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Correlated, spontaneous neural activity is known to play a necessary role in visual 
development, but the higher-order statistical structure of these coherent, amorphous 
patterns has only begun to emerge in the past decade. Several computational studies 
have demonstrated how this endogenous activity can be used to train a developing visual 
system. Models that generate spontaneous activity analogous to retinal waves have shown 
that these waves can serve as stimuli for efficient coding models of V1. This general 
strategy in development has one clear advantage: The same learning algorithm can 
be  used both before and after eye-opening. This same insight can be  applied to 
understanding LGN/V1 spontaneous activity. Although lateral geniculate nucleus (LGN) 
activity has been less discussed in the literature than retinal waves, here we argue that 
the waves found in the LGN have a number of properties that fill the role of a training 
pattern. We make the case that the role of “innate learning” with spontaneous activity is 
not only possible, but likely in later stages of visual development, and worth pursuing 
further using an efficient coding paradigm.
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WHAT IS THE PURPOSE OF SPONTANEOUS ACTIVITY?

Highly organized patterns of spontaneous activity are observed across the developing sensory 
systems of a wide variety of species. These activity patterns are robust to perturbations (Turrigiano, 
1999; Blankenship and Feller, 2010). Several studies suggest the patterns themselves carry 
information that guides nervous system development in areas as diverse as the retina, cochlea, 
spinal cord, cerebellum, hippocampus, and neocortex (Blankenship and Feller, 2010; Dehorter 
et  al., 2012) and altering patterns of activity leads to poorer network refinement (Huberman 
et  al., 2008). Therefore, these correlated patterns are crucial for neural circuit maturation 
(Kirkby et  al., 2013). A collection of past and current discoveries about spontaneous activity 
in both developing and mature sensory systems is provided by (Imaizumi et al., 2018). Although 
there remains debate regarding the precise role the activity plays, it is necessary to establish 
critical neural circuits before eye-opening (Shatz and Stryker, 1988; Wong and Ghosh, 2002; 
Uesaka et  al., 2006; Kim et  al., 2009).

One fascinating form of spontaneous activity is found in the “retinal waves” of the developing 
retina. Retina is a layer of tissue in the back of the eye of most vertebrates and some mollusks 
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that senses light and sends images to the brain. Retinal waves 
are spontaneous bursts of action potentials that occur roughly 
once per minute and propagate in a wave-like fashion across 
the developing retina. They have been demonstrated in a 
majority of common vertebrates, including chicks (Sernagor 
et  al., 2001), turtles (Evelyne Sernagor and Grzywacz, 1999), 
cats (Meister et  al., 1991), rats (Galli and Maffei, 1988; Maffei 
and Galli-Resta, 1990), ferrets (Feller et  al., 1996a), primates 
(Warland et  al., 2006), and mice (Maccione et  al., 2014). This 
spontaneous retinal wave phenomenon that occurs before the 
eyes first open was found and described in the developing 
mammalian over two decades ago; for complete references, 
see (Zhou, 2001).

Using a multielectrode array (Meister et  al., 1991; Wong 
et  al., 1993) or fluorescence imaging of calcium indicators 
(Wong et al., 1995; Feller et al., 1996b), the spontaneous activity 
in the developing retina has been monitored across large areas. 
The role of cholinergic circuits in driving this activity bursts 
of action potentials was indicated by recording the spontaneous 
bursts in the neural rabbit retina and blocked by nicotinic 
acetylcholine receptor analogies. About 10 years later, Vivo 
recordings from fetal rat pups showed that neighboring ganglion 
cells fire periodic correlated action potential bursts that propagate 
like waves across the ganglion cell layer of ferret retinas, 
according to multielectrode array experiments. In addition, 
using calcium imaging sensitive dyes, videos of these endogenous 
patterns were recorded and demonstrated that correlated calcium 
transients propagate across the ganglion cell layer of the retina 
in a wave-like manner (Feller et  al., 1996a).

While calcium imaging experiments of the intact retina 
showed the qualitative nature of the retinal waves, the 
characteristics of these waves, such as wave shape, speed, size, 
and duration using physiological details like dendritic field 
size and measured cell spacing, have been explored by neural 
models of various studies (Burgi and Grzywacz, 1994; Butts 
et  al., 1999; Godfrey and Swindale, 2007). The spontaneous 
activity of the retinal waves is far from random, with more 
structure than one finds in simple models of correlated noise. 
They spread as amorphous bursting neural activity patterns 
with relatively slow dynamics. For instance, the average time 
between retinal waves in a given location is a median of 115 s 
in the ferret retina. Typically, the patterns form well-bounded 
shapes that expand, distort, and dissipate over time. In the 
ferret retina, the average time between retinal waves in a given 
location is a median of 115 s (Feller et  al., 1996a); however, 
a ganglion cell’s burst of activity lasts roughly 1 s, and the 
average wave propagation speed is 177 μm/s (Feller et al., 1997). 
Therefore, the spontaneous activity in retinal waves is so robust 
that the possibility of noise contamination from instruments 
is not a significant concern.

Spontaneous activity patterns propagate through many parts 
of the developing nervous system to shape the wiring of emerging 
circuits. Prior to eye-opening, these activity waves originate in 
the retina and propagate to the superior colliculus (Ackman 
et al., 2012) and through the LGN of the thalamus, a multilayered 
structure that receives input from both eyes to build a 
representation of the contralateral visual hemifield, to the V1. 

LGN waves can correlate between the eyes. However, retinal 
waves cannot. Training based on the retinal waves produces a 
single eye vision, monocular model, versus LGN, which provides 
a binocular model. Three distinct higher ganglion cells, magno, 
parvo, and konio, compress and transfer the generated information 
by cone photoreceptors to processing centers in the retina. These 
cells, organized in different layers of LGN and the V1, have 
distinct functional and structural characteristics. In this paper, 
for the simplicity of the model in addressing critical elements 
for the disparity-selective vision, we  do not distinguish between 
the three cellular subcortical pathways.

Spontaneous neural activity is correlated with brain 
functionality and its anatomical structures (Tozzi et  al., 2016). 
This activity plays a critical role in the functional organization 
of the nervous system’s standard architecture (Cole et al., 2014), 
is generated by brain circuits, and provides a window into 
their dynamic operations (Omer et  al., 2019). A number of 
computational models have shown how different forms of 
spontaneous activity can produce a topographic map of neural 
responses as found in the primary visual cortex (V1) [see 
(Erwin et  al., 1995; Miikkulainen et  al., 2006; Goodhill, 2018) 
for reviews]. Previous studies demonstrate that ongoing activity 
in V1 is not noise, though it may be  a form of information 
processing (Arieli et al., 1995, 1996; Tsodyks et al., 1999; Kenet 
et  al., 2003; Gutnisky et  al., 2017). Following this, multiple 
studies performed on human and other animals discovered 
that this activity has a major role in shaping perception and 
behavior (Wagner et al., 1998; Ress and Heeger, 2003; Dehaene 
and Changeux, 2005).

THE EFFICIENT CODING PARADIGM

There is a wide variation in the nature of the spontaneous 
activity offered by different models. For example, von der 
Malsburg’s initial model (Malsburg, 1973) used simplistic 
bar-like stimuli, Linsker’s model (Linsker, 1986) begins with 
uncorrelated noise, Miller’s model (Miller, 1994) uses radially 
symmetric functions which represent the amount of correlation 
between units. Many such models rely on constraints in the 
neural connectivity (e.g., prespecified or adaptive lateral 
connectivity and dendritic field sizes) for receptive field 
formation with less emphasis on the precise nature of the 
activity. This can be  contrasted with models of spontaneous 
neural activity that are primarily aimed at recreating the 
larger-scale statistical properties of the generated patterns 
(Butts et  al., 1999; Godfrey and Swindale, 2007; Godfrey 
et al., 2009; Richter and Gjorgjieva, 2017). To find an excellent 
review of theoretical models of neural development, see 
(Goodhill, 2018). Here, we  discuss this can be  contrasted 
with computational approaches to map formation which use 
natural images as the input stimuli (Barrow et  al., 1996; 
Shouval et  al., 1996; Weber, 2001; Hyvärinen et  al., 2009), 
In these models, cortical maps form due to the statistical 
properties of presented natural images.

There is a subset of developmental models which use natural 
images in addition to spontaneous activity; they apply the 
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same learning method both before and after visual experience 
(Bednar and Miikkulainen, 1998; Burger and Lang, 1999; Bednar, 
2002). These V1 cortical models have produced 2D maps which 
vary characteristically with orientation, ocular dominance, 
direction selectivity, spatial frequency, or a combination of 
these dimensions. The primary goal of these models was to 
produce a 2D cortical map and receptive fields in a physiologically 
plausible way. As with many models, the necessary constraints 
can either be  in the network implementation or the statistics 
of the input; many of these models lie along this continuum, 
and consequently, there is a wide variety of network 
implementations. One simplification to this modeling approach 
is to focus at the computational, rather than algorithmic, level 
(Marr, 2010) evaluate a simple coding objective of V1, rather 
than an intricate network implementation, on natural and 
spontaneous inputs. Although the previous neural modeling 
techniques may produce a similar code, the particular learning 
approaches are less clear than simple statements of statistical 
independence or sparse coding.

We argue that an efficient coding approach would focus 
efforts on the sufficient statistical properties of spontaneous 
activity and natural scenes and less about the particular 
details of implementation. In practice, efficient coding as a 
computational approach explains how the brain represents 
and interprets information from the outside world and 
maximizes a particular metric of efficiency (Barlow, 1961). 
The efficient coding hypothesis proposes that early sensory 
processing aims to reduce redundancy (Barlow, 1961; Field, 
1987). Sparse coding and independent component analysis 
(ICA) objectives are driven from the efficient coding hypothesis, 
each with a specific statistical method. Sparse coding is a 
type of unsupervised learning method of over-complete bases 
for efficiently representing the data. Sparse coding aims to 
represent information with as few simultaneously active 
neurons as possible in a large population.

The input vector xi  is defined as a linear combination of 
basis vectors, which is the set of basis vectors. Independent 
codes can also be  produced using ICA (Comon, 1994). 
Mathematically, ICA creates components through linear 
combinations of features with maximally and statistically 
independent responses under a specific set of assumptions. In 
other words, ICA transforms the observed data as a random 
vector into a vector of maximally independent components S 
measured by some function s s sn1 2, ..,  using the following 
linear transformation;

S Wx=

where S s s sn
T= ( )1 2, ,..  is a hidden component, and 

X x x xn
T= ( )1 2, ,..  is the observed data representation.

Unsupervised learning methods, such as ICA, with the goal 
of maximizing statistical independence, are successful in creating 
meaningful components. ICA was originally developed to address 
the blind source separation problem (Jutten and Herault, 1991) 
and has been particularly useful for problems with linear 
mixings, such as the classic cocktail party problem (Cherry, 
1953; Haykin and Chen, 2005; Bronkhorst, 2015).

This efficient coding strategy has been successfully applied 
to various modalities, natural/non-natural images, and sounds 
(Urs et  al., 2021). A self-contained Jupyter notebook of the 
efficient coding strategy is provided for the ease of experiments 
in computational neuroscience and computer science. However, 
in this study, our objective is to show that using the same 
strategy on LGN/V1 spontaneous activity patterns, it is possible 
to derive filters of those images similar to the Gabor filters. 
Therefore, we  can use the extracted filters for future training 
task-oriented deep learning models. We  follow a five-step 
strategy to apply efficient coding principles to V1/LGN 
spontaneous activity;

 1. Data Collection: Collecting samples of spontaneously 
generated activity pattern images corresponding to the 
simulation of active ganglion cells in the retinal model, 
LGN, and V1.

 2. Patch Extraction: Randomly extracting patches of these 
images, display them, and then reshape them accordingly.

 3. Efficient Encoding: Applying encoding algorithms, that is, 
ICA using our self-contained Jupyter notebook (Urs 
et  al., 2021).

 4. Displaying Efficient coding Filters: Reducing the process 
used in patch extraction and flattening to display the resulting 
filters found through ICA.

 5. Comparing to Experimental Neural Receptive Fields: 
Drawing comparisons between experimentally recorded 
receptive fields and the resulting filters from spontaneous 
neural activity.

The efficient coding approach, using sparse coding/ICA, 
has been successfully applied to activity patterns resembling 
retinal waves (Albert et  al., 2008). This particular study 
investigated whether this activity could serve as a training 
pattern and produce the same type of V1 filters that are 
produced from natural scenes. The spontaneous activity model 
used was an abstraction of previous, more physiological 
models (Butts et  al., 1999; Godfrey and Swindale, 2007; 
Godfrey et  al., 2009). The three parameters of the model 
were directly related to known parameters in retinal wave 
physiology (fraction of recruitable amacrine cells, dendritic 
field sizes, and threshold number of neighboring amacrine 
cells needed to fire). The results showed this abstract, 
physiological spontaneous activity is capable of forming V1 
receptive fields in the same way as an efficient coding of 
natural scenes. This model of development is not only 
straightforward conceptually, but elegantly simple given a 
neural implementation. This fits well with the recommendation 
for modeling approaches to V1 development in the (Swindale, 
1996) review, “Remove as much detail as possible from your 
model, without reducing its descriptive scope.” Such simple 
innate learning strategies could be  used as a bridge between 
molecular guidance cues forming crude receptive fields and 
adaptation using visual input after eye-opening. Most 
importantly, it is one more way animals that require a 
functioning visual system early in life may be able to adequately 
prepare the visual code in time for use.
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It has been shown that spontaneous activity generation and 
propagation correspond to the percolation networks used in 
applied math and statistical physics (Hesse and Gross, 2014). 
As a typical example, the percolation theory involves networks 
with t = 1, where t is the number of active points within distance 
r, often r = 1. When “p,” a random fraction of the points on 
the grid square array of points, approaches a value known as 
the percolation threshold, “pc,” the pattern of activity is known 
to be  fractal – the image statistics appear similar at all scales 
(Li et  al., 2021). What we  discuss in this paper is a system, 
an abstraction of hypothesized LGN and V1 developmental 
activity patterns, that can generate fractal patterns. To generate 
such large waves, we are approaching the percolation threshold. 
The whole reason for getting patterns at such a large scale is 
that there are advantages to getting self-similar patterns. That 
way, we can have systems trained at multiple scales. The method 
used to generate the patterns is based on a convergence of 
two general models: One is a percolation network that resembled 
retinal waves both visually and in how the patterns are generated 
(e.g., amacrine cells spontaneously firing and being recruitable) 
and the additional element is simply communication across 
eye layers (due to feedback to the LGN). We  consider this 
model the minimal approach to create a binocular spontaneous 
activity pattern capable of producing disparity selective cells 
while still resembling retinal wave generation. The model can 
be  set such that those spontaneous activity patterns have 
disparity distributions like in natural visual experience – which 
would have a beneficial effect in early learning, as evidenced 
by the disparity profiles of filters created through efficient 
coding. Similarly, other properties of the produced filters should 
approximately match natural scene statistics. This concept 
constrains the statistical properties of LGN waves to be  ones 
in which they produce neural receptive fields on efficient coding.

There are significant principle advancements between this 
current position paper and the previous study by (Albert et al., 
2008). First, this study proposed the role of V1/LGN spontaneous 
activity patterns, whereas, in the previous study, the focus has 
only been on V1. Second, the main goal of the previous paper 
was to show that an efficient coding algorithm can be  applied 
for both natural and spontaneous activity inputs; however, in 
this perspective, this efficient coding strategy is introduced as 
a practical tool to create efficient codes of LGN/V1 activity 
patterns for further training roles.

COULD THE MEASURED ENDOGENOUS 
ACTIVITY BE  A POTENTIAL TRAINING 
PATTERN FOR LGN-V1 NEURONS?

In the case of retinal waves, where the vast majority of 
experimentation on endogenous activity has focused, the extent 
of training is limited. One immediate objection is that the 
waves are not binocular. Days after birth, primates have an 
adult-like proportion of disparity selective cells (Chino et  al., 
1997) and retinal waves are not correlated between the eyes 
to promote such selectivity. Also, the retinal waves of the ON 

and OFF-center cells are more independent at later stages 
(Wong et  al., 1993), but the responses of these cell classes are 
intimately related in V1 neurons. Despite the popularity of 
retinal spontaneous activity, such concerns have turned many 
researchers away from considering the possibility of an innate 
learning role for spontaneous activity.

Here, we  draw attention to a form of spontaneous activity 
that does not suffer from the many deficiencies of retinal waves 
as a training pattern – activity originating in the LGN. Although 
much less is known about this activity, we  believe that it may 
provide additional insights into the early development of neural 
properties in the visual cortex. The endogenous activity in the 
LGN significantly overlaps in time with V1 activation (Wong 
et  al., 1993), thus being able to directly influence V1. The 
activity is also correlated between eye-specific layers, as well 
as ON and OFF-center cell layers (Weliky and Katz, 1999). 
Finally, the evidence from electrode arrays shows that the 
activity appears as a wavefront moving across these layers. By 
all accounts, LGN endogenous activity appears better suited 
as a potential source of innate training patterns.

There are potential confounds with such an assessment of 
LGN activity. First, it is more difficult to experimentally 
characterize LGN waves through electrode penetrations in 
comparison with the characterization of retinal waves using 
calcium imaging. Also, proper LGN activity requires V1 feedback; 
there is no correlated spontaneous activity between eye-specific 
layers in the LGN without feedback (Weliky and Katz, 1999). 
The alleged source of training patterns for V1 may more 
correctly be  called dynamic LGN/V1 activity, making a label 
for the source of such activity more complicated than a simplistic, 
one-area label as in retinal waves. Ultimately, from a 
computational perspective, the specific source of the activity 
is not as critical as the statistical properties of the resulting 
activity. What is important for this paradigm is the existence 
of a functional separation between an innate training pattern 
(LGN/V1 waves) and efficient coding technique (e.g., sparse 
coding/ICA). These alternate roles need not be  in physically 
separate locations. For example, this paradigm does not preclude 
the possibility of neural models with activity and adaptation 
occurring within V1 (Grabska-Barwinska and von der Malsburg, 
2008), although here we  discuss the combination of the LGN 
and V1 activity.

Our previous work pointed to this LGN/V1 activity as a 
potential source of visual training patterns. Endogenous activity 
is how the system could, in theory, bridge between molecular 
guidance cues and real-world experience for development. 
Beyond this, there are a number of parallels that can point 
toward a more complete interpretation of this activity. Activity 
model parameters have been directly related to similar parameters 
in physiological models. Receptive fields derived from these 
activity patterns are also qualitatively similar to experimental 
data. In addition to monocular and binocular properties of 
newly developed cells, the temporal component of this activity 
can be  included in a more thorough analysis. A caveat to 
these models is that they are not meant to match adult coding 
performance – both in modeling and in animal development. 
For most animals, the goal in early visual development is to 
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have a system that is not equivalent, but closer to the adult 
visual code than what can be  produced by molecular guidance 
cues alone.

The nature of the explanation mentioned here is computational, 
although many other levels of understanding the role of this 
activity fit this framework (Freeman, 1989). On the level of 
implementation, endogenous activity is necessary for strengthening 
and guiding synaptic connections through synaptic pruning (Shatz 
and Stryker, 1988), axon branching (Hosokai et  al., 2006), and 
dendritic patterning (Wong and Ghosh, 2002). This interpretation 
is not only compatible with a computational understanding, but 
a necessary part of a neural implementation. A number of neural 
models have implemented development of a topography and 
individual receptive fields. A subset of these neural models may 
be  compatible with the computational, statistical interpretation 
presented here. The specific developmental algorithm may vary, 
but the goal of applying an efficient coding strategy (e.g., sparse 
coding/ICA) both before and after experience may be  universal.

WHAT IS THE ROLE OF INNATE 
LEARNING WITH SPONTANEOUS 
ACTIVITY IN THE VISUAL SYSTEM?

Efficient coding/computational approaches have added to our 
understanding of adult V1 by providing an additional functional 
role. Neural response of simple cells in V1 can be  understood 
by their neural connections in cortex (implementation, “how”), 
their visual receptive fields and generalized neural models 
(algorithm, “what”), and also by the goal of the neural processing 
(computation/efficient coding, “why”). Previous work (Olshausen 
and Field, 1996; Bell and Sejnowski, 1997) has shown that 
the unique, Gabor-like receptive fields of V1 simple cells can 
result from an efficient coding of natural scenes. The underlying 
hypothesis, that V1 receptive fields can be  understood as the 
result of a general computational strategy, has led to an explosion 
of techniques trying to both capture the statistical properties 
of natural scenes and relate those properties to V1 cell responses.

A B C D

E F

FIGURE 1 | Early experimental and theoretical results suggesting the training role of LGN/V1 activity. (A–D) Efficient coding results demonstrating that a simple 
model of spontaneous activity can produce receptive fields with adult-like receptive field properties – details in (Albert et al., 2008). (A) An example spontaneous 
activity pattern, (B) the resulting receptive field after applying ICA, (C) Gabors fit to these receptive fields, (D) a histogram of orientation bandwidth with the red line 
indicating the average adult V1 primate orientation bandwidth for comparison. (E,F) Early experimental results indicating correlated LGN spontaneous activity across 
eye layers from (Weliky and Katz, 1999), reprinted with permission; electrodes 1–4 are in the contralateral eye layer, while −8 are in the ipsilateral eye layer.
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In the same way that efficient coding applied to natural 
scenes has led to a deeper understanding of the role of V1, 
similar computational strategies can lead to a deeper 
understanding of spontaneous activity. The same efficient coding 
strategy learning both on endogenous activity and external, 
natural stimuli may help explain many of the statistical properties 
of spontaneous activity deeper than retinal waves. This has 
the potential to build bridges between development and 
experience-based learning in areas that are often treated 
separately. Much of the criticism of this approach leveled at 
retinal waves does not hold when considering combined LGN/
V1 activity, permitting further work in this domain to continue. 
Current efficient coding “innate learning” models show promise 
and point toward further computational, theoretical, and 
experimental work.

The training role of LGN/V1 activity is demonstrated 
through early experiments and theoretical results, as is shown 
in Figure 1. According to (Albert et  al., 2008), a simple 
model of spontaneous activity can produce receptive fields 
with adult-like receptive field properties. This has been done 
using the efficient coding strategy, mainly ICA applied on 
images of natural spontaneous activity patterns. In Figure 1A, 
an example of such a spontaneous activity pattern is given. 
After applying ICA on this set of data, the resulting filters 
and receptive fields are represented in Figure  1B. A visual 
comparison shows that Gabor filters, shown in Figure 1C, 
can properly fit these generated receptive fields by ICA. A 
histogram of orientation bandwidth, with a red line which 
indicates the average adult V1 primate orientation bandwidth, 
is used for the comparison and is shown in Figure  1D. 
Correlated LGN spontaneous activity across eye layers from 
(Weliky and Katz, 1999), reprinted with permission; electrodes 

1–4 are in the contralateral eye layer while 5–8 are in the 
ipsilateral eye layer, indicated in Figure  1E,F. Ultimately, the 
goal is to answer the same question that is naturally posed 
when one is first exposed to the highly structured, spontaneous 
patterns, “What is the purpose of this activity?”

SUMMARY

Spontaneous neural activity plays a significant role in visual 
development. Although this activity in the retina is widely 
discussed, it is less investigated for LGN. In this study, we argue 
that LGN spontaneous activity may provide additional insights 
into the early development of neural properties in the visual 
cortex. We claim that the waves found in the LGN have several 
properties that fill a training pattern’s role. Thus, the role of 
“innate learning” with spontaneous activity in later stages of 
visual development is possible and worth pursuing further 
using an efficient coding paradigm.
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