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Abstract
Background: Wilms tumor is the most common pediatric renal cancer. However, ge-
netic bases behind Wilms tumor remain largely unknown. H19 is a critical maternally 
imprinted gene. Previous studies indicated that single nucleotide polymorphisms 
(SNPs) in the H19 can modify the risk of several human malignancies. Epigenetic 
errors at the H19 locus lead to biallelic silencing in Wilms tumors. Genetic variations 
in the H19 may be related to Wilms tumor susceptibility.
Methods: We conducted a four-center study to investigate whether H19 SNP was a 
predisposing factor to Wilms tumor. Three polymorphisms in the H19 (rs2839698 
G > A, rs3024270 C > G, rs217727 G > A) were genotyped in 355 cases and 1070 
cancer-free controls, using Taqman method. Odds ratios (ORs) and 95% confidence 
intervals (CIs) were calculated to evaluate the strength of the associations.
Results: We found that all of these three polymorphisms were significantly associ-
ated with Wilms tumor risk alterations. The rs2839698 G > A polymorphism (AG 
vs. GG: adjusted OR = 0.74, 95% CI = 0.57–0.96, p = 0.024; AA vs. GG: adjusted 
OR = 1.52, 95% CI = 1.05–2.22, p = 0.027), the rs3024270 C > G polymorphism 
(CG vs. CC: adjusted OR = 0.61, 95% CI = 0.46–0.81, p = 0.0007; and the rs217727 
polymorphism (AG vs. GG: adjusted OR = 0.76, 95% CI = 0.58–0.99, p = 0.035). 
The Carriers of 1, 2, and 1–2 risk genotypes were inclined to develop Wilms tumor 
compared with those without risk genotype (adjusted OR = 1.36, 95% CI = 1.02–
1.80, p  =  0.037; adjusted OR  =  1.84, 95% CI  =  1.27–2.67, p  =  0.001; adjusted 
OR = 1.50, 95% CI = 1.17–1.92, p = 0.002, respectively). The stratified analysis 
further revealed that rs2839698 AA, rs217727 AA, and 1–2 risk genotypes could 
strongly increase Wilms tumor risk among children above 18 months of age, males, 
and with clinical stage I+II disease.
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1 |  INTRODUCTION

Wilms tumor, also known as nephroblastoma, is derived from 
the pluripotent embryonic kidney precursor. It is the most 
common renal malignancy in children, accounting for 85% 
of pediatric renal tumors (Birch & Breslow, 1995; Rivera & 
Haber, 2005; Vujanic & Sandstedt, 2010)Children are usually 
diagnosed ages 2–3 years and the male to female distribution 
is comparable. The incidence varying by race, a slight female 
predominance outside of Eastern Asia. (Cunningham et al., 
2020) The prevalence of Wilms tumor is similar in black and 
white children (Breslow et al., 1994), but is around half in 
East Asian children, about three per million (Fukuzawa & 
Reeve, 2007). In China, the frequency of Wilms tumor is 
around 3.3 per million, ranking the fifth in the incidence of 
malignant tumors in children aged 0 to 4 years (Bao et al., 
2013). Besides, about 1%–3% of Wilms tumor have a family 
history, probably due to rare germline mutations and incom-
plete expressiveness (Chu et al., 2010). Environmental fac-
tors and immigration factors seem not to play a prominent 
role in etiology (Birch & Breslow, 1995; Bunin & Meadows, 
1993; Fukuzawa & Reeve, 2007). The survival rate of Wilms 
tumor is more than 90% after excluding some high-risk cases 
with anaplastic histology, bilateral lesions, and recurrent dis-
eases (Dome et al., 2015). However, up to 25% of survivors 
reported severe chronic health problems (van Waas et al., 
2012). Moreover, late diagnosis and high recurrence rates in 
patients are reported in underdeveloped regions (Phelps et al., 

2018), based on the difficulty of stratification of increasingly 
refined tumor subtypes and the high cost of chemoradiother-
apy for high-risk tumors (Dome et al., 2015). Therefore, to 
improve the outcomes, it is of great significance to enhance 
prevention and early diagnosis by developing accurate bio-
markers to identify high-risk individuals.

As a critical maternally imprinted gene, the H19 was dis-
covered successively in different laboratories in the 1980 s. 
This gene located on chromosome 11p15.5 in humans is 
composed of five exons and four introns (Gabory et al., 
2010). The expression of H19 is highly increased in many 
embryos and decreased after birth (Lustig-Yariv et al., 1997). 
More and more evidence indicates that the H19 is essential 
for human tumor growth from different biological processes 
(Si et al., 2019). Studies have shown that the H19 was upreg-
ulated in lung cancer, gastric cancer, colon cancer, retinoblas-
toma, thyroid cancer, and breast cancer (Dai et al., 2019; Gan 
et al., 2019; Mahmoudian-Sani et al., 2019; Qi et al., 2019; 
Si et al., 2019; Zheng et al., 2019). However, the upregulated 
expression of the H19 can inhibit pituitary tumor cell prolif-
eration in vitro and in vivo (Wu et al., 2018). H19 expression 
decreased in most hepatoblastomas (Ge et al., 2019). The 
epigenetic errors at the H19 site in early embryonic devel-
opment may result in the silencing of the double-alleles in 
Wilms tumor, thereby affecting the imprinting of parental al-
leles (Frevel et al., 1999). Matthew K Iyer et al. found many 
lncRNAs overlapping disease-associated single nucleotide 
polymorphisms (SNPs) (Iyer et al., 2015). Previous genomics 
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studies have demonstrated that SNPs in several genes are as-
sociated with the risk of Wilms tumor (Fu et al., 2018; Zhu, 
Fu, et al., 2018; Zhu, Jia, et al., 2018). It has been reported 
that H19 rs2839698 G > A, rs3024270 C > G or rs217727 
G > A polymorphism is not associated with neuroblastoma 
susceptibility in the whole study population, while in strat-
ified analysis, girls with rs3024270 GG genotype had an 
increased risk of neuroblastoma (Hu et al., 2019). To date, 
no publication has been reported on the association between 
H19 polymorphisms and Wilms tumor susceptibility. In this 
study, we scrutinized the association of several H19 SNPs 
(rs2839698, rs3024270, and rs217727) and Wilms tumor 
risks based on a four-center study of Chinese children.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance

This study was approved by the ethics committee of each par-
ticipating hospital.

2.2 | Study subjects

The cases were enrolled in this project according to previ-
ously reported criteria (Fu et al., 2019; Liu et al., 2019; Zhuo 
et al., 2019). In brief, 355 Wilms tumor cases and 1,070 
healthy controls were included in this study (Table S1). 
The 355 cases were from four medical centers (Guangzhou 
Women and Children's Medical Center, The First Affiliated 
Hospital of Zhengzhou University, The Second Affiliated 
Hospital and Yuying Children's Hospital of Wenzhou 
Medical University, and Second Affiliated Hospital of Xi'an 
Jiao Tong University). All the control groups were healthy 
children selected from the same four regions whose age and 
gender were effectively matched to the patients as cases 
during the same period. Patients’ age, gender, and clinical 
stages were collected by trained medical staff. We con-
ducted this study following the approval of the Institutional 
Review Board of the participating hospitals. All the partici-
pants’ parents provided signed informed consent before the 
examination.

2.3 | Polymorphism analysis

Each subject donated about 2  mL of peripheral blood 
for DNA extraction using a TIANamp Blood DNA Kit 
(TianGen Biotech Co. Ltd.). We used the dbSNP database 
(https://www.ncbi.nlm.nih.gov/snp/), SNPinfo software 
(https://snpin fo.niehs.nih.gov/snpin fo/snpfu nc.html) and 
LDlink (https://ldlink.nci.nih.gov/) to select candidate 

SNPs. SNPs were limited to noncoding regions includ-
ing 2000 base pairs of H19 upstream and downstream [3’ 
untranslated regions (UTRs), 5’ UTRs and introns]; SNPs 
were predicted as potentially functional variations by the 
SNPinfo software; the minor allele frequencies (MAFs) of 
SNPs in the Chinese population should not be less than 5%; 
and the selected SNPs displayed (R2<0.8) linkage disequi-
librium (LD). Three SNPs (rs2839698 G > A, rs3024270 
C > G, rs217727 G > A) in H19 met the described criteria 
and chosen for genotyping by ABI Taqman probe (Applied 
Biosystems,) (Hu et al., 2019). The rs2839698 G > A and 
rs3024270 C  >  G are located in the transcription factor 
binding sites. We genotyped the gene polymorphisms 
using Taqman real-time PCR (He et al., 2012; He et al., 
2016). The randomized and blinded process method was 
adopted while genotyping all samples. Approximately, 
10% random selection samples were re-genotyped, and the 
genotype concordance rate was 100%.

2.4 | Statistical analysis

Departures from Hardy–Weinberg equilibrium (HWE) for 
the selected SNPs in controls were evaluated using a good-
ness-of-fit χ2 test. Allele frequencies and demographic vari-
ables between the two groups were assessed by the χ2 test. 
Risk associations between genotypes and Wilms tumor were 
determined from a logistic regression analysis. The ORs, 
95% CIs, and the corresponding P value for each SNP was 
calculated with adjustment for age and gender. All statistical 
calculations were implemented with the utilization of SAS 
software version 9.4 (SAS Institute). Two-sided statistical 
tests were employed in this study. The significance threshold 
was defined as p < 0.05.

3 |  RESULTS

3.1 | Associations between H19 gene 
polymorphisms and Wilms tumor susceptibility

The detailed characteristics of all the subjects were shown in 
Table S1. A total of 355 patients and 1068 healthy controls 
were successfully genotyped. The genotype frequencies of 
the three selected H19 polymorphisms and their associations 
with Wilms tumor susceptibility were presented in Table 1. 
We observed the genotype frequency distributions of the 
selected H19 polymorphisms were no significant deviation 
with the HWE (p = 0.245 for rs2839698 G > A, p = 0.138 for 
rs3024270 C > G, p = 0.992 for rs217727 G > A polymor-
phism) in controls. In single-locus analysis, we observed that 
all three polymorphisms were significantly associated with 
Wilms tumor risk individually. The SNPs selected decreased 
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the risk of Wilms tumor in the heterozygous state while in-
creased the risk in the homozygous state. Specifically, the risk 
estimates for the these SNPs were as follows: the rs2839698 
G > A polymorphism (AG vs. GG: adjusted OR = 0.74, 95% 
CI = 0.57–0.96, p = 0.024; AA vs. GG: adjusted OR = 1.52, 
95% CI = 1.05–2.22, p = 0.027; AA vs. GG/AG: adjusted 
OR = 1.75, 95% CI = 1.23–2.50, p = 0.002), the rs3024270 
C  >  G polymorphism (CG vs. CC: adjusted OR  =  0.61, 
95% CI = 0.46–0.81, p = 0.0007; CG/GG vs. CC: adjusted 
OR = 0.73, 95% CI = 0.57–0.95, p = 0.018; GG vs. CC/CG: 
adjusted OR = 1.38, 95% CI = 1.05–1.82, p = 0.023), and the 
rs217727 polymorphism (AG vs. GG: adjusted OR = 0.76, 
95% CI = 0.58–0.99, p = 0.035).

While analyzing the combined effect of risk genotypes, 
we found that subjects carrying 1 or 2 risk genotypes had 
a significantly increased Wilms tumor risk when compared 
with those without risk genotypes (adjusted OR = 1.36, 95% 
CI = 1.02–1.80, p = 0.041; and adjusted OR = 1.84, 95% 
CI = 1.27–2.67, p = 0.001). Moreover, we found that subjects 
with 1–2 risk genotypes were significantly more likely to de-
velop Wilms tumor than subjects carrying no risk genotypes 
(adjusted OR = 1.50, 95% CI = 1.17–1.92, p = 0.002).

3.2 | Stratification analysis

We then performed a stratified analysis to explore how age, 
gender, and clinical stages influence the association between 
selected polymorphisms and Wilms tumor susceptibility 
(Table 2). Compared to the rs2839698 GG/AG genotype, 
the risk effects of AA genotype were more predominant in 
children above 18 months of age (adjusted OR = 1.73; 95% 
CI  =  1.09–2.74, p  =  0.020), and those with clinical stage 
I+II disease (adjusted OR  =  1.83, 95% CI  =  1.20–2.79, 
p  =  0.005). There is no difference in risk with respect 
to patient gender, the female (adjusted OR  =  1.94, 95% 
CI = 1.11–3.39, p = 0.021), male (adjusted OR = 1.63, 95% 
CI = 1.02–2.58, p = 0.040). Consistently, with the rs217727 
GG/AG genotype as reference, AA genotype was associated 
with an increased risk of Wilms tumor for children above 
18 months of age (adjusted OR = 1.65; 95% CI = 1.06–2.58, 
p = 0.027), male (adjusted OR = 1.60, 95% CI = 1.01–2.54, 
p = 0.047), clinical stage I + II cases (adjusted OR = 1.60, 
95% CI = 1.05–2.44, p = 0.029). However, no association 
was observed between rs3024270 and Wilms tumor sus-
ceptibility in subgroups defined by age, gender, and clinical 
stages.

We also interrogated the cumulative effects of these SNPs 
on Wilms tumor risk in the stratified analysis. We found that 
the presence of 1–2 risk genotypes was significantly associ-
ated with the risk of Wilms tumor in children above 18 months 
of age (adjusted OR = 1.66; 95% CI = 1.21–2.27, p = 0.002), 
male (adjusted OR = 1.59, 95% CI = 1.14–2.21, p = 0.006), G

en
ot

yp
e

C
as

es
 (N

 =
 3

55
)

C
on

tr
ol

s (
N

 =
 1

,0
68

)
pa  

C
ru

de
 O

R
 (9

5%
 C

I)
p

A
dj

us
te

d 
O

R
 (9

5%
 C

I)
 b  

pb  

Tr
en

d
0.

00
2

1.
35

 (1
.1

4–
1.

60
)

0.
00

05
1.

36
 (1

.1
5–

1.
61

)
0.

00
04

0
21

1 
(5

9.
44

)
73

2 
(6

8.
54

)
1.

00
1.

00

1–
2

14
4 

(4
0.

56
)

33
6 

(3
1.

46
)

0.
00

2
1.

49
 (1

.1
6–

1.
91

)
0.

00
2

1.
50

 (1
.1

7–
1.

92
)

0.
00

2

Si
gn

ifi
ca

nc
e 

of
 b

ol
d 

va
lu

es
 a

re
 th

e 
p 

va
lu

es
 le

ss
 th

an
 0

.0
5 

or
 th

e 
95

%
 C

Is
 e

xc
lu

de
d 

1.
a χ2  te

st
 fo

r g
en

ot
yp

e 
di

st
rib

ut
io

ns
 b

et
w

ee
n 

W
ilm

s t
um

or
 p

at
ie

nt
s a

nd
 c

on
tro

ls
. 

b A
dj

us
te

d 
fo

r a
ge

 a
nd

 g
en

de
r. 

c R
is

k 
ge

no
ty

pe
s w

er
e 

ca
rr

ie
rs

 w
ith

 rs
28

39
69

8 
A

A
, r

s3
02

42
70

 G
G

 a
nd

 rs
21

77
27

 A
A

 g
en

ot
yp

es
. 

T
A

B
L

E
 1

 
(C

on
tin

ue
d)



6 of 10 |   LI et aL.

and clinical stage I+II patients (adjusted OR  =  1.64, 95% 
CI = 1.21–2.22, p = 0.002) when compared with those of 0 
risk genotype.

4 |  DISCUSSION

In the current hospital-based case-control study, we dem-
onstrated the association of three H19 polymorphisms with 
Wilms tumor susceptibility. This article was the first report 
indicating that H19 SNPs were related to Wilms tumor risk.

The genetic changes that underpin Wilms tumor are di-
verse, many studies have defined cancer genes that harbor 
likely driver mutations (Treger et al., 2019). H19 is found in an 
imprinted region of chromosome 11, contains five exons and 
four small introns, and the three SNPs we studied rs2839698, 
rs217727, and rs3024270 located in exon 1, exon 5, and intron, 
respectively (Harati-Sadegh et al., 2020). DNA methylation 
influences gene expression and protein levels through epigen-
etic modification, thereby promoting the development of vari-
ous diseases (Okamoto et al., 1997). Differentially methylated 
regions (DMRs) are generally considered CpG rich, usually 
are associated with the genetic or epigenetic modifications. 
The H19 DMR located upstream of the transcription initia-
tion site regulates its gene activity (Yang et al., 2020). It is 
well known that hypermethylation of H19 DMR, lead to the 
expression of biallelic imprinted insulin-like growth factor 2 
(IGF2), which is an important step in Wilms tumorigenesis 
(Gao et al., 2014). A recent literature showed that hypermeth-
ylation of the H19 locus occurred in premalignant kidney cells, 
revealed the driving factors of Wilms tumor (Coorens et al., 
2019). The genotype-specific methylation changes at the H19 
imprinting control region (ICR) in assisted reproductive tech-
nology derived placentas is associated with the polymorphism 
rs10732516 (Marjonen et al., 2018). This may suggest that the 
effect of H19 risk SNPs on DNA methylation in Wilms tumor, 
and then, affect the development of the tumor.

Noncoding RNAs are known to play central roles in the 
dynamic control of transcriptional and gene expression 
(Scacalossi et al., 2019). LncRNAs contribute to the patho-
genesis of various cancers by participating in the control of 
cell cycle, proliferation, differentiation, and apoptosis (Do 
& Kim, 2018; Fatica & Bozzoni, 2014). So far, 10 polymor-
phisms in H19 have been identified as predisposing factors 
to various cancer types, among which the rs217727 has been 
most frequently studied, followed by rs2839698 (Hashemi 
et al., 2019). H19 plays an essential role in the tumor progres-
sion of breast cancer (Si et al., 2019), bladder cancer (Luo 
et al., 2013), gastric cancer (Gan et al., 2019), and other tu-
mors (Ren et al., 2018; Yoshimura et al., 2018; Zheng et al., 
2019), other than that, mutations in the H19 coding sequence 
are also closely related to tumors, despite unknown regula-
tory mechanisms (Gabory et al., 2010; Wang et al., 2015). The T
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following evidence suggests that SNPs may affect the expres-
sion and function of H19. The rs2839698 polymorphism may 
influence the folding structures of lncRNA H19 and change 
the target microRNAs of lncRNA H19, thereby increasing the 
risk of colorectal cancer (Li et al., 2016), this is consistent 
with our conclusion that heterozygous genotypes may reduce 
the risk of Wilms tumor. And the rs2839698 SNP has been 
predicted to affect hepatocellular cancer risk and prognosis, 
the polymorphism could contribute more functions than the 
environmental factors in the ever-smoking subgroup. (Yang 
et al., 2018) Verhaegh et al. found that the folding structures 
of rs217727 and rs2839698 of lncRNA H19 were different 
under TT and CC genotypes, and both the T and C genotype 
of them had a significantly decreased risk of bladder cancer 
(Verhaegh et al., 2008), our results complemented the ef-
fect of polymorphic genotypes on tumors. What is more, the 
rs217727 CT+TT genotype was associated with a lower risk 
of breast cancer in women who were pregnant more than twice 
(Xia et al., 2016), the heterozygote genotype also can reduce 
the risk of Wilms tumor according to our data. Patients with 
gastric adenocarcinoma treated by surgery alone who car-
ried the rs2839698 GA genotype achieved significantly lon-
ger median disease-free survival time. Li et al. provided that 
invasive bladder cancer in carrying rs3024270 CC genotype 
maybe have a good prognosis. (Li & Niu, 2019; Wang et al., 
2018) Inversely, there is also evidence that polymorphisms 
(rs217727 G > A, rs2839698 G > A, and rs3741219 A > G) 
in H19 are not related to prognosis. (Biedermann, 2020).

The above results indicated that H19 encoding the SNP 
altering the biological characteristics of lncRNA H19 and the 
occurrence and development of tumors. The lncRNA H19 
could be a potential diagnostic and prognostic marker in the 
development of tumors (Qi & Du, 2013), and the different 
genotypes of SNPs might facilitate an individualized diag-
nosis of cancer.

Although H19 is the first imprinted noncoding transcript to 
be recognized and is one of the most abundant and conserved 
transcripts in mammalian development, its physiological 
function is still unclear. Previous investigations have revealed 
its expression is tightly linked with fetal tumor tissue differ-
entiation. (Ariel et al., 1997) Up to now, this oncogenic fetal 
lncRNA has been verified to be involved in the pathogenesis 
of different human cancers. Increasing evidence implicated 
that lncRNAs can be directly regulated by miRNAs, there is a 
pan-cancer analysis shows that H19 and its intragenic miRNA 
miR-675 tend to positively correlated in multiple cancers. 
(Tan et al., 2019).Tsang et al. demonstrated that H19-derived 
miR-675, exerted their functions by directly targeting on ret-
inoblastoma protein, and then, regulated colorectal cancer 
(Tsang et al., 2010). Keniry et al., (2012) discovered that the 
mechanisms of processing and function of miR-675 in em-
bryonic and extraembryonic cell lines are likely to be relevant 
to fetal growth and cancer syndromes, it is possible that the 

genotype at this SNP site influences the transcription of miR-
675, which in turn affects some of its target genes. Considering 
that one of the three SNPs, rs2839698, is located 800 bp up-
stream of miR-675, we, therefore, speculate the influence of 
rs2839689 may change the structure of H19 at the miRNA 
binding sites and affect the stability, ultimately influence their 
interaction function. Further studies are needed to explore the 
specific mechanism. In contrast, no such genotype-phenotype 
correlation was observed for the other SNPs. Although the 
rs217727 C  >  T polymorphism and the rs3024270 C  >  G 
polymorphism did not affect H19 mRNA expression levels, 
mutation may alter the translational efficiency, which may 
ultimately influence the function of H19. Based on previous 
evidence, H19 DMR imprinting center mutations leading to 
Wilms tumorigenesis (Scott et al., 2008).

In stratified analysis, Wilms tumor risk of rs2839698 vari-
ant AA genotype was more evident in subgroups of age above 
18 months and clinical stage I+II cases. The same genotype 
is also associated with an increased risk of gastrointestinal 
cancer (Hashemi et al., 2019). Similar results were obtained 
in rs217727 AA except in gender consideration, only males. 
In addition, previous stratified analysis of rs217727 C  >  T 
showed both dominant and recessive effects associated with 
increased risk of oral squamous cell carcinoma and lung can-
cer (Hashemi et al., 2019). Our results further revealed the crit-
ical influence of G and A genotype in H19 rs217727. In line 
with our observations, the study has revealed that the carriers 
of rs217727 AA genotype had a significantly increased risk 
of bladder cancer in young male patients (Hua et al., 2016). 
Studies demonstrated T variant of rs217727 was strongly as-
sociated with an increased risk of coronary artery disease and 
gastric cancer (Gao et al., 2015; Yang et al., 2015). These facts 
may partially explain the apparent imbalance of the analyzed 
SNPs. We did not find any association between the rs3024270 
genotype and Wilms tumor in stratified analysis.

There are potential limitations of the current study: (a) 
the relatively small sample size and lacking participants from 
different ethnic groups, (b) the consideration of only three 
polymorphisms without potential function, and (c) unknown 
living environmental factors on.

5 |  CONCLUSION

We verified that the rs2839698 G > A, rs3024270 C > G, 
rs217727 G > A polymorphisms were significantly associ-
ated with the risk of Wilms tumor. Further stratified data 
showed that older children, early clinical stage and gender 
were risk factors. These results reveal the intricacy of H19 
functions and the dual role of H19 polymorphisms in the de-
velopment of Wilms tumor. Thus, the results of our study 
should be verified in studies with larger samples from differ-
ent ethnicities.
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