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THE BIGGER PICTURE There remain many intractable diseases with no treatment available, including
amyotrophic lateral sclerosis (ALS), for which the development of a cure is crucial. However, compound
screening for drug development demands time, energy, and cost, and therefore artificial intelligence (AI)
is expected to improve the efficiency of drug discovery. We built a novel machine-learning algorithm to pre-
dict hit compounds in compound screening using the heat-diffusion equation (HDE). This prediction model
harbors the potential to solve issues that have been challenging for conventional machine learning and to
exhibit accurate performance leading to the discovery of new drugs. In fact, the HDE model predicted hits
with new chemotypes amongmillions of compounds for ALS therapeutics using a panel of large numbers of
ALS patient-derived induced pluripotent stem cell models (ALS-patient iPSC panel). This algorithm could
contribute to the acceleration and development of future drug discoveries using AI.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Machine learning is expected to improve low throughput and high assay cost in cell-based phenotypic
screening.However, it is still a challenge toapplymachine learning toachievingsufficiently complexphenotypic
screeningdue to imbalanceddatasets, non-linearprediction, andunpredictability of newchemotypes.Here,we
developed a prediction model based on the heat-diffusion equation (PM-HDE) to address this issue. The algo-
rithmwasverifiedas feasible for virtual compoundscreeningusingbiotestdataof 946 assay systems registered
withPubChem.PM-HDEwas thenapplied toactual screening.Basedonsupervised learningof thedataofabout
50,000 compounds from biological phenotypic screening with motor neurons derived from ALS-patient-
induced pluripotent stem cells, virtual screening of >1.6 million compounds was implemented. We confirmed
that PM-HDE enriched the hit compounds and identified new chemotypes. This prediction model could over-
come the inflexibility in machine learning, and our approach could provide a novel platform for drug discovery.
INTRODUCTION

During the past several years many compounds have been

developed for intractable diseases, yet many diseases remain
This is an open access article under the CC BY-N
without a treatment. Compound screening, especially pheno-

typic screening with human induced pluripotent stem cells

(iPSCs), is a useful tool for discovering new candidate drugs

and disease pathways even if the disease mechanism has not
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been completely clarified.1 Nevertheless it is still a major chal-

lenge, as it is extremely time-consuming and very costly to eval-

uate millions of compounds. Notwithstanding these hurdles, the

method for prediction of the effectiveness of compounds is ex-

pected to promote cell-based drug discovery. In the hit predic-

tion using an inductive prediction method based on machine

learning, such as quantitative structure-activity relationship

(QSAR),2,3 support vector machine (SVM),4–6 random forest

(RF),5,7 deep learning, and clustering based on structural similar-

ity,8,9 compound activity can be predicted from the structure of

the unassayed compound by learning the relationship between

molecule descriptors and fingerprints derived from the chemical

structure of the reference data and the activity value. However,

due to the inherent complexity of phenotypic screening, there

have been several challenges to predicting activity by conven-

tional methods, including lack of flexibility for dealing with imbal-

anced datasets, non-linear prediction, and unpredictability of

new chemotypes. The datasets from compound screening pre-

sent an imbalanced ratio of hits/non-hits, the ratio generally be-

ing less than a few percent, with non-linear distribution, and this

causes difficulty of precise prediction for conventional machine

learning from compound screening. Furthermore, the prediction

of new chemotypes not identified in the provided datasets is

difficult for conventional machine learning, as it is difficult to

determine what kind of features in chemotypes are the most

important because of the lack of information related to the new

chemotype.

To find further improvements regarding this issue, we estab-

lished a prediction model based on the heat-diffusion equation

(PM-HDE), which is a novel approach that uses a heat-diffusion

equation10 to predict hits in compound screening. The heat-

diffusion equation, a partial differential equation, describes

how heat conduction and material diffusion distribute in three-

dimensional space over time, and this can be expanded to a

multi-dimensional space for further analysis. It calculates

‘‘active’’ and ‘‘inactive’’ separately by scoring each compound

and adjusts spatial integration appropriately, showing a flexibility

for accurate prediction. This feature can be expected to work

better than alternative conventional methods. Validation of PM-

HDE was conducted using 946 PubChem datasets, after which

we implemented the algorithm for actual compound screening

using iPSC-based phenotypic screening for drug discovery.

RESULTS

The heat-diffusion equation, a partial differential equation, de-

scribes how heat conduction and material diffusion distribute

in three-dimensional space over time. The state of heat diffusion

over time was schematically shown from the initial state (t = 0) to

the appropriate time points at which the unknown region is filled

by heat diffusion (Figure 1A). The heat-diffusion equation puts

each reference compound in a small region in the chemical

space (hereafter referred to as ‘‘mesh’’), and they do not overlap

with each other. Thereby, the impact of heat diffusion from each

mesh to thewhole space is clearly defined and their sum remains

constant during the diffusion process. In addition, because the

heat-diffusion equation calculates heat-diffusion processes of

positive heat values from active compounds and negative heat

values from inactive ones independently and do not interfere
2 Patterns 1, 100140, December 11, 2020
with each other, the ratio of the total quantity of positive heat

values and that of negative heat values is always unchanged.

Therefore, by adjusting the coefficientC as a reciprocal of the ra-

tio, the total quantity of both positive and negative heat is always

zero even in the case of an imbalanced active ratio. As a result,

each point in the space can be predicted as active compound

or inactive compound based on the plus andminus of the predic-

tion score, described as Virtual Score (V-Score) (Figure 1B). The

details of the mathematical methods are described in Experi-

mental Procedures. In addition, since PM-HDE itself is a non-

linear prediction model, it is possible to flexibly cope with

complex relationships between descriptors and activity. Further-

more, by adjusting the diffusion time t, it is possible to predict a

compound which is at a position away from the reference mesh

group in the chemical space, that is, a compound that is not

similar to the active compound contained in the reference

data. Using these features, we applied the heat-diffusion equa-

tion to build a prediction model for phenotypic screening, PM-

HDE, which can predict the hit compounds by formulating heat

diffusion and applying molecular descriptors derived from the

chemical structure into this formula to calculate the prediction

score shown as V-Score. The V-Score is calculated as the tem-

perature of heat diffusion, and compounds could be ranked

based on the predicted score (Figure 1C).

Validation of PM-HDE Using Multiple Bioassay Datasets
First, 281 molecular descriptors were extracted from a total of

1,273 molecular descriptors to avoid imbalance of specific de-

scriptors and delete invalid descriptor groups (Figure 2A and Ta-

ble S1). To confirm the feasibility of PM-HDE, we constructed a

predictionmodel for various assay data obtained fromPubChem

and performed cross-validation to confirm that PM-HDE can

solve the issues of the conventional methods. Biotest data of

946 assay systems registered with PubChem were used to vali-

date the predictive performance of PM-HDE in compound

screening. The maximum area under the curve (AUC) of 946

assay systems was determined according to the procedure for

parameter setting for PM-HDE (Figure 2B). To evaluate the pre-

diction performance, we performed cross-validations on many

datasets and calculated each AUC of the receiver-operating

characteristics (ROC) curves (Table S2). The relationship be-

tween the proportion of active labels and AUC is shown in Fig-

ure 2C, suggesting that PM-HDE presented high prediction per-

formance, showing high AUC levels even in datasets with a bias

of the active ratio. Even large-sized data could be predicted with

high accuracy (Figure 2D). The 946 assay systems we analyzed

were mostly via high-throughput screening. However, these

were very diverse in that they used enzymes, cells, and nucleic

acids as targets, detection methods such as fluorescence, lumi-

nescence, and binding assays, focused on inhibition and promo-

tion or agonist/antagonist in terms of the pharmacological ac-

tions, and were performed for the purpose of drug

development and ADMET evaluation. We classified the predic-

tion performance according to assay types and found that similar

high-precision predictions could be obtained with both pheno-

typic assay and target-based assay (Figure 3A), demonstrating

that the issues of conventional methods for datasets showing

complex activity data such as a phenotypic assay can be solved

by using PM-HDE.



Figure 1. Schematic Representation of PM-

HDE for Compound Screening

(A) Time-course illustration of PM-HDE. (a) Refer-

ence compoundswith known activity are mapped in

the 281-dimensional chemical space. At this point,

most of the space is unoccupied by any reference

meshes (white space). (b and c) As time t proceeds,

plus or minus heat derived from referencemeshes is

gradually diffused into the space. (d) When the

diffusion is stopped at an appropriate time, most of

the space is filled with plus/minus heat, and each

point can be predicted as active or inactive. (e and f)

Beyond the appropriate diffusion time, plus heat

and minus heat overlap with each other.

(B) Activity prediction of unknown compounds by

PM-HDE. Left: both reference meshes and un-

known compounds are mapped into the chemical

space based on their calculated descriptors. Right:

after the heat-diffusion process, the category of

unknown compounds to which it would belong can

be predicted by the V-Score.

(C) Molecular descriptors are obtained based on

their chemical structures, and the V-Scores are then

calculated. Plus scores mean predicted as active

compounds, and the compounds in the test set can

be prioritized based on the V-Score.
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To investigate the relevance between V-Score and activity, the

PubChemScore, and the structural similarity with the active label

compound in the training set, hereafter referred to as the parent

compound, were plotted for each system. It was clear that the

compounds that included top-ranked compounds, within

0.0%–0.5% fraction, tended to have a much higher PubChem

Score (Figure 3B). On the other hand, no apparent difference

was observed in the structural similarity with the parent com-

pound (Figure 3C). Thismeans that the compounds ranking high-

est in the test set are not necessarily those with high structural

similarity to the parent compound. That is, the V-Score may be

expected to be high, depending on the molecular descriptors,

even if structural similarity with the parent compound is not so

high, and as a result PM-HDE has the potential to discover

new chemotypes. This indicates that the V-Score in this method

well reflects the value of the actual PubChem Score.

Performance of PM-HDE was compared with the k-nearest

neighbor (kNN), RF, and SVM, as the well-known in silico hit pre-
dictors (Table 1). PM-HDE has a potential

to show higher accuracy than kNN, espe-

cially in datasets with large entity and low

active ratio. PM-HDE also presented

competitive or superior accuracy

compared with RF and SVM.

Implementation of PM-HDE in
Compound Screening Using Human
Motor Neurons
To make this model practical, we applied

PM-HDE to perform hit prediction of

iPSC-based phenotypic screening for

amyotrophic lateral sclerosis (ALS). ALS

is a lethal neurological disease in which
motor neuron death causes muscle weakness and atrophy.11,12

Since there have been no radical treatments, the development of

a medicine for ALS is an urgent medical need. Motor neurons

were derived from sporadic ALS-patient iPSCs (Figure S1; Table

S3), and a phenotypic screening system to evaluate compounds

that inhibit motor neuron death was constructed as previously

reported.13 This system produces motor neurons from iPSCs

in 7 days, followed by motor neuron death in the next 7 days. Af-

ter culturing motor neurons in 384-well plates with compounds

for 7 days, the number of surviving motor neurons was automat-

ically measured by high content analysis (Figure 4A). Figures of

motor neurons on day 6 and day 14, which were treated with

inactive compound or active compound from day 6 to day 14,

are shown in Figure 4B. The stability and quality of the screening

system were proved by the evidence of a low coefficient of vari-

ation (Figure 4C) and a high Z0 factor (Figure 4D). The hit criterion

was defined as a compound that inhibited 60% or more of motor

neuron death. Using this screening system, 48,415 compounds
Patterns 1, 100140, December 11, 2020 3



Figure 2. Virtual Screening Using Public Da-

tasets

(A) Setting of PM-HDE parameters. Left: correlation

(depth of red) map among 1,273 descriptors

generated by CORINA Symphony. Descriptor:

some descriptors shown in gray color are not

applicable for training (e.g., values could not be

calculated for certain kinds of compounds). Middle:

correlation map among 999 descriptors without

invalid ones. Right: correlation map among selected

281 descriptors.

(B) Determination of appropriate prediction param-

eters. Example of iteration to search for the best

diffusion time t and weighting parameter h. Ac-

cording to the point where the maximum AUC value

was observed (red arrowhead), the best parameter

set was determined.

(C) PM-HDE prediction performance. In total, 946

BioAssay data were evaluated by PM-HDE. Each

plot corresponds to 1 of 946 datasets obtained from

the PubChemScore. The x axis indicates the ratio of

active compounds included in that assay dataset

and the y axis indicates AUCof the ROCcurve of 10-

fold cross-validation. The mean performance value

of PubChem bioassay was 0.81. The dataset ratio of

AUC > 0.7 in each group with active ratio was as

follows: 93.90% in 10%–100% actives, 94.90% in

1.0%–10% actives, 80.10% in 0.1%–1.0% actives,

and 77.50% in 0.0%–0.1% actives. The predicted

performance is independent of the actives ratio.

(D) PM-HDE prediction performance and size of

datasets. Each plot corresponds to one of 946 da-

tasets obtained from PubChem Score. The x axis

indicates the number of compounds in that assay

dataset and the y axis indicates AUC of the ROC

curve of 10-fold cross-validation. The predicted

performance is independent of the size of the

dataset.
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selected from the corporate library were used for first screening,

and 174 hits were obtained (Figure 4E). The hit ratio was 0.36%.

Although phenotypic screening has the advantage of finding

an active compound that directly reflects the disease pheno-

types, evaluation of millions of compounds presents amajor hur-

dle in terms of time and cost. Therefore, we applied PM-HDE to

predict active compounds (Figure 5A) following determination of

the best parameter sets (Figures 5B and 5C). Simulation of >1.6

million compounds was conducted based on first screening

data, and 5,875 compounds were prioritized for evaluation of

their suppressive effects against motor neuron death based on

the V-Scores. The predicted active compounds were evaluated

using ALS motor neurons by in vitro experiments. Details of the

screening procedure are described in Figure 5D. In total, 5,875

compounds were added to ALS motor neurons derived from pa-

tient iPSCs to evaluate their effects on motor neuron death, and

252 hits were obtained (Figure 5E). The hit rate was 4.3%, a 10-

fold increase compared with the first screening. Furthermore,

when the structures of the 252 hits were examined, 16.7% of

the compounds presented a new chemotype showing 50% or

less similarity with any parent compounds (Figure 6A). These re-

sults suggested that PM-HDE could be useful for increasing hit

efficiency and finding new chemotypes.

Next, we selected compounds without effects of cell prolifer-

ation, antioxidant, or kinase inhibition for further evaluation
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from the compounds presenting mainly 50% or less similarity

with any parent compounds. The PM-HDE strategy successfully

discovered five new chemical series that had not been identified

by other screening approaches, showing little similarity between

respective compounds as well as with riluzole and edaravone,

which have been approved by the Food and Drug Administration

for the treatment of ALS (Figure 6B).

Verification of Output of PM-HDE Using Biological
Assays
Finally, the compounds identified by PM-HDE followed by the

further selection described above were verified using ALS iPSC

panels consisting ofmotor neurons derived frommultiple ALS-pa-

tient iPSCs. Since sporadic ALS is known to harbor genetic het-

erogeneity, evaluation of drug responsiveness using iPSCs from

multiple ALS patients is required. To evaluate the robustness of

compound efficacy, we conducted ALS iPSC panel trials

composed of motor neurons from 29 iPSC clones derived from

multiple sporadic ALS patients as previously reported13 (Figures

7A and S1), and the efficacy of five compounds identified by

PM-HDE was evaluated (Figure 7B). In addition, the efficacy of

each compound was compared with riluzole and edaravone (Fig-

ure 7C). The compounds identified by PM-HDE demonstrated

broad and potent effectiveness against motor neuron death in

clones derived from various sporadic ALS patients.



Figure 3. Validation of PM-HDE Using Public

Datasets

(A) PM-HDE prediction performance and target

types. The graph shows the population of prediction

performance (AUC) for each target type.

(B) V-Score reflection and actual potency. Each plot

corresponds to one of 946 datasets obtained from

PubChem Score. The x and y axes indicate aver-

aged PubChem Scores of the top 5.0%–5.5%

ranked and top 0.0%–0.5% ranked compounds,

respectively. High prediction scores correlate with

the potency of the actual activity.

(C) PM-HDE and structural similarity to the parent

compounds. Each plot corresponds to one of 946

datasets obtained from PubChem Score. The x and

y axes indicate the average of the structural simi-

larities of the top 5.0%–5.5% ranked and top 0.0%–

0.5% ranked compounds to the parent compounds,

respectively. The prediction score is independent of

the structural similarity to the parent compound, an

active compound included in the reference data for

prediction.
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DISCUSSION

PM-HDEwas used inmillion-scale compound screening to iden-

tify promising lead compounds and new chemotypes. The

robustness of PM-HDE was verified using PubChem data and

was then applied to ALS iPSC-based phenotypic screening, re-

sulting in the identification of potent compounds with a broad

spectrum covering multiple iPSC lines from ALS patients. With

regard to the heat-diffusion equation, it is a differential equation

that requires integration constants in order to have a unique so-

lution describing the distribution of heat in a particular body over

time.10 The equation has other important applications in mathe-

matics, statistical mechanics, probability theory, and financial

mathematics. PM-HDE is the first application of the heat-diffu-

sion equation to drug discovery.

In past years, althoughmolecular target-based drug screening

has been themain drug discovery paradigm, there appears to be

recent renewed interest in phenotypic screens for drug discov-

ery.14–17 Phenotypic screening by pathologically relevant cellular

models using patient-derived iPSCs has the potential to find new

candidate drugs and disease pathways even for the disease

whose etiology has not yet been completely clarified, and it is

possible to discover the potential efficacy of compounds beyond

the limitations of target-based screening.

In the heat-diffusion equation, the ratio of active compounds

to inactive compounds is defined as a volume ratio to the entire

space by considering the mesh (described as C in Experimental

Procedures). In PM-HDE, the reference data are calculated by

mapping them to a mesh in chemical space. Since meshes

have a definite size, we can give each one a heat value and define

its ratio to the total chemical space. In this case, C adjusts the
sum of the heat value of the active and

inactive data groups so that the total heat

value is always zero at any diffusion time.

Wherever the test data are located in the

chemical space, the sign of the prediction

score (V-Score) can be used to determine
whether the data are in the active or inactive region at diffusion

time t. If one does not adjust for C, any region in the chemical

space may be marked as active, depending on the ratio of ac-

tives in the reference data. Thus, PM-HDE can be used for imbal-

anced datasets since it can set the sum of the entire space to

zero by taking the inverse ofC. Thus, PM-HDE provides flexibility

by adjusting h, even if it is a separation problem or a quantitative

prediction that reflects the intensity of compound activity.

In phenotypic assays, as the factors affecting activity are

diverse and complex, the relationship between molecular de-

scriptors and activity also becomes complex and is not linear.18

Therefore, in QSAR and SVM, which are prediction models of

linear regression, it is necessary to make an adjustment so as

to enable linear separation using a kernel function, but there is

a risk of overfitting by this adjustment, and there is a concern

that extrapolation may be reduced. Furthermore, while predic-

tion based on structural similarity can find active compounds

with a high probability, it is challenging to find new chemotypes

because only compounds similar to the parent compounds in the

reference data can be selected. PM-HDE can be expected to

maintain prediction performance even with datasets with large

bias in the ratio of active compounds in the reference data. In

addition, since PM-HDE itself is a non-linear equation, it is

possible to flexibly copewith complex relationships between de-

scriptors and activity. By adjusting the diffusion time t, it is

possible to predict a compound which is at a position away

from the reference mesh group in the chemical space, that is,

a compound that is not similar to the active compound contained

in the reference data. Furthermore, the PM-HDE algorithm is

suitable for parallelization, and it can learn at high speed even

when dealing with myriad reference data and many descriptors.
Patterns 1, 100140, December 11, 2020 5



Table 1. Comparison of PM-HDE with In Silico Hit Predictors

AID Assay Description Entries in Dataset Actives Active Ratio PM-HDE AUC kNN AUC RF AUC SVM AUC

0000097 NCI human tumor cell line growth inhibition

assay. Data for the HS 578T breast cell line

25,421 1,378 5.42% 0.86 0.85 0.77 0.85

0000361 Pyruvate kinase 50,585 602 1.19% 0.86 0.85 0.83 0.86

0000881 qHTS assay for inhibitors of 15-hLO-2 (15-

human lipoxygenase 2)

104,068 574 0.55% 0.91 0.86 0.86 0.90

0000885 qHTS assay for activators of cytochrome

P450 3A4

12,561 159 1.27% 0.92 0.92 0.89 0.93

0001457 qHTS assay for identifying the cell-

membrane permeable IMPase inhibitors:

potentiation with lithium

202,356 722 0.36% 0.83 0.79 0.8 0.82

0002842 High-throughput screen of a putative kinase

compound library to identify inhibitors of

Mycobacterium tuberculosis H37Rv

23,462 1,248 5.32% 0.91 0.91 0.85 0.89

0624173 qHTS of Trypanosoma brucei inhibitors 400,566 483 0.12% 0.93 0.83 0.87 0.91

1159515 qHTS assay to identify small-molecule

agonists of the nuclear factor kB signaling

pathway-cell viability counter screen

6,228 190 3.05% 0.84 0.84 0.85 0.84

qHTS, quantitative high-throughput screening.
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It is easy to interpret the influence of each piece of activity infor-

mation contained in reference data and each descriptor used for

training for the prediction result.

In this study, although we have compared PM-HDE with

other machine-learning methods using several benchmark da-

tasets, the number of comparisons was limited and the only

performance comparison in actual screening was against

random screening. Further verifications are desired for the
6 Patterns 1, 100140, December 11, 2020
widespread application of PM-HDE. Recently, conventional

machine leaning has evolved into new methods to improve

the performance.19 Furthermore, deep-learning methods

have also been developed and applied to drug discovery

with flexibility.20 These methods are expected to contribute

to drug development, and the choice of each method may

depend on experimental uncertainty regarding the data and

dataset size.20
Figure 4. iPSC-Based Phenotypic Screening

and Constructing Datasets for PM-HDE

(A) Screening system for the evaluation of ALS

motor neuron survival.

(B) ALS motor neurons derived from patient iPSCs.

Cells were stained with TUBB3, a marker for neu-

rons.

(C) Flat test of the screening.

(D) Z0 factor of the screening.

(E) Activity distribution of 48,415 compounds in the

first screening. The hit criterion was defined as a

compound that inhibited 60% or more of motor

neuron death (shown as red line), and 174 hits were

obtained.



Figure 5. Virtual Compound Screening Using

PM-HDE and Its Verification by ALS iPSC-

Based Phenotypic Assay

(A) Workflow of simulation by PM-HDE.

(B and C) Determination of best parameter sets for

PM-HDE. Two patterns for PM-HDEwere built using

different hit criteria: one criterion was more than

60% at 3 mM (B) and the other was more than 80%

at 3 mM (C).

(D) The flow of virtual screening and in vitro

screening.

(E) Activity distribution of 5,875 compounds

selected by virtual screening. Virtual screening by

PM-HDE selected 5,875 compounds from >1.6

million compounds. The 5,875 compounds were

evaluated in ALS iPSC-based phenotypic assay.

The hit criterion was defined as a compound that

inhibited 60% or more of motor neuron death

(shown as red line), and 252 hits were obtained.
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PM-HDE could be a powerful tool to discover promising lead

compounds for drug development. It may be possible to screen

unlimited numbers of compounds, and widening its application

to drug discovery for various other diseases is also expected.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Haruhisa Inoue, haruhisa@cira.kyoto-u.ac.jp.

Materials Availability

The study did not generate new unique reagents.

Data and Code Availability

The BioActivity data, descriptions, and SD-file can be downloaded from Pub-

Chem’s FTP site (BioActivity data: ftp://ftp.ncbi.nlm.nih.gov/pubchem/

Bioassay/Concise/CSV/Data/; descriptions: ftp://ftp.ncbi.nlm.nih.gov/

pubchem/Bioassay/Concise/CSV/Description/; SD-files: ftp://ftp.ncbi.nlm.

nih.gov/pubchem/Compound/CURRENT-Full/SDF/). The code supporting

the current study have not been deposited in a public repository because

the authors are currently in the process of patenting the code, but are available

from the Lead Contact on request.
Study Design

The objective of our study was to develop a prediction model for utilization in

drug discovery and development, including ALS iPSC-based phenotypic

screening. PM-HDE was verified using PubChem data obtained from the pub-

lished database and was then applied to the hit prediction of ALS iPSC-based

phenotypic screening with a readout of motor neuron survival. Generation of

human iPSCs was approved by the Ethics Committees of the respective de-

partments, including Kyoto University. The use of human iPSCs for the exper-

iments was approved by the Ethics Committees of the respective depart-

ments, including Kyoto University and the Research Ethics Review

Committee of Takeda. All methods were performed in accordance with

approved guidelines. Formal informed consent was obtained from all subjects.

Mathematical Methods for Heat-Diffusion Equation

The heat-diffusion equation was derived by the following mathematical theory.

(1) Given data

Reference data are calculated separately for the active and inactive groups.

z: (the value of) criterion.

[active reference data] P
!+ ðkÞ :descriptor (n–dim.) vector,

v +
k : score of the kth data (e.g., value of biological activity), >z for k = 1;/; m1.

[inactive reference data] P
!�ðkÞ :descriptor (n–dim.) vector,
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Figure 6. Validation of Hit Compounds

(A) Distributions of structural similarities to the

parent compounds for 252 hit compounds identified

by the second screening. 16.7% of the compounds

presented a new chemotype showing 50% or less

similarity with any of the parent compounds.

(B) Similarity of chemical structures for five selected

compounds and two approved drugs, riluzole and

edaravone.
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v�k : score of the kth data (e.g., value of biological activity), <zfor k = 1;/; m2.

Ansatz (A1): Given data are preconditioned so that there are no two refer-

ence data with the same descriptor vectors.

(2) Mesh for the space of descriptor vectors

Normalization is performed for each descriptor, then binned and allocated to

one of the ranges. By allowing all descriptors to do this, one reference datum is

assigned to a mesh somewhere in the chemical space.

Fix mesh size h>0. Set cube QJ : =
Qn

i = 1½ðji �1Þh; jihÞ for J = ðj1;/; jnÞ.
Ansatz (A2): Given reference data are preconditioned so that each cube QJ

contains at most one reference datum. IfQJ contains P
!+ ðkÞ (resp. P!�ðkÞ), J is

denoted by J+ ðkÞ = ðj +1 ðkÞ;/; j +n ðkÞÞ (resp. J�ðkÞ = ðj�1 ðkÞ;/; j�n ðkÞÞ).
When compounds are assigned to a mesh, a mesh with a composition of

both active and inactive compounds should be excluded from the reference

data. If a mesh is assigned to multiple active or inactive members, the activity

value of the mesh is represented by the average of the members.

(3) Heat-diffusion equation

The contribution from one reference datum to the test data is calculated for

each mesh using the formula below.

u± ð x!; t; kÞ : = 1

ð4ptÞn=2
Qn

i =1

R j ±
i
ðkÞh

ðj ±
i
ðkÞ�1Þh e

�ðxi�yi Þ2
4t dyi for Method A,

u± ð x!; t; kÞ : = 1

ð4ptÞn=2
Qn

i =1e
�ðxi�b±

i
ðkÞÞ2

4t with b±
i ðkÞ : = ðj ±i ðkÞ�1 =2Þh for

Method B

for x!= ðx1;/; xnÞ and t>0 (decoding the same order).

In actuality, the coefficient of 1/(4pt)n/2 does not need to be calculated.
8 Patterns 1, 100140, December 11, 2020
(4) V-Score fð x!; t;hÞ:

=
Xm1

k = 1
u+ ð x!; t; kÞ,tanhðhðvk � zÞÞ � C

Xm2

k =1
u�ð x!; t; kÞ,tanhðhðz� vkÞÞ

for x! and t>0 with C : =
Pm1

k = 1tanhðhðvk � zÞÞ=Pm2

k = 1tanhðhðz � vkÞÞ
and some h>0 or h = +N, where tanhðxÞ= ex�e�x

ex + e�x for x; � N<x<+N.

Here we interpret tanhðhxÞ= signðxÞ when h = +N.
(5) Our criteria: we expect that for suitable small bt>0, x! would be active

(resp. inactive) if fð x!; bt; hÞ>0 (resp. fð x!; bt;hÞ<0).
Remark: It is enough to check the sign of ð4p btÞn=2fð x!; bt;hÞinstead of fð x!; bt;

hÞitself.

(6) f satisfies the heat-diffusion equation:

8><>:
vf

vt
=
v2f

vx21
+
v2f

vx22
+/+

v2f

vx2n
t>0;

initial condition fð x!; 0Þ=Mð x!Þ;
with

Mð x!Þ : =
Xm1

k = 1
u+
0 ð x!; kÞ,tanhðhðvk � zÞÞ

� C
Xm2

k = 1
u�
0 ð x!; kÞ,tanhðhðz� vkÞÞ;



Figure 7. ALS iPSC Panel Trials for Compound Evaluation

(A) Representative figures of motor neurons listed in an ALS iPSC panel consisting of motor neurons derived from 29 clones from sporadic ALS patients. Motor

neurons in the ALS iPSC panel recapitulated ALS motor neuron death.

(B) Evaluation of the active compounds extracted from PM-HDE using the ALS iPSC panel. 1 mM, 3 mM, and 10 mM concentrations of five compounds were

evaluated using 29 ALS clones (n = 3 in each clone). Effects of riluzole and edaravone were also evaluated.

(C) Efficacy of the compounds was compared with those of riluzole and edaravone showing potent efficacy on ALSmotor neuron rescue (n = 29 clones, one-way

ANOVA; *p < 0.05).
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where u±
0 ð x!; kÞ : =

�
1; x!˛QJ± ðkÞ;
0; otherwise;

for Method A,

u±
0 ð x!; kÞ : =

Qn
i= 1dðxi �b±

i ðkÞÞ for Method B,

and dis Dirac’s d-function (decoding the same order).

Using the equation in (3), we integrate (4) for all meshes to obtain a predicted

score for the test data. For each reference data value, the difference between

the activity value (vk) and the criteria (z) is taken, the difference is multiplied by

seven different h in hyperbolic tangent tanh(), and theweight is given according

to the activity value. In other words, we can reflect the intensity of the activity

as the heat value, because the weight of the activity differs between ones that

greatly exceed the criteria and ones that are close to the criteria. In addition, by

using tanh, the correspondence between the activity value and the weighting

can vary smoothly from near-linear to logarithmic to determine the appropriate

area. On the other hand, by using h = N, it is possible to provide only active/

inactive information instead of activity values.

In this study, prioritization of unknown compounds by their V-Scorewas per-

formed according to ‘‘Method B’’ in the definitions as follows.

1. Contribution from each mesh:

u±

 
x!; t; k

!
=
Yn

i = 1

�
e

�ðxi�b±
i

ðkÞÞ2
4t

�
= e

�
Pn

i = 1
ðxi�b±

i
ðkÞÞ2

4t ;

n= 281 (data dimension)

2. V-Score for an unknown compound:

fð x!; t; hÞ : =
Xm1

k = 1
u+ ð x!; t; kÞ,tanhðhðvk � zÞÞ

� C
Xm2

k = 1
u�ð x!; t; kÞ,tanhðhðz� vkÞÞ;

C =
Xm1

k =1

tanhðhðvk � zÞÞ
,Xm2

k = 1

tanhðhðz� vkÞÞ;

where x!: description vector of unknown compound, t: diffusion time, k:

reference data ID, b±
i ðkÞ: the ith descriptor’s value of the center point of the

mesh in which the kth reference data (+, active; �, inactive) are contained,

vk : activity score of the kth reference data,

z : criterion of the assay;m1 : number of active meshes;m2

: number of inactive meshes;

h : weighting parameter 0:005; 0:01; 0:02; 0:05; 0:1; 0:2; N:

In the prediction, the parameter set t, h should be determined beforehand for

maximum AUC based on cross-validation.

Multiple reference compounds with the same label in a mesh are also calcu-

lated as a single reference compound. On the other hand, if reference com-

pounds with different labels correspond to a mesh, the mesh will be consid-

ered as noise data and will be considered invalid and not used in model

generation. By including this kind of preprocessing, the noise in the reference

compound can be greatly reduced.

Acquisition of Biological Activity Data andChemical Structures from

Public Data

The BioActivity Data (concise version), descriptions, and SD-file were collec-

tively downloaded from PubChem’s FTP site onMay 30, 2016. Based on these

files, we first created a biological activity data file for each Assay ID (AID) and

an assay name list. In the biological activity data file, only those records in

which ACTIVITY_OUTCOME was labeled active or inactive were included.

Furthermore, conditions for selecting a system to be analyzed were defined

as the number of compounds of 8,000 or more, excluding duplications based

on Compound ID (CID), the number of active labels of 10 or more, the ACTIVI-

TY_SCORE range of 2 or more, after which CID, ACTIVITY_OUTCOME, and

ACTIVITY_SCORE (hereafter abbreviated as "PubChem Score") were output.
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The criterion of each assay system was defined as the midpoint of the ACTIVI-

TY_SCORE boundary values of the Active label and the Inactive label. Biolog-

ical activity data fileswere prepared for the 946 assay systems selected above.

A part of the list is shown in Table S1.

Next, structure information described in the Connection Table correspond-

ing to all the CIDs was extracted from the SD-files and desalted into a single

molecule; then those containing isotopes, fraudulent valence, inappropriate

atomic species, radicals, and super macromolecules were excluded. To elim-

inate mistakes of structural formulas, only those records in which the Connec-

tion Table in the SD-file and isomeric SMILES contained in the Data field

including stereoscopic information were consistent were considered as valid

structural data.

Generation and Selection of Molecular Descriptors

The SD-file was converted into isomeric SMILES using mol2smi ver.4.95

(Daylight Chemical Information Systems, Aliso Viejo, CA), then the most stable

3D-conformer was generated using Omega ver.2.5.1.4 (OpenEye Scientific,

Santa Fe, NM). Using the SD-file with a three-dimensional coordinate as input,

we calculated all 1,273 molecular descriptors that can be generated using

CORINA Symphony Descriptor ver.1.0 (Molecular Networks, N€urnberg, Ger-

many). Because the original 1,273 molecular descriptors contain many vecto-

rial data, analyzing all of them is not practical due to the overfitting of specific

descriptors. Therefore, the proportions of records with invalid values, correla-

tion coefficient, skewness, and kurtosis were calculated for all molecular de-

scriptors, and 281 descriptors considered necessary and sufficient for the

subsequent analyses were selected (Table S2). These 281 descriptors were

fixed throughout this study. We merged these data with the biological activity

data using CID as a key and created an input file for analysis for each assay

system.

Normalization and Data Cleansing

Irrelevant data contained in the input file were cleansed by following these

procedures.

(1) Mean and standard deviation were determined for each of the 281 mo-

lecular descriptors and normalized for all values.

(2) The values of (1) were binned every 0.1 and assigned to 281-dimen-

sional mesh space using them as grid points.

(3) When multiple data corresponded to the same mesh, all data in the

mesh were invalidated and excluded from the analysis if there were

pairs with different labels as Active/Inactive.

These normalization/cleansing processes were also applied to the prepara-

tion of the training set in cross-validation, as described later.

Coding and Cross-Validation of the Heat-Diffusion

Equation Program

Coding was performed using the 64-bit version of Visual C++ 2013 (Microsoft,

Redmond, DC) according to the algorithms shown in Figure 1B. The prediction

score for one record in a test set is referred to as the V-Score in Table S1. It is

expressed by f (x, t), and corresponds to the temperature in the original

definition.

After cleansing the data groups of each assay system, we divided the data-

set into a training set (test set = 9:1) and performed cross-validation. For each

test set, by giving the diffusion time t = 6.0 to 12.0 in 0.2 increments in 31 levels

and the hyperbolic tangent coefficient h in 7 levels, 0.005, 0.01, 0.02, 0.05, 0.1,

0.2, andN, AUC of the ROC curve was calculated for each of the 313 7 = 217

patterns of parameters as calculation parameters, and the mean and standard

deviation of 217 values for ten test sets were calculated to determine the best-

suited parameters. These series of calculations were performed in a batchwise

manner for 946 assay systems.

Analysis of the Relationship between V-Score and Structural

Similarity

The means of active label capture rate, PubChem Score, and structural simi-

larity between training set and test set were examined for the 0.0%–0.5% frac-

tion and the 5.0%–5.5% fraction from the top of the V-Score in each of the 713

systems that gave a local maximum of AUC and showed a standard deviation
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of %0.12 with a maximum AUC of S0.65 among the 946 assay systems.

Structural similarity was obtained by calculation of the Tanimoto coefficient

following the generation of 2,048 bit fingerprints using Daylight’s Toolkit ver.

4.95 based on isomeric SMILES.

The k-Nearest Neighbor, Support Vector Machine, and Random

Forest

The Python library ‘‘scikit-learn’’ was employed for the development of kNN

(sklearn.neighbors.KNeighborsClassifier), SVM (sklearn.svm.SVC), and RF

(sklearn.ensemble.RandomForestClassifier) classification models. All

methods employed used 10-fold cross-validation to identify their hyper-pa-

rameters, i.e., the number of neighbors to use k for kNN, penalty parameter

C, and nuclear parameter g for SVM, and maximum depth, the minimum num-

ber of samples required to split an internal node, and the minimum number of

samples required to be at a leaf node for RF. A 10-fold cross-validation was

implemented by first dividing the training set into ten equal groups, nine of

which were used for model construction and the tenth for validation. Series

of hyper-parameter values were respectively assigned to construct the

models, and by determining the best AUC values the optimal ones were

identified.

Generation of iPSCs

iPSCs were generated from skin fibroblasts or peripheral blood mononuclear

cells of sporadic ALS patients using episomal vectors (Sox2, Klf4, Oct3/4, L-

Myc, Lin28, and p53-short hairpin RNA) as reported previously.21,22 Estab-

lished iPSCs were cultured on an SNL feeder layer with human iPSC medium

(primate embryonic stem cell medium; ReproCELL, Yokohama, Japan) sup-

plemented with 4 ng/mL basic fibroblast growth factor (Wako Chemicals,

Osaka, Japan) and penicillin/streptomycin or cultured under feeder-free con-

ditions on laminin-511-E8 (Nippi, Tokyo, Japan)-coated plates with StemFit

AK01 (Ajinomoto, Tokyo, Japan). The information on iPSC clones is listed in

Table S3. Karyotyping was performed by Nihon Gene Research Laboratories

(Sendai, Japan).

Generation of Motor Neurons and ALS iPSC-Based Phenotypic

Screening

Motor neurons were generated from iPSCs as previously described.13 A poly-

cistronic vector containing mouse Lhx3, mouse Ngn2, and mouse Isl1 under

control of the tetracycline operator, which was generated from

KW110_PB_TA_ERN (Ef1a_rtTA_neo) vector backbone with rtTA and

neomycin resistance gene, was co-transfected along with a pHL-EF1a-hcP-

Bace-A encoding transposase into iPSCs using lipofectamine LTX (Thermo

Fisher Scientific, Waltham, MA). After clone selection using neomycin, iPSCs

carrying the tetracycline-inducible motor neuron differentiation cassette

were established.

These iPSCswere dissociated to single cells using Accutase (Innovative Cell

Technologies, San Diego, CA) and plated ontoMatrigel-coated 384-well plates

(PerkinElmer, Waltham, MA) with Neuronal Medium DMEM/F12 (Thermo

Fisher Scientific), N2 (Thermo Fisher Scientific) containing 1 mM retinoic acid

(Sigma), 1 mMSmoothened agonist, 10 ng/mL brain-derived neurotrophic fac-

tor (R&D Systems, Minneapolis, MN), 10 ng/mL glial-cell-line-derived neuro-

trophic factor (R&D Systems), and 10 ng/mL NT-3 (R&D Systems) with 1 mg/

mL doxycycline (TaKaRa, Kusatsu, Japan), and cultured for 7 days. The com-

pounds were added on day 6 or day 7, and cells were fixed in 4% paraformal-

dehyde and stained with anti-bIII-tubulin (TUBB3) antibody conjugated with

Alexa 488 (Sigma) on day 14. Images of motor neurons were acquired by Op-

era Phenix (PerkinElmer) followed by quantification of the number of surviving

motor neurons stained with neuronal marker TUBB3 using the analysis soft-

ware Harmony (PerkinElmer). The effect of compoundswas described as ‘‘mo-

tor neuron rescue.’’ Motor neuron rescue (%) = ([X � C]/[T � C]) 3 100, where

X: number of motor neurons treated with compounds on day 14, C: number of

motor neurons treated with dimethyl sulfoxide group on day 14, T: Number of

motor neurons in pretreatment on day 6 or day 7.

Statistical Analysis

Results were analyzed using one-way ANOVA followed by Dunnett’s post hoc

test to determine statistical significance of the data. Differences were consid-
ered significant at p < 0.05. Analyses were performed using SPSS soft-

ware (IBM).
SUPPLEMENTAL INFORMATION
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