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Abstract 

Background:  Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as 
growing experimental results have made clear that miRNA correlates with masses of critical biological processes and 
the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease 
associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent 
need for effective computational model predicting novel miRNA-disease association prediction to save time and 
money for follow-up biological experiments.

Methods:  In this study, considering the insufficiency of the previous computational methods, we proposed the 
model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a 
heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to 
infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-
disease association enabled HLPMDA to produce a better prediction.

Results:  HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out 
cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented 
and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved 
by experiment reports.

Conclusions:  All the results adequately showed that HLPMDA is a recommendable miRNA-disease association pre‑
diction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
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Background
MicroRNAs (miRNAs) consist of about 22 nucleotides 
and they are one category of endogenous short non-
coding RNAs (ncRNAs) that could regulate the expres-
sion of target messenger RNAs (mRNAs) at the level of 
transcription and post-translation [1–4]. There are 28645 
miRNAs in the 21st version of miRBase [5] including 
more than three thousand human miRNAs. As regula-
tors of gene expression and protein production, on the 

one hand some of miRNAs serve as negative regulators 
by binding to the 3′-UTRs of the target mRNAs [4]; on 
the other hand, the regulatory impact of some miRNAs is 
positive [6, 7]. Thus miRNAs have effect on cell prolifera-
tion [8], development [9], differentiation [10], apoptosis 
[11], metabolism [12, 13], aging [12, 13], signal transduc-
tion [14], and viral infection [10]. Moreover, evidence is 
mounting that miRNAs play a fundamental role in the 
development, progression, and prognosis of numerous 
human diseases [15–20]. For instance, HIV-1 replication 
could be enhanced by miR-132 [21] and similarly, cocaine 
could down-regulate miR-125b in CD4+ T cells to 
enhance HIV-1 replication [22]. Breast neoplasms stem 
cell formation could be promoted by downregulation 
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of miR-140 in basal-like early stage breast cancer [23]. 
In addition, compared to normal epithelium, miR-139 
and miR-140 was down-regulated during lobular neo-
plasia progression [24]. The transcripts of certain let-7 
homologs would be downregulated in human lung cancer 
and the low levels of let-7 would link to poor prognosis 
[25]. In addition, non-small-cell lung cancer relates to 
many other miRNAs [26–29].

Faced with a great variety of miRNAs and diseases, 
experimental methods for the sake of finding new asso-
ciations between miRNAs and diseases, are both costly 
and time-consuming. In the wake of the growth of the 
biological datasets, the practicable computational meth-
ods are urgently necessary to greatly help identify more 
disease-related miRNAs and explore new perspective 
treatment of various important human diseases. Over the 
past decade, some progress has been made to uncover 
novel miRNA-disease associations. Most computational 
methods depends on the assumption that functionally 
similar miRNAs usually have connection with phenotypi-
cally similar diseases [30–36]. From the standpoints of 
network and systems biology, most computational meth-
ods belonged to the similarity measure-based approaches 
or machine learning-based approaches.

A functionally related miRNA network and a human 
phenome-microRNAome network were first constructed 
by Jiang et al. [37]. Then the disease phenotype similar-
ity network, miRNA functional similarity network, and 
the known human disease-miRNA association network 
were combined together. Based on the combination, they 
devised a computational model of disease-miRNA pri-
oritization, which could rank the entire human microR-
NAome for investigated diseases. However, its prediction 
performance was ordinary because of only using miRNA 
neighbor information. Furthermore, Xuan et al. [38] pro-
posed HDMP model to predict disease-related miRNA 
candidates on the basis of weighted k most similar neigh-
bors. In HMDP, miRNA functional similarity was calcu-
lated through the information content of disease terms 
and disease phenotype similarity. Then, the miRNA 
family (cluster) information was considered and miRNA 
functional similarity was recalculated after giving higher 
weight to members in the same miRNA family (clus-
ter). However, the precision was directly influenced by 
the number of a miRNA’s neighbors. These two meth-
ods were limited by their local network similarity meas-
ure, which meant it was insufficient to simply consider 
miRNA neighbor information. Therefore, global net-
work similarity measure was adopted in some studies. 
Chen et al. [39] proposed Random Walk with Restart for 
MiRNA-disease association (RWRMDA), in which ran-
dom walk analysis was applied to miRNA–miRNA func-
tional similarity network. It was a pity that this method 

was the unavailability for diseases with no confirmed 
related miRNAs despite of its passable predictive accu-
racy. Xuan et al. [40] further put forward a random walk 
method, MIDP, in which transition weights of labeled 
nodes were higher than unlabeled nodes. In MIDP, the 
side effect of the noisy data was reduced by fitting restart 
rate and MIDP is applicable for the disease with no 
related miRNAs.

Some other methods made use of the information 
about confirmed disease-related genes and predicted 
miRNA-target interactions. For instance, Shi et  al. [41] 
developed a computational prediction method in which 
random walk analysis was used in the protein–protein 
interaction (PPI) networks. It is assumed that if a target 
gene of a miRNA associates with a disease, this disease is 
likely to be related with the miRNA. MiRNA-target inter-
actions and disease-gene associations were integrated 
into a PPI network and then the functional relationship 
information about miRNA targets and disease genes was 
dug out in this PPI network. Besides, this method could 
serve to find miRNA-disease co-regulated modules by 
hierarchical clustering analysis. Mørk et al. [42] presented 
miRPD in which miRNA-protein-disease associations, 
not just miRNA-disease associations, were predicted. It 
was a good idea to bring in the abundant information of 
protein as a bridge indirectly linking the miRNA and the 
disease. In detail, known and predicted miRNA-protein 
associations were coupled with protein-disease asso-
ciations from the literature to make an inference about 
miRNA-disease associations. In fact, the molecular bases 
for human diseases we had partly known accounted for 
less than 40% and highly accurate miRNA-target interac-
tions can hardly be obtained. In other words, above two 
methods lacked solid data foundation. Chen et  al. [43] 
proposed a model based on super-disease and miRNA for 
potential miRNA-disease association prediction (SDM-
MDA). In view of the fact that rare miRNA-disease asso-
ciations were known and many associations are ‘missing’, 
the concepts of ‘super-miRNA’ and ‘super-disease’ were 
introduced to improve the similarity measures of miR-
NAs and diseases.

The computational methods based on machine learn-
ing could bring us some new inspiration. Xu et  al. [44] 
constructed the miRNA-target dysregulated network 
(MTDN) and introduced support vector machine (SVM) 
classifier based on the features and changes in miRNA 
expression to distinguish positive miRNA-disease asso-
ciations from negative associations. However, there was 
little confirmed information about negative samples, so 
improvement was needed. In view of the lack of negative 
samples, Chen et  al. [45] developed a semi-supervised 
method named Regularized Least Squares for MiRNA-
disease association (RLSMDA). In the framework of 
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regularized least squares, RLSMDA was a global method 
integrating disease semantic similarity, miRNA func-
tional similarity and human miRNA-disease associations. 
RLSMDA could simultaneously prioritize all the possible 
miRNA-disease associations without the need of negative 
samples. Chen et al. [46] proposed Restricted Boltzmann 
machine for multiple types of miRNA-disease asso-
ciation prediction (RBMMMDA) by which four types of 
miRNA-disease associations could be identified. RBM-
MMDA is the first model which could identify different 
types of miRNA-disease associations. There is a hypothe-
sis that by distributional semantics, information attached 
to miRNAs and diseases can be revealed. Pasquier and 
Gardès [47] developed a model named MirAI, in which 
the hypothesis was investigated by expressing distribu-
tional information of miRNAs and diseases in a high-
dimensional vector space and then associations between 
miRNAs and diseases could be defined considering 
their vector similarity. Chen et al. [39] introduced KNN 
algorithm into miRNA-disease association prediction 
and proposed the computational model of RKNNMDA 
(Ranking-based KNN for MiRNA-disease association 
prediction).

Some previous researches paid attention to the net-
work tool-based prediction model. For instance, Xuan 
et  al. [40] divided network nodes into labeled nodes 
and unlabeled nodes and gave them different transition 
weights. The restart of walking could determine the walk-
ing distance, so the negative effect of noisy data would be 
lessened. Specially, the information from different lay-
ers of the miRNA-disease bilayer network was weighed 
differently. Then, Chen et al. [48] developed Within and 
Between Score for MiRNA-disease association predic-
tion (WBSMDA) in which for the first time, Gauss-
ian interaction profile kernel similarity for diseases and 
miRNAs were combined with miRNA functional simi-
larity, disease semantic similarity and miRNA-disease 
associations. Chen et  al. [49] further proposed Hetero-
geneous graph inference for miRNA-disease association 
prediction (HGIMDA) and the heterogeneous graph 
was constructed by the combination of miRNA func-
tional similarity, disease semantic similarity, Gaussian 
interaction profile kernel similarity, and miRNA-disease 
associations. Similar to random walk, HGIMDA was an 
iterative process for the optimal solutions based on global 
network similarity. In aspect of AUC, HGIMDA reached 
0.8781 and 0.8077 after implementing global and local 
LOOCV, respectively. Li et al. [50] put forward MCMDA 
(Matrix Completion for MiRNA-disease association 
prediction) in which a matrix completion algorithm 
was introduced and the lowly ranked miRNA-disease 
matrix was updated efficiently. WBSMDA, HGIMDA 
and MCMDA apply to the disease (miRNA) without any 

proved related miRNAs (diseases). MaxFlow is a com-
binatorial prioritization algorithm proposed by Yu et al. 
[51]. Besides the same type of data used in WBSMDA, 
MaxFlow also introduced the information about disease 
phenotypic similarity, miRNA family and miRNA cluster. 
Then a directed miRNAome-phenome network graph 
was constructed and every weighted edges were seen as 
flow capacity. The association possibility was defined as 
the flow quantity from the miRNA node to the investi-
gated disease node. You et al. [52] proposed Path-Based 
computational model for MiRNA-disease association 
prediction (PBMDA). A heterogeneous graph, includ-
ing three interlinked sub-graphs, was constructed by the 
same data as in WBSMDA and depth-first search algo-
rithm was applied to predict possible existing miRNA-
disease associations. Chen et  al. [53] summed up the 
relatively important miRNA-disease association predic-
tion approach.

More links should exist between miRNAs and diseases 
than we had learned. However, the computational meth-
ods aforementioned were limited by the utilization of 
inaccurate information (such as miRNA-target interac-
tions), the selection of parameter values, the combination 
of different classifiers in the different networks or spaces, 
etc. In pursuit of the higher predictive accuracy, we pro-
posed heterogeneous label propagation for MiRNA-dis-
ease association prediction (HLPMDA) for underlying 
miRNA-disease association prediction. In HLPMDA, 
heterogeneous data (miRNA similarity, disease similar-
ity, miRNA-disease association, long non-coding RNA 
(lncRNA)-disease association and miRNA–lncRNA 
interaction) were integrated into a heterogeneous net-
work [54]. Then, disease-related miRNA prioritization 
problem was formulated as an optimization problem. In 
details, within-network smoothness and cross-network 
consistency were considered here. HLPMDA achieved 
AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on 
global/local LOOCV and 5-fold cross validation, respec-
tively. Both in local and global LOOCV, HLPMDA was 
better than previous methods. In the case studies of three 
human diseases, 47, 49 and 46 out top 50 predicted miR-
NAs for esophageal neoplasms, breast neoplasms and 
lymphoma were verified by some recent experimental 
research.

Methods
Human miRNA‑disease associations
There are 5430 human miRNA-diseases associations 
between 383 diseases and 495 miRNAs, which were 
obtained from the Human microRNA Disease Database 
version 2.0 [55]. For convenience, the adjacency matrix 
S1,2 represented known miRNAs-disease associations. If 
miRNA m(j) is associated with disease d(i), S1,2(i, j) = 1; 
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otherwise, S1,2(i, j) = 0. In addition, variable nm and nd 
indicated the number of involved miRNAs and diseases, 
respectively.

lncRNA‑disease associations
Because we aim to predict latent miRNA-disease asso-
ciation, we looked for the lncRNAs that associate with 
the disease contained in S1,2, or interacted with the miR-
NAs contained in S1,2. As a result, 1089 lncRNAs (from 
LncRNADisease database [56] and starBase v2.0 data-
base [57] matched the above conditions. For the conveni-
ence of subsequent calculations, the adjacency matrix 
S2,3 ∈ R383×1089 was constructed to represent known 
lncRNA-disease associations. If lncRNA l(j) is associated 
with disease d(i), S2,3 (i, j) = 1; otherwise, S2,3 (i, j) = 0. 
Variable nl means the number of involved lncRNAs. The 
known lncRNA-disease associations came from LncRNA 
disease database (http://www.cuila​b.cn/lncrn​adise​
ase) which provided many experimentally confirmed 
lncRNA-disease associations and we deleted duplicate 
associations with different evidences. Finally 251 differ-
ent confirmed lncRNA-disease associations were selected 
out and in fact they only had something to do with 150 
lncRNAs and 63 diseases so S2,3 was a sparse matrix.

miRNA–lncRNA interactions
Similarly, the adjacency matrix S1,3 ∈ R495×1089 was con-
structed to represent known miRNA–lncRNA interac-
tion. If miRNA ms(i) is interacted with lncRNA l(j), S1,3 (i, 
j) = 1; otherwise, S1,3 (i, j) = 0. MiRNA–lncRNA interac-
tion dataset was downloaded from starBase v2.0 database 
[57] (http://starb​ase.sysu.edu.cn/), which provided the 
most comprehensive experimentally confirmed miRNA–
lncRNA interactions based on large scale CLIP-Seq data. 
Then we deleted duplicate interactions and 9088 different 
confirmed lncRNA–miRNA interactions were selected 
out. Similar to S2,3, S1,3 was also a sparse matrix in which 
the interactions were only about 246 miRNAs rather than 
all the 495 miRNAs.

MiRNA functional similarity
It was assumed in the previous work [58] that functional 
similar miRNAs often correlate with phenotypically 
similar diseases. Based on this important assumption, 
miRNA functional similarity score was calculated and 
the related data could be downloaded from http://www.
cuila​b.cn/files​/image​s/cuila​b/misim​.zip. Analogously, the 
miRNA functional similarity network was represented by 
miRNA functional similarity matrix FS, in which func-
tionally similar between miRNA m(i) and m(j) is denoted 
by the entity FS(m(i), m(j)).

Disease semantic similarity model
There are two kinds of models to calculate disease 
semantic similarity. Directed acyclic graph (DAG) is a 
finite directed graph but there is no directed circle in it. 
DAG consists of finite vertices and edges, with each edge 
directed from one node (parent) to another (child), and 
it is impossible to start at a node n and follow a consist-
ently-directed sequence of edges that eventually loops 
back to n again. DAG served as a tool to describe the 
relationships among involved diseases in many previ-
ous studies [45, 48, 49, 52]. According to the data from 
the National Library of Medicine (http://www.nlm.
nih.gov/), the relationship of different diseases could 
be measured by the disease DAG based on the MeSH 
descriptor of Category C. For example, for the DAG of 
esophageal neoplasms (see Fig. 1), ‘Neoplasms’ points to 
‘Neoplasms by Site’, so ‘Neoplasms’ is the parent of child 
‘Neoplasms by Site’. The disease D was represented by 
DAG(D) = (D,T(D),E(D)), in which T(D) is the node set 
representing disease D itself and its ancestor (its parent 
and above), E(D) is the corresponding direct edges from 
the parent to the child [58]. According to [38], the seman-
tic value of disease D could be calculated as follows:

where

where ∆ is the semantic contribution factor. For disease 
D, the contribution of itself to the semantic value of dis-
ease D was 1 and the longer distance between D and 
other disease was, the smaller semantic contribution was. 
If disease terms are in the same layer, they would have the 
same contribution to the semantic value of disease D.

There is a wildly accepted assumption that the more 
part of two diseases’ DAGs are sharing, the more seman-
tic similarity they have. The semantic similarity between 
disease d(i) and d(j) can be defined as follows:

Furthermore, there is another model for disease simi-
larity calculation [38] and it was adopted in this study. 
It is observed that in the same layer of DAG(A), differ-
ent diseases terms may appear in the different numbers 
of disease DAGs. For instance, there are two diseases in 
the same layer of DAG(A), if one disease appears in less 
disease DAGs than the other, it is obvious that the former 
is more specific than the latter. So we assigned them with 
different contributions, and the former’s contribution 
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factor should be higher than the latter. The contribution 
of disease term t in DAG(A) to the semantic value of dis-
ease A is defined as follows:

where DAGt represents the number of DAGs includ-
ing t. The semantic similarity between two diseases were 
defined as follows:

So the final disease semantic similarity was defined as 
follows:

Gaussian interaction profile kernel similarity for diseases 
and miRNAs
In order to make the most of the topologic information 
from known miRNA-disease association network, Gauss-
ian interaction profile kernel similarity for diseases are 
calculated on the assumption that analogic diseases are 
likely to associate with functionally similar miRNAs and 
vice versa [20, 58–60]. The ith row of the adjacency matrix 
S1,2 is taken out as a new binary vector, IP(d(i)). Obvi-
ously, IP(d(i)) illustrate the associative or non-associative 

(4)C2A(t) = − log
(

DAGt
nd

)
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d(i), d
(

j
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=
∑
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(6)DS = DS1+DS2
2

situation between disease d(i) and all miRNAs involved in 
this study and it is called interaction profiles of disease d(i). 
According to [61], Gaussian kernel similarity between two 
diseases, d(i) and d(j), could be calculated as follows:

where γd is a parameter for the kernel bandwidth control, 
and it was calculated through the normalization of a new 
bandwidth parameter Y ′

d by the average number of asso-
ciations with miRNAs for all the diseases.

Similarly, Gaussian interaction profile kernel similar-
ity between two miRNAs (m(i) and m(j)) is calculated as 
follows:
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Fig. 1  The disease DAG of esophageal neoplasms
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parameter for the kernel bandwidth control, and it was 
calculated through the normalization of a new band-
width parameter Y ′

m by the average number of associated 
diseases for all the miRNAs. According to [62] and for 
the simplicity of calculations, we set γd = γm = 1.

Integrated similarity for miRNAs and diseases
Here, according to [48], let S1 represent the integrated 
miRNA similarity matrix and S2 be the integrated disease 
similarity matrix.

HLPMDA
HLPMDA is motivated by Heter-LP [63]. As shown in 
Fig.  2, the heterogeneous network constructed based 
on the above data included three kinds of nodes (miR-
NAs, diseases, and lncRNAs) and five kinds of edges 
(miRNA similarity, disease similarity, miRNA-disease 
association, miRNA–lncRNA interaction and lncRNA-
disease association). Thus a heterogeneous network 
G = (V, E) was constructed with two homo-sub-net-
works and three hetero-sub-networks (see Fig.  2). 
The homo-sub-networks are defined as Gi= (Vi,Ei) 
where i = 1, 2 for miRNAs and diseases, respectively. 
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The hetero-sub-networks (bipartite networks) are 
Gi,j = (Vi ∪ Vj , Ei,j) for i, j = 1, 2, 3, and i < j, where 
i,j = 1, 2, 3 for miRNAs, diseases and lncRNAs, respec-
tively. Ei represents the set of edges between vertices in 
the vertex set Vi of homo-sub-network Gi. And Ei,j rep-
resents the set of edges between a vertex in Vi to a vertex 
in Vj.

On the base of heterogeneous network G, we measure 
the weight of homo-sub-network edge (i, j) by bipartite 

Fig. 2  Flowchart of possible disease-miRNA association prediction based on the computational model of HLPMDA

network projection, a weighted one-mode projection 
technique from [63, 64]. Let the adjacency matrix A 
represent one bipartite network, in which there are two 
nonempty disjoint vertex sets X and Y. Sx is the similarity 
matrix of vertex set X and sx (i, j) is the entry of row i and 
column j in Sx; K(xi) represents the degrees of vertices xi 
in G; W is the projected matrix of A onto X and the cor-
responding calculation process is:

(13)w
(

i, j
)

= sx(i,j)

K (xi)
1−�K(xj)

�

m
∑

l=1

a(i,l)∗a(j,l)
K(yl)
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where i,j belong to identical homo-sub-networks; w(i, j) 
is the entry of row i and column j in W; 0 < k < 1 is dif-
fusion parameter of the projection (in this study we set 
k = 0.5); a(i, l) represents the weight of edge (xi, yl) in G. If 
there is no edge from i to j, w(i, j) = 0.

Next, label propagation was applied on miRNA-dis-
ease hetero-sub-network by means of the information 
from other homo-sub-networks and hetero-sub-net-
works. Table  1 shows the main pseudo-code of HLP-
MDA. Firstly, let y1, y2 and y3 be the label vectors that 
represent miRNA, disease and lncRNA, respectively. 
y1, y2 and y3 were initialized to zero. Secondly, all asso-
ciations (S1,2 and S2,3) and interactions (S1,3) were pro-
jected onto similarity matrices (S1 and S2) using the 
weighted one-mode projection technique as described 
above. Four projected matrices came out (W11 is the 
projection of S1,2 on S1; W12 is the projection of S1,3 on 
S1; W21 is the projection of S1,2 on S2; W22 is the pro-
jection of S2,3 on S2). Thirdly, four projected matri-
ces ( W11,W12 and W21,W22 ) were integrated with 
corresponding similarity matrices (S1 or S2) respec-
tively, with the help of the Laplacian normalization (M1 
is the Laplacian normalization of S1,W11 and W12 ; M2 is 
the Laplacian normalization of S2,W21 and W22). Tak-
ing M1 as an example, the Laplacian normalization is 
defined by

where d(i) is the sum of ith row of the matrix M, and if 
d(i) = 0, d(i) = 1.

Then in label propagation phase, there were three 
iterative loops. In each loop, the label of the investigated 
miRNA (disease or lncRNA) was set to one and others 
to zero. The label propagation function is applied, and 
output matrices, F1,2 and F2,1, are updated. Finally, the 
predictive matrix F for underlying miRNA-disease asso-
ciations could be obtained and then all predictive scores 
could be ranked in descending order.

According to the previous study [63], the conver-
gence of label propagation iteration (LabelPropaga-
tion function) in the algorithm HLPMDA could be 
determined (the relevant proof can be found in [63]). 
So in order to reduce the time complexity and space 
complexity of HLPMDA, the complex part, i.e. Label-
Propagation function was replaced by the following 
equation:

(14)M
(

i, j
)

= S1
(

i, j
)

+W11

(

i, j
)

+W12

(

i, j
)

(15)M
(

i, j
)

=

{

1, i = j
M(i,j)√
d(i)d(j)

, i �= j

Table 1  The illustration of the HLPMDA algorithm
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where f1 and f2 are label vectors that represent the predic-
tive result for the investigated miRNA with all diseases or 
the investigated disease with all miRNAs; I is the identity 
matrix;S2,1 =

(

S2,1
)T ; α is a constant parameter and we 

set α = 0.1 referring to the similar study [63].

Results
Cross validation
In order to evaluate the predictive performance of HLP-
MDA, global LOOCV, local LOOCV and 5-fold cross 
validation were executed based on the known miRNA-
disease associations from HMDD v2.0 [55]. Then, 
HLPMDA was compared with ten state-of-the-art com-
putational methods: PBMDA [52], MCMDA [50], Max-
Flow [51], HGIMDA [49], RLSMDA [45], HDMP [38] 
WBSMDA [48], MirAI [47], MIDP [40] and RWRMDA 
[65].

In LOOCV, each proved miRNA-disease associa-
tion was regarded as a test sample in turn while other 
known associations were used as training set of the 
model. The difference between local and global LOOCV 

(16)f1 = (I − αM1)
−1

[

(1− α)2y1 + (1− α)3S1,2y2 + (1− α)3S1,3y3
]

(17)f2 = (I − αM2)
−1

[

(1− α)2y2 + (1− α)3S2,1y1 + (1− α)3S2,3y3
]

is the comparison range. In local LOOCV, a compari-
son was made between test sample and the miRNAs 
without known association with the investigated dis-
ease. Whereas in global LOOCV, a comparison was 
made between test sample and all the miRNA-disease 
pairs without confirmed associations. In 5-fold cross 
validation, all the known miRNA-disease associations in 
HMDD v2.0 were divided into five sets with equal sizes, 
where four sets trained the model and the other set tested 
the model. For fear of the performance difference due to 
the samples divisions, all associations were randomly 
divided 100 times and the results of all 100 times were 
averaged to derive the final evaluation result.

If the test sample ranked higher than the given threshold, 
it was a successful prediction. Next, Receiver operating 
characteristics (ROC) curve was drawn where true posi-
tive rate (TPR, sensitivity) was plotted versus false positive 
rate (FPR, 1-specificity) at different thresholds. Sensitivity 
represents the ratio of successful predictions to the test 
samples. Specificity represents the percentage of negative 
miRNA-disease pairs which were ranked lower than the 
threshold. Area under the ROC curve (AUC) could be cal-
culated to show predictive capability of MDMMDA. The 
closer that AUC is to 1, the better predictive capability the 
method is. AUC = 0.5 means the random performance.

Table 1  (continued)

As illustrated in Fig.  3, HLPMDA achieved AUCs of 
0.9232, 0.8437 and 0.9218 ± 0.0004 in the global LOOCV, 
local LOOCV and 5-fold CV, respectively, which shows 
a better predictive capability than other ten methods: 
PBMDA [52], MCMDA [50], MaxFlow [51], HGIMDA 
[49], RLSMDA [45], HDMP [38] WBSMDA [48], MirAI 
[47], MIDP [40] and RWRMDA [65]. (RWRMDA and 
MIDP are random walk-based method and this two 
method could be implemented only after determine the 
disease, so there are no global LOOCV results about 
them. MiRAI lacked the results of global LOOCV, either. 
Because during the caculation of MiRAI, the associa-
tion scores for different diseases were not comparable.) 
Besides, MiRAI implemented on our data sets had a 
lower AUC (0.6299) than described in the origin litera-
ture [47], due to the data sparsity problem of collabora-
tive filtering algorithm that MiRAI was based on.

Case studies
To be specific, three malignant human diseases, esopha-
geal neoplasms, breast neoplasms and Lymphoma were 
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selected out to execute three kind of case studies (each 
kind of case studies investigate one disease).

In the first kind of case studies, data came from HMDD 
v2.0 and then the prediction results were checked up in 
miR2Disease [66] and dbDEMC database [67] (another 
two well-known miRNA-disease association databases). 
This kind of case studies is about esophageal neoplasms. 
Esophageal neoplasm is a common malignant tumor 
worldwide and it affects more males than females [68]. 
In terms of pathological characteristics, there are two 
main subtype of esophageal neoplasms: esophageal squa-
mous cell carcinoma (ESCC) and esophageal adenocar-
cinoma (EAC) [68]. ESCC remains the main subtype 
of esophageal neoplasms [68]. Survival rate of esopha-
geal neoplasms is improving but remains poor [69]. So 
more esophageal neoplasms related miRNAs may help 
detect, diagnose and treat esophageal neoplasms earlier. 
Until now, some miRNAs have been found associated 
with esophageal neoplasms. For example, after 24- and/
or 72-h treatment of esophageal neoplasms by Chemo-
therapy, 13 miRNAs (miR-199a-5p, miR-302f, miR-320a, 
miR-342-3p, miR-425, miR-455-3p, miR-486-3p, miR-
519c-5p, miR-548d-5p, miR-617, miR-758, miR-766, 
miR-1286) were deregulated [70]. By HLPMDA, the can-
didate miRNAs of esophageal neoplasms were ranked 
and then checked up by miR2Disease and dbDEMC. As a 
result, all of the top 10 and 47 out of the top 50 candidate 
miRNAs could be proved to be related with esophageal 
neoplasms (see Table 2). Besides, all candidate miRNAs 
were ranked by HLPMDA for all the diseases in HMDD 

v2.0 (see Additional file  1). We hope that these predic-
tion results could help the corresponding experimental 
research in the future.

In the second kind of case studies, data also came 
from HMDD v2.0 but the investigated disease-related 
miRNAs were removed in order to evaluate the predic-
tive capability for those diseases without any known 
associated miRNAs. Then the prediction results were 
checked up in HMDD v2.0, miR2Disease and dbDEMC 
database. This kind of case studies is about breast neo-
plasms. Breast neoplasms (Breast cancer) is the second 
leading cause of women cancer death in the US and the 
breast cancer death rates of black women remain higher 
than whites nationally [71]. Some miRNAs have been 
proved to correlate with Breast neoplasms and the cor-
responding treatment. For example, by decreasing TrkB 
and Bmi1 expression, miR-200c sensitizes breast can-
cer cells to doxorubicin treatment [72]. Furthermore, in 
human breast cancer cells miRNA-200 family alterations 
relates to mesenchymal and drug-resistant phenotypes 
[73]. By HLPMDA, the candidate miRNAs of Breast neo-
plasms were ranked and then checked up by HMDD v2.0, 
miR2Disease and dbDEMC. As a result, all of the top 
10 and 49 out of the top 50 candidate miRNAs could be 
proved to be related with Breast neoplasms (see Table 3).

In the third kind of case studies, data came from 
HMDD v1.0 and then the prediction results were checked 
up in HMDD v2.0, miR2Disease and dbDEMC database, 
just for the sake of examining the robustness of HLP-
MDA on the different dataset. This kind of case studies 

Fig. 3  Predictive capability comparisons between HLPMDA and ten classical models of disease-miRNA association prediction (PBMDA, MCMDA, 
MaxFlow, HGIMDA, RLSMDA, HDMP, WBSMDA, MirAI, MIDP, and RWRMDA) in terms of ROC curve and AUC based on local and global LOOCV, 
respectively. As a result, HLPMDA achieved AUCs of 0.9232 and 0.8437 in the global and local LOOCV, significantly outperforming all the previous 
classical models
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is about Lymphoma originating in the lymphatic hemat-
opoietic system, which accounts for more than one-fifth 
of all cancer cases [71]. According to the tumor cells, 
there are two categories of lymphoma: Hodgkin lympho-
mas (HL) and the non-Hodgkin lymphomas (NHL) [74, 
75]. It is very hard for HL to be detected at early stages 
[74, 75]. Some miRNAs were found associated with lym-
phoma. For instance, there are different expressions of 
miR-150 between lymphoma and small lymphocytic leu-
kemia [76], and specifically, miR-150 is a tumor suppres-
sor in malignant lymphoma [77]. Besides, EBV-positive 
Burkitt lymphoma differentiation can be induced by re-
expression of miR-150 targeting c-Myb [78]. By HLP-
MDA, the candidate miRNAs of lymphoma were ranked 
and then checked up by HMDD v2.0, miR2Disease and 
dbDEMC. As a result, 9 of the top 10 and 46 out of the 
top 50 candidate miRNAs could be proved to be related 
with lymphoma (see Table 4).

Discussion
The reliability and availability of HLPMDA lied in the fol-
lowing several aspects. Firstly, HMDD as well as other 
biological datasets provided a solid foundation for the 
subsequent prediction steps. Secondly, the introduction 
of lncRNA data and the application of bipartite network 
projection help profile the relationship between one 
miRNA and another miRNA, between one disease and 
another disease. There is a widely accepted view that 
more data may help produce a better output. Adding the 
corresponding lncRNA data brings more information to 
the problem of latent miRNA-disease association predic-
tion. It is a fresh perspective and it was proved to be an 
advantageous improvement by the performance of HLP-
MDA. Bipartite network projection also dug out more 
implicit message that made the prediction more accu-
rate. In addition, the heterogeneous label propagation is a 
useful algorithm based on the local and global feature in 
the constructed network, with no need of negative exam-
ples. In recent years, the network approach has been 
relatively widely adopted in some fields of bioinformatics 
[79–81]. The major cause is that similarity, links, associa-
tions, interactions and relationships among the research 
targets (like miRNA, diseases and so on) in the network 
approach become easier to be represented, calculated, 
analyzed and tested by some math tools, together with 
some descriptive expressions transformed into quantita-
tive representations. As a result, it indeed helps improve 
the effectiveness of the prediction. Finally, according to 
NanoString’s Hallmarks of Cancer Panel collection (https​
://www.nanos​tring​.com/), it is proved that a part of the 
miRNAs’ targets is related to cancer hallmarks [82, 83], 
which were found to be associated with the correspond-
ing genes. So our work may be helpful for the further 
research about cancer hallmarks, genes and miRNA.

However, HLPMDA is undeniably limited by following 
factors which are also the room to improve HLPMDA. 
First, the data about miRNA and disease is not ample 
enough. For instance, the known miRNA-disease asso-
ciations have a large degree of sparsity (labeled miRNA-
disease associations only accounts for 2.86% of 189,585 
miRNA-disease pairs). It is believed that more data could 
promote the performance of the computational model. 
Therefore, with more information about miRNA, disease 
and some other objects (like genes, drugs, targets and so 
on) related to one or both of them put to use [84], pre-
dictive power of HLPMDA would be stronger. Second, it 
may be unfair for different miRNAs or diseases because 
the known information about every item is not relatively 
equivalent. Therefore, HLPMDA may cause advanta-
geous bias to miRNAs or diseases which have more 

Table 2  HLPMDA was  implemented to  predict potential 
esophageal neoplasms-related miRNAs based 
on the known miRNA-disease association from HMDD v2.0 
(left column: top 1–25; right column: top 26–50)

miRNA Evidence miRNA Evidence

hsa-mir-125b dbDEMC hsa-mir-127 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-429 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-181b dbDEMC

hsa-mir-18a dbDEMC hsa-mir-181a dbDEMC

hsa-mir-16 dbDEMC hsa-mir-107 dbDEMC; miR2Disease

hsa-mir-221 dbDEMC hsa-mir-24 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-182 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-30c dbDEMC

hsa-let-7e dbDEMC hsa-mir-93 dbDEMC

hsa-let-7f Unconfirmed hsa-mir-18b dbDEMC

hsa-mir-19b dbDEMC hsa-mir-199b dbDEMC

hsa-mir-29a dbDEMC hsa-mir-133b dbDEMC

hsa-let-7d dbDEMC hsa-mir-132 dbDEMC

hsa-let-7i dbDEMC hsa-mir-195 dbDEMC

hsa-mir-9 dbDEMC hsa-mir-30a dbDEMC

hsa-let-7 g dbDEMC hsa-mir-191 dbDEMC

hsa-mir-218 Unconfirmed hsa-mir-15b dbDEMC

hsa-mir-10b dbDEMC hsa-mir-302b dbDEMC

hsa-mir-146b dbDEMC hsa-mir-224 dbDEMC

hsa-mir-142 dbDEMC hsa-mir-194 dbDEMC; miR2Disease

hsa-mir-125a dbDEMC hsa-mir-20b dbDEMC

hsa-mir-7 dbDEMC hsa-mir-124 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-302c dbDEMC

hsa-mir-106a dbDEMC hsa-mir-122 Unconfirmed

hsa-mir-106b dbDEMC hsa-mir-335 dbDEMC

https://www.nanostring.com/
https://www.nanostring.com/
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Table 3  HLPMDA was  implemented to  predict 
potential breast neoplasms-related miRNAs based 
on  the  known miRNA-disease association from  HMDD 
v2.0 while  the  associations about  breast neoplasms were 
removed and  then the  prediction results were checked 
up in HMDD v2.0, miR2Disease and dbDEMC database (left 
column: top 1–25; right column: top 26–50)

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD
dbDEMC
miR2Disease

hsa-mir-205 HMDD; dbDEMC
miR2Disease

hsa-mir-155 HMDD
dbDEMC
miR2Disease

hsa-mir-203 HMDD; dbDEMC
miR2Disease

hsa-mir-125b HMDD
miR2Disease

hsa-mir-1 HMDD; dbDEMC

hsa-mir-145 HMDD; dbDEMC
miR2Disease

hsa-mir-34c HMDD; dbDEMC

hsa-mir-146a HMDD
dbDEMC
miR2Disease

hsa-mir-19b HMDD; dbDEMC

hsa-mir-221 HMDD
dbDEMC
miR2Disease

hsa-mir-375 HMDD; dbDEMC

hsa-mir-17 HMDD
miR2Disease

hsa-mir-199a HMDD; dbDEMC

hsa-mir-34a HMDD
dbDEMC

hsa-mir-100 HMDD; dbDEMC

hsa-let-7a HMDD
dbDEMC
miR2Disease

hsa-mir-29a HMDD; dbDEMC

hsa-mir-20a HMDD
miR2Disease

hsa-mir-210 HMDD; dbDEMC
miR2Disease

hsa-mir-31 HMDD
dbDEMC
miR2Disease

hsa-mir-15a HMDD; dbDEMC

hsa-mir-200c HMDD
dbDEMC
miR2Disease

hsa-let-7c HMDD; dbDEMC

hsa-mir-222 HMDD
dbDEMC
miR2Disease

hsa-mir-182 HMDD; dbDEMC
miR2Disease

hsa-mir-126 HMDD
dbDEMC
miR2Disease

hsa-mir-34b HMDD; dbDEMC

hsa-mir-18a HMDD
dbDEMC
miR2Disease

hsa-mir-183 HMDD; dbDEMC

hsa-mir-92a HMDD hsa-mir-141 HMDD; dbDEMC
miR2Disease

hsa-mir-200b HMDD
dbDEMC
miR2Disease

hsa-mir-101 HMDD; dbDEMC
miR2Disease

hsa-mir-16 HMDD
dbDEMC

hsa-mir-146b HMDD; dbDEMC
miR2Disease

hsa-let-7b HMDD
dbDEMC

hsa-mir-181a HMDD; dbDEMC
miR2Disease

hsa-mir-142 Unconfirmed hsa-let-7d HMDD; dbDEMC
miR2Disease

Table 3  (continued)

miRNA Evidence miRNA Evidence

hsa-mir-9 HMDD
dbDEMC
miR2Disease

hsa-mir-10b HMDD; dbDEMC
miR2Disease

hsa-mir-200a HMDD
dbDEMC
miR2Disease

hsa-let-7e HMDD; dbDEMC

hsa-mir-223 HMDD
dbDEMC

hsa-mir-29c HMDD; dbDEMC
miR2Disease

hsa-mir-19a HMDD
dbDEMC

hsa-mir-218 HMDD; dbDEMC

hsa-mir-143 HMDD
dbDEMC
miR2Disease

hsa-let-7 g HMDD; dbDEMC

Table 4  HLPMDA was  implemented to  predict potential 
lymphoma-related miRNAs based on  the  known 
miRNA-disease association from  HMDD v1.0 and  then 
the  prediction results were checked up  in  HMDD v2.0, 
miR2Disease and  dbDEMC database (left column: top 
1–25; right column: top 26–50)

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD; dbDEMC hsa-mir-127 dbDEMC

hsa-mir-155 HMDD; dbDEMC hsa-mir-141 dbDEMC

hsa-mir-221 dbDEMC hsa-mir-199a dbDEMC

hsa-let-7a dbDEMC hsa-mir-29c HMDD; dbDEMC

hsa-mir-146a HMDD; dbDEMC hsa-mir-24 HMDD; dbDEMC

hsa-mir-125b Unconfirmed hsa-mir-146b Unconfirmed

hsa-mir-222 dbDEMC hsa-mir-200a HMDD; dbDEMC

hsa-mir-34a dbDEMC hsa-mir-143 dbDEMC

hsa-let-7b dbDEMC hsa-mir-181a HMDD; dbDEMC

hsa-let-7e dbDEMC hsa-mir-25 dbDEMC

hsa-mir-223 dbDEMC hsa-mir-150 HMDD; dbDEMC

hsa-let-7d dbDEMC hsa-mir-106a dbDEMC

hsa-mir-29b dbDEMC hsa-mir-125a HMDD; dbDEMC

hsa-mir-29a dbDEMC hsa-mir-373 dbDEMC

hsa-mir-145 dbDEMC hsa-mir-101 HMDD; dbDEMC

hsa-mir-9 dbDEMC hsa-mir-451 dbDEMC

hsa-mir-200b HMDD; dbDEMC hsa-mir-93 dbDEMC

hsa-let-7i dbDEMC hsa-mir-214 dbDEMC

hsa-let-7f dbDEMC hsa-mir-34c Unconfirmed

hsa-let-7c dbDEMC hsa-mir-34b dbDEMC

hsa-let-7 g dbDEMC hsa-mir-191 dbDEMC

hsa-mir-126 HMDD; dbDEMC hsa-mir-339 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-194 dbDEMC

hsa-mir-106b dbDEMC hsa-mir-132 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-429 Unconfirmed
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known association (or interaction) records. Last but not 
the least, the parameters in HLPMDA were set according 
to the previous similar studies and our experience. We 
have not thought a lot of the parameters but there may 
exist better parameters which could bring about more 
accurate prediction results.

Data collection, database construction, data analysis, 
mining and testing about miRNA-disease associations 
has become an important field in bioinformatics. As we 
all know, there are strong connections in many fields 
of biology. The research of miRNA-disease association 
relates to protein–protein interaction, miRNA-target 
interaction, miRNA–lncRNA interaction, drug, environ-
mental factor, etc. In the future, we believe that this field 
need to obtain more data and to be integrated with other 
research areas for the sake of producing predictive syn-
ergy with more integrated data.

Conclusion
It is valuable to seek the underlying miRNA-disease asso-
ciations. In this paper, on the grounds that functionally 
similar miRNAs were likely to correlate with similar dis-
eases and vice versa, heterogeneous label propagation for 
MiRNA-disease association prediction (HLPMDA) was 
proposed. AUCs of HLPMDA are 0.9232 (global LOOCV), 
0.8437 (local LOOCV) and 0.9218 ± 0.0004 (5-fold CV). In 
three case studies, the accurate rates were all higher than 
85%. Furthermore, three kinds of case studies were imple-
mented for further evaluations. As a result, 47 (esophageal 
neoplasms), 49 (breast neoplasms) and 46 (lymphoma) 
of top 50 candidate miRNAs were proved by experiment 
reports. All the results sufficiently showed the reliability of 
HLPMDA in predicting possible disease-miRNA associa-
tions. HLPMDA will be a valuable computational tool for 
miRNA-disease association prediction and miRNA bio-
marker identification for human disease.

Additional file

Additional file 1. All candidate miRNAs were ranked by HLPMDA for all 
the diseases in HMDD v2.0. Prediction results could be obtained publicly 
for further research and experimental validation.
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