved HA stalk domain
have shown promise. In contrast to canonical HA-neutralizing
antibodies, which block the attachment of the HA receptor bind-
ing sites to the host receptor ligand, antibodies against the HA
stalk prevent fusion of the viral and endosomal membranes dur-
ing acidification of the endosome, inhibit viral egress by blocking
access to the HA proteolytic cleavage site, and can limit viral
spread through complement-dependent lysis and antibody-
dependent cell-mediated cytotoxicity (11). In their recent article,
“An Intranasal Virus-Like Particle Vaccine Broadly Protects Mice
from Multiple Subtypes of Influenza A Virus” (12), Schwartzman
et al. describe an interesting new approach to eliciting protection
against multiple HA subtypes: vaccinating with a mixture of viral-

like particles (VLPs) individually expressing a variety of different
HA subtypes.

In their study, the authors intranasally immunized mice with a
vaccine cocktail that included VLPs displaying one of four HA
molecules: H1 from the 1918 pandemic virus and H3, H5, and H7
from weakly pathogenic avian influenza viruses. Immunization
resulted in broad protection against challenge with the same vi-
ruses (homologous) as well as different IAV strains of the same
subtype that were not antigenically matched to the vaccine HA
(intrasubtypic heterologous). Protection against homologous and
intrasubtypic challenges was also associated with significantly re-
duced lung viral titers. Why is protection against antigenically
mismatched viruses of the same subtype important? These mis-
matches can cause the annual influenza vaccines to be less effective
in protecting the population if the wrong antigen is incorporat-
ed—as we saw this past year with the H3N2 vaccine component
(13). What happened? In brief, an H3N2 candidate vaccine virus
(CVV) was chosen in February of that year based on the antigenic
and genetic data available from World Health Organization Na-
tional Influenza Centers (NICs) and collaborating centers around
the world. Unfortunately, by summer it was evident that the
H3N2 viruses had evolved (drifted) and that circulating viruses
were antigenically and genetically less matched to the CVV, mean-
ing that the H3 component of the vaccine would provide less
protection against this apparently circulating drift strain. Having a
vaccine that could broadly protect against these antigenically mis-
matched influenza viruses may alleviate problems encountered
through antigenic drift.

Two additional important findings resulted from these studies.
The first is the surprising finding that the VLP cocktail also pro-
tected mice against viral strains not included in the vaccine (het-
erosubtypic challenge), the major goal of a universal vaccine. This
would mean that we could immunize against IAV subtypes with
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pandemic potential, for example, emerging avian IAV H5 and H7
viruses. This would be invaluable for pandemic preparedness. Fi-
nally, this vaccine approach was shown to protect older animals
against heterosubtypic challenge, suggesting that this strategy
could be an interesting approach for our highest-risk populations.

This is an exciting study that furthers our quest for a universal
influenza vaccine. Clinical studies demonstrated that influenza
VLP vaccines are safe and effective in adults and can be made
available for human use within 3 months of learning the circulat-
ing HA and NA sequences (14). Thus, this approach is not only
possible but effective within an opportune time frame. Issues that
still need to be addressed include determining the mechanism(s)
of protection, as well as obtaining evidence of successful protec-
tion in other animal models, such as ferrets. Regardless, these
studies demonstrate a novel approach to provide protection
against diverse IAV subtypes. It is possible that using this strategy
as a booster to the annual vaccine would be a quick and effective
method to deal with emerging strains, whether they emerge
through antigenic drift or shift. However, only time will tell if
evolving virus sequences will continue to “outsmart” our best ef-
forts to thwart infection.
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FIG 1 Influenza A virus schematic demonstrating the locations of proteins used in various universal vaccine strategy attempts (top). The different strategies
(bottom) include targeting the highly conserved M2 and nucleoprotein (NP) proteins, neuraminidase (NA) glycoprotein, or the hemagglutinin (HA) stalk region
and administering a mixture of virus-like particles (VLPs) expressing distinct HA subtypes.
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