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Editorial 

Developments in deep learning based corrections of cone beam computed tomography to enable 
dose calculations for adaptive radiotherapy     

Adaptive radiotherapy (ART) planning and delivery strategies are 
often a prerequisite for accurate dose delivery for several tumour sites 
influenced by inter-fractional anatomical changes. This includes tu-
mours in a number of sites such as the head-and-neck, as this anato-
mical region can experience nasal cavity filling and weight loss [1]; in 
the lung, where tumour baseline shifts and atelectasis can occur [2]; 
and in the cervix, where different levels of bladder or rectum filling can 
impact the target coverage [3]. 

ART relies heavily on the accessibility and quality of in-room ima-
ging. Different modalities have been suggested for use in adaptive 
workflows, including magnetic resonance imaging (MRI) [4], computed 
tomography (CT) [5], and cone beam CT (CBCT) [3]. The advantage of 
using CBCT for this purpose is its wide availability; many treatment 
rooms for both photon and proton therapy are equipped with CBCT 
scanners, and daily or weekly CBCT scans are often acquired for ver-
ification of patient positioning. These verification images are in general 
used to visibly assess if anatomical changes have occurred that warrant 
plan adaptation. If a plan adaptation is flagged, the patient can be re-
ferred for a re-planning CT scan; however, dose calculations directly on 
the CBCT scans have also been investigated [6–8]. 

The image quality of CBCT scans is typically much lower than for CT 
scans which can reduce the accuracy of CBCT-based dose calculation  
[9,10]. The artefacts in CBCT scans and resulting unreliable CT num-
bers in CBCTs are especially detrimental in proton therapy due to the 
steep fall-off of the proton depth-dose curve which requires a high ac-
curacy of the CT number to stopping power ratio conversion to estimate 
the proton range [11]. Several techniques have been suggested for ar-
tefact reduction or correction in CBCT for both photon and proton 
therapy. These include look-up table-based approaches [12], deform-
able imaging registration (DIR) of the treatment planning CT (pCT) to 
the CBCT [13,14], scatter correction methods using a prior based on the 
pCT [8,15], methods which model the scatter contribution of the 
measured projections [16], or Monte Carlo-based approaches [17]. 
Among these methods there are approaches working at both image  
[12–14] or projection level [8,15–17]. More recently, novel approaches 
for CBCT corrections based on neural networks and deep learning have 
been proposed [11,18,19]. Different network architectures have been 
applied; among the most successful approaches are cycle-consistent 
generative adversarial networks (cycle-GANs) [20–22]. The aim of 
CBCT correction based on cycleGANs is to create a so-called synthetic 
CT (sCT) from the CBCT, where the sCT should have an appearance, CT 
number accuracy, and image consistency of the same quality as the 
pCT. This is the research avenue of the study by Maspero et al. recently 
published in this journal [23]. Maspero et al. applied a cycleGAN to 
correct CBCTs for breast, lung and head-and-neck cancer patients to 

enable photon dose calculations on the corrected CBCTs, the sCTs [23]. 
An advantage of deep learning approaches compared to the physics 

based approaches utilizing, e.g., Monte Carlo simulations, is that deep 
learning is fast, and it can typically correct a whole CBCT image stack 
within seconds [23]. The training of well-functioning deep learning 
models, however, requires a lot of time, training data and extensive 
computational power [24]. The computer optimizes the neural network 
parameters, learning the similarities and differences between the two 
image sets – pCTs and CBCTs in this case – and how to convert one into 
the other. For cycleGANs, or generative adversarial networks (GANs) in 
general, this training process can be seen as a competition between two 
conflicting networks, where one tries to create a sCT from a CBCT with 
an image quality high enough that it resembles a regular CT, while the 
other aims at being able to distinguish between CT (real) and sCT (fake) 
images [25]. To improve the quality of the mapping for cycleGANs, the 
inverse transformation, in this case from a CT to a synthetic CBCT 
(sCBCT), is also created. The consistency over the cycle is then con-
strained such that the conversion from a CBCT to a CT and back to a 
CBCT should result in a CBCT, which is virtually the same as the ori-
ginal CBCT, and the same for the conversion from CT to CBCT and to CT 
again. This cycle consistency enables training based on unpaired data. 
This means that in each step of the training process, the algorithm is 
presented with CT and CBCT image slices but not necessarily from the 
same patient or the same anatomical location [23], as the algorithm is 
based on feature extraction rather than on creating a one-to-one cor-
respondence. The correspondence is instead ensured by the constraint 
of regaining the same image after a full cycle of the process [25]. This 
simplifies the collection of training data since images can be included 
for patients where either the CT or CBCT is missing, or where large 
anatomical changes are seen between the CT and CBCT, which can 
create problems for other CBCT correction methods based on e.g. DIR. 

Deep learning has been used in many fields already, and image 
processing tasks may be especially suitable to be tackled by artificial 
intelligence. A clear advantage is the versatility, as approaches already 
extensively used in one discipline can be easily transferred and reused 
in another field of application. Maspero et al. successfully apply a 
network to correct CBCTs which was originally developed for image 
processing tasks very remote from the medical physics world [23]. The 
cycleGAN network was originally designed to create naturally looking 
photographs from Van Gogh paintings, or aerial photos from Google 
map images [25]. Even though the two set of tasks seem to be very 
unrelated – correcting CBCT images by utilizing high quality pCTs and 
converting paintings to photographs – the common trait is that both 
tasks involve image-to-image conversions, i.e., mapping from one 
image domain (either CBCTs or paintings) to another (CTs or 
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photographs). Deep learning is agnostic to the underlying character-
istics; it tackles the two tasks in exactly the same manner: It learns the 
features of the two domains based on a large data set of training ex-
amples, and how to connect the features from the two domains. When 
the network after the end of the training stage is presented with a new, 
unseen example, it knows how to relate this image to an image of the 
other domain [25]. 

The novelty in the paper by Maspero et al. is the successful training 
of a single deep learning network to correct CBCT images of different 
anatomical regions: breast, lung and head-and-neck [23]. The single 
network was compared to three networks trained individually for each 
anatomical site in terms of image accuracy for the generated sCTs. The 
image similarity, measured as the mean absolute error and the mean 
error, between the sCT and the rescan CT (rCT), was comparable be-
tween the results obtained applying the networks trained only on a 
single anatomical site and the network trained for the three sites to-
gether [23]. This result has very favourable consequences for clinical 
implementation, as the very cumbersome and time-consuming task of 
training the network can be done only once and then used for all pa-
tients and indications. And maybe more importantly, only one model 
should be applied, which eliminates the risk of using the wrong model 
in a busy clinical situation. 

The fact that a single network can be used for such diverse anato-
mical sites as the breast, lung and head-and-neck might also highlight 
the fact that deep learning models are often extracting features from the 
data with no (or little) physical meaning rather than building human 
interpretable models. There are both risks and benefits in using deep 
learning [26], and this debate is of high importance. But likely CBCT 
correction is a field where we can safely, though never uncritically, 
welcome artificial intelligence. Here the deep learning model is not 
used to diagnose or to predict the survival of the patient [27], but in-
stead to improve the CBCT image contrast and consistency [23]. 

After the training stage, the cycleGAN model by Maspero et al. can 
generate a sCT from a CBCT within 10 s on a GPU and 40 s on a CPU  
[23], whereby image conversion is feasible while the patient is on the 
treatment table. The speed is one of the common and very important 
advantages of deep learning. Another advantage of their model is that it 
can conserve the anatomy observed in the CBCT images [23]. Unlike 
methods that rely on DIR to transform the CBCT to the pCT, cycleGAN 
uses only the CBCT image as the input after training. For one lung test 
patient that presented atelectasis on the CBCT, but not on the pCT, the 
atelectasis was correctly represented also in the sCT [23]; whereas 
methods relying on DIR to the pCT can lead to anatomical mis-
representation [11]. The improved image quality of the sCT, compared 
to the original CBCT, also allows for accurate dose re-computations 
with clinical acceptable voxel-vise dose differences and gamma-pass 
rates for photon-based radiotherapy plans [23]. It is known that proton 
dose calculations are more susceptible to subtle difference than photon 
radiotherapy and larger dose difference can be seen [11,18]. It would 
therefore be of interest to see how well the method of Maspero et al. 
would perform in proton therapy. 

To conclude, with the improvement in CT number accuracy for 
CBCT images that can be gained by deep learning approaches, such as 
the ones presented by Maspero et al. [23], we get closer to the goal of 
online ART, where the treatment plan can be recalculated while the 
patient is lying on the treatment couch. The next step towards this goal 
may be automated segmentation [28,29] and fast dose calculations  
[30,31], and deep learning might again be crucial to achieve the final 
goal of fully automated, adaptive re-planning. 
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