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Inflammation-induced impaired function of vascular endothelium may cause leakage of
plasma proteins that can lead to edema. Proteins may leave the vascular lumen through two
main paracellular and transcellular pathways. As the first involves endothelial cell (EC) junc-
tion proteins and the second caveolae formation, these two pathways are interconnected.
Therefore, it is difficult to differentiate the prevailing role of one or the other pathway dur-
ing pathology that causes inflammation. Here we present a newly developed dual-tracer
probing method that allows differentiation of transcellular from paracellular transport dur-
ing pathology. This fluorescence-based method can be used in vitro to test changes in
EC layer permeability and in vivo in various animal vascular preparations. The method is
based on comparison of low molecular weight molecule (LMWM) transport to that of high
molecular weight molecule (HMWM) transport through the EC layer or the vascular wall
during physiological and pathological conditions. Since the LMWM will leak through mainly
the paracellular and HMWM will move through paracellular (when gaps between the ECs
are wide enough) and transcellular pathways, the difference in transport rate (during nor-
mal conditions and pathology) of these molecules will indicate the prevailing transport
pathway involved in overall protein crossing of vascular wall. Thus, the novel approach of
assessing the transport kinetics of different size tracers in vivo by intravital microscopy can
clarify questions related to identification of target pathways for drug delivery during various
pathologies associated with elevated microvascular permeability.
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INTRODUCTION
Many inflammatory diseases such as hypertension (Johansson
et al., 1978; Miller et al., 1986; Pedrinelli et al., 1999), diabetes
(Bonnardel-Phu et al., 1999), and stroke (Hatashita and Hoff,
1990; Laursen et al., 1993; Wardlaw et al., 2003) are accompanied
by impaired vascular wall integrity leading to enhanced microvas-
cular leakage. Movement of plasma proteins to interstitium can be
particularly detrimental as it is most likely a cause of edema. Pro-
teins may cross endothelium through two main pathways: para-
cellular and transcellular. Paracellular transport occurs through
gaps between endothelial cells (ECs) and involves alterations in
tight, gap, and adherence junction proteins (Mehta and Malik,
2006). Transcellular transport occurs through the EC and involves
formation of functional caveolae and their mobility (Stan et al.,
1999; Stan, 2007). Since caveolae are attached to actin filaments
through the protein filamin (Ushio-Fukai and Alexander, 2006)
as are tight junction and adherence junction proteins (Mehta and
Malik, 2006), and caveolae-mediated transcytosis and paracellular
transport are interconnected (Bauer et al., 2005) the prevailing
role of one or the other pathway in overall protein transvas-
cular transport is difficult to define. Caveolin-1-null mice that
lack caveolae in the endothelium showed increased permeability
to albumin in venules and capillaries via the paracellular route
(Razani et al., 2001; Miyawaki-Shimizu et al., 2006), suggesting a
close crosstalk between transcellular and paracellular pathways in
regulating tissue fluid balance.

Albumin, the most abundant plasma protein, constantly crosses
the EC barrier in both directions (from the apical to the basal and
from the basal to the apical side of cells) and acts as a chaperone
for a number of hydrophobic molecules (Mehta and Malik, 2006).
It is suggested that movement of albumin occurs through mainly
transcellular transport (Mehta and Malik, 2006) since EC gaps are
not readily opened to the extent to permit albumin leakage. Dur-
ing various inflammatory stimulations EC gaps open transiently
leading to leakage of plasma components (including proteins, e.g.,
albumin) to the interstitium. However, formation of caveolae may
be enhanced and lead to protein transport for a longer duration
leading to edema. Thus there is a difference in action between these
two transport pathways.

We developed a dual-tracer probing method to differentiate
the relative involvement of transcellular and paracellular transport
pathways in protein crossing the EC layer and vascular wall during
pathology. This method is based on a comparison of leakage of a
low molecular weight molecule (LMWM) and a high molecular
weight molecule (HMWM; in our case albumin) through cultured
mouse brain ECs (MBECs) and mouse pial venules during nor-
mal and pathological conditions. To test inflammation-induced
possible changes in transcellular and paracellular transport, we
used hyperfibrinogenemia (HFg) as the experimental pathology.
HFg accompanies many inflammatory diseases such as hyperten-
sion (Letcher et al., 1981; Lominadze et al., 1998), diabetes (Lee
et al., 2007), stroke (Eidelman and Hennekens, 2003; del Zoppo
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et al., 2009), and traumatic brain injury (Pahatouridis et al., 2010).
We showed that enhanced blood content of fibrinogen (Fg) com-
promises EC layer integrity resulting in albumin leakage through
cultured EC layer (Tyagi et al., 2008; Muradashvili et al., 2011) and
mouse pial venules (Muradashvili et al., 2012). It was found that Fg
causes enhanced movement of fluorescently labeled bovine serum
albumin (BSA) through both transcellular and paracellular path-
ways (Tyagi et al., 2008; Muradashvili et al., 2011, 2012). However,
the prevailing role of one or the other transport mechanism was
not defined.

METHODS
REAGENTS AND ANTIBODIES
Human Fg (FIB-3, depleted of plasminogen, von-Willebrand fac-
tor, and fibronectin) was purchased from Enzyme Research Labo-
ratories (South Bend, IN). Alexa Fluor 647-conjugated BSA (BSA-
647) was obtained from Invitrogen (Carlsbad, CA). Fluorescein
isothiocyanate (FITC) and Lucifer Yellow were from Sigma Aldrich
Chemicals Co. (St. Louis, MO).

ANIMALS
In accordance with National Institute of Health Guidelines for
animal research, all animal procedures for these experiments were
reviewed and approved by the Institutional Animal Care and Use
Committee of the University of Louisville.

Male wild type (WT) C57BL/6J mice were from the
Jackson Laboratory (Bar Harbor, ME). HFg transgenic
mice on C57BL/6J background (strain name: C57BL/6-
Tg(Fga,Fgb,Fgg)1Unc/Mmnc; Stock Number 004104) were pur-
chased from Mutant Mouse Regional Resource Center at the
University of North Carolina at Chapel Hill (Chapel Hill, NC). For
genotyping of HFg mice, DNA was extracted from the tail tip of
mice and was amplified by polymerase chain reaction (PCR) using
specific primer sequences according to the protocol provided by
the Jackson Laboratory and described elsewhere (Gulledge et al.,
2001). The primer sequences for HFg were forward 5′-GGC CGT
CGA CAT TTA GGT GAC AC-3′ and reverse 5′-AGT CAA TTT
GGT CAC TAA CC GCC-3′. The primer sequences for WT were
forward: 5′-GTG GGA CCA TCA TAA CAT CAC A-3′; reverse:
5′-CTC GCG GCA AGT CTT CAG AGT A-3′. Typical genotype
results are presented on Figure 1. HFg mice have higher plasma
levels of Fg than WT mice (Gulledge et al., 2001, 2003).

Twenty-week old mice (29–32 g) were anesthetized with
sodium pentobarbital (70 mg/kg, IP). Supplemental anesthesia
was given as required during the experiment. 2% Xylocaine

FIGURE 1 | Genotyping of hyperfibrinogenic (HFg) – fibrinogen

transgene positive and wild type (WT) mice. Single PCR products
suggest the homozygous mutation (HFg), while its absence represents WT
allele.

(AstraZeneca LP, Wilmington, DE) was used for local analgesia.
The left carotid artery was cannulated with polyethylene tubing
PE-10 for blood pressure monitoring and necessary infusions. The
trachea was cannulated to maintain a patent airway. Body temper-
ature of the mouse was kept at 37 ± 1˚C with a heating pad. Mean
arterial blood pressure and heart rate were continuously moni-
tored through a carotid artery cannula connected to a transducer
and a blood pressure analyzer (CyQ 103/302, Cybersense, Lexing-
ton, KY). A tail cuff and a CODA monitor, a non-invasive blood
pressure measurement system (Kent Scientific Apparatus, Tor-
rington, CT), were used to monitor mean arterial blood pressure
during infusion of dyes.

Brain pial microcirculation was prepared for observations
according to the method described previously (Lominadze et al.,
2006; Muradashvili et al., 2012).

ENDOTHELIAL CELL CULTURE
Mouse brain ECs were purchased from American Type Culture
Collection (ATCC, Manassas, VA). The cells were cultured in com-
plete Dulbecco’s modified eagle’s medium (DMEM), according to
the manufacturer’s (ATCC) recommendation, at 37˚C with 5%
CO2/air in a humidified environment and were used at the 5th or
6th passage for the experiments.

DUAL-TRACER PROBING METHOD
To determine changes in transcellular and paracellular transport
mechanisms induced by enhanced blood content of Fg and to
define if one of these pathways has a prevailing role during this
pathology, we developed a dual-tracer probing method. In vitro,
leakage of Lucifer yellow (as a LMWM) and Alexa Fluor 647-
conjugated BSA (BSA-647) through MBEC layer treated with
4 mg/ml Fg or phosphate-buffered saline (PBS) was studied.
In vivo, leakage of FITC (as a LMWM) was compared to that
of BSA-647 in pial venules of normal WT and HFg mice.

Microvascular leakage
Mouse pial venular leakage was observed as described previously
(Lominadze et al., 2006; Muradashvili et al., 2012). Following the
surgical preparation and preceding each experiment, there was
a 1-h equilibration period. Before each experiment, autofluores-
cence of the observed area was recorded over a standard range of
camera gains. Mixture of 100 μl of FITC (300 μg/ml) and 20 μl
of BSA-647 (3.3 mg/ml) in PBS (a total of 120 μl solution) was
infused through the carotid artery cannulation. The solution was
infused with a syringe pump (Harvard Apparatus, Holliston, MA)
at 30 μl/min speed and allowed to circulate for 10 min (Lominadze
et al., 2006; Muradashvili et al., 2012). The pial circulation was sur-
veyed to ensure that there was no spontaneous leakage of BSA-647
in the observed area that would indicate compromised vascular
integrity. Venules were identified by observing the topology of the
pial circulation and blood flow direction. Images of the selected
third-order venular segments were recorded and used as baseline.
After obtaining the baseline reading, images of the selected venular
segments were recorded at 10, 20, 40, 60, and 120 min.

An epi-illumination system was used to observe intravascu-
lar and extravascular FITC and BSA-647. The area of interest was
exposed to blue light (488 nm) and then red light (647 nm) for 10–
15 s with a power density of 3.5 μW/cm2. The microscope images
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were acquired by an electron-multiplying charge-coupled device
camera (Quantem 512SC, Photometrics, Tucson, AZ) and image
acquisition system (Slidebook 5.0, Intelligent Imaging Innova-
tions, Inc., Philadelphia, PA). The camera output was standardized
with a 50 ng/ml fluorescein diacetate standard (Estman Kodak,
Rochester, NY) for each experiment. The lamp power and cam-
era gain settings were held constant during experiments, and the
camera response was verified to be linear over the range used for
these acquisitions. The magnification of the system with Olym-
pus 20×/0.40 (UPlanSApo) objective was determined with a stage
micrometer.

Images of the pial venular circulation were analyzed by
image analysis software (Image-Pro Plus 7.0, Media Cybernet-
ics, Bethesda, MD). Example of the image analysis for detection
of BSA-647 leakage to interstitium is presented on Figure 2. In
each image, a Line Profile probe (LPP) of 50 μm in length was

positioned in the interstitium adjacent to a venular wall in par-
allel to the venule (Figure 2A) and then in the middle of the
venule parallel to the blood stream (Figure 2B). Mean fluores-
cence intensities were measured for each dye (Figure 2). Leakage
of FITC and BSA-647 to interstitium was assessed by changes in
the ratio of fluorescence intensity of each dye in the interstitium
to that inside the venule for the respective dye. The results were
averaged for each experimental group and presented as percent of
baseline. The diameter of each venule under observation was also
measured.

Leakage through EC layer
Changes in transcellular and paracellular transport in cultured
MBECs were studied using Transwell permeable supports (Corn-
ing Inc., Corning, NJ) as previously described (Tyagi et al., 2008;
Patibandla et al., 2009). Briefly, the Transwell permeable supports

FIGURE 2 | Image analysis of microvascular leakage using Image-Pro Plus

software. Examples of pial microvascular bed images (with circulating
BSA-647) with a digital Line Profile probe (LPP) placed in the area of interest
(upper row) and corresponding results of fluorescent light intensity readings
shown in respective Line profile boxes (lower row). About thirty micrometer
long LPP was first placed in interstitium adjacent to the venular segment (A)

and then inside the venular segment (B). To perform quantitative analysis of
fluorescence intensity along a LPP the following steps were followed:
<Measure>, <Line profile> (this led to appearance of the Line profile box. The
size and the place of the LPP on the image were adjusted manually), <Report>
in the Line profile box, then “statistics.” For assessment of fluorescence
intensity of BSA-647 <red> was chosen in the Line profile box, while <green>

was chosen for FITC intensity measurement. Values of the fluorescence
intensities were given as “Mean” and “Standard deviation” in the Line profile
box (see lower row). Fluorescence intensity profile along the LPP for each
image is shown in the Line profile box below the respective image. Mean
values averaged along the LPP are also shown in the Line profile box. Note that

mean fluorescence intensity inside the venule is 92.3 fluorescence intensity
units (FIU) and in the adjacent interstitium is 26.6 FIU. Thus ratio of
fluorescence intensity in interstitium to that in the venule is 0.29. This value
was expressed as a percent of baseline values calculated for images obtained
immediately after infusion of the dual-tracer probe. Example of the LPP placed
across the venular segment and over the adjacent interstitium (upper image)
with the fluorescence intensity profile along the LPP (below) is shown (C).
Arrows indicate precise locations of where the fluorescence intensities were
measured along the LPP. Note that fluorescence intensity inside the venule (In)
is 85.1 FIU and in interstitium (Out) is 23. Thus ratio of fluorescence intensity in
interstitium to that in the venule in the marked places along the LPP is 0.27.
However, to obtain reliable data the LPP should be moved along the vessel and
several measurements performed to calculate an average of these results.
Since the same data, with better precision, can be obtained using the method
described above (A,B), we placed the LPP across the vessel to define the
vascular wall and the distance from the vessel where the LPP should have
been placed (parallel to the vessel) in interstitium.
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with polycarbonate membranes (Nuclepore Track-Etch, 6.5 mm in
diameter, 0.4 μm pore size, and pore density of 108/cm2) coated
with fibronectin were seeded with MBECs and grown in DMEM
until they formed a complete monolayer. Cell confluence and the
presence of an intact monolayer on the membranes were con-
firmed in each series of experiments (Tyagi et al., 2008; Patibandla
et al., 2009). To inhibit the effect of thrombin’s activity, hirudin
(0.1 U/ml) was added to each well in all experiments. The surface
levels of solutions in the luminal (200 μl) and abluminal (600 μl)
compartments of the Transwells were the same.

For the permeability assay, cells were washed with PBS and
treated with 4 mg/ml of Fg or with medium alone in the presence
of Lucifer yellow (0.3 mg/ml) and BSA-647 (0.2 mg/ml). After 10,
20, 40, 60, and 120 min media samples (50 μl) were collected from
lower chambers of the Transwell system and the same volume of
the sample was added to the each appropriate upper well. Flu-
orescence intensity of each dye in samples were measured by a
microplate reader (SpectraMax M2e, Molecular Devices Corpo-
ration, Sunnyvale, CA) with excitation at 488 nm and emission
at 520 nm (cutoff 515 nm) for Lucifer Yellow and with excitation
at 650 nm and emission at 668 nm (cutoff 665 nm) for BSA-647.
Results are expressed as a ratio of fluorescence intensity of each
dye in the bottom chamber (of each experimental group) to fluo-
rescence intensity of the respective dye in the original sample (of
the respective group) at the end of the experiment. Experiments
were performed eight times for each treatment.

DATA ANALYSIS
All data are expressed as mean ± SEM. The experimental groups
were compared by one-way ANOVA with repeated measures.
If ANOVA indicated a significant difference (p < 0.05), Tukey’s
multiple comparison test was used to compare group means.
Differences were considered significant if p < 0.05.

RESULTS AND DISCUSSION
Genotyping of experimental animals using appropriate primers
and PCR positively identified HFg transgenic mice (Figure 1).
Body weight of animals used in the study varied from 29
to 32 g. Mean arterial blood pressure did not change in WT
(−1 ± 0.5 mmHg) or in HFg (−3 ± 0.5 mmHg) mice after FITC
and BSA-647 infusion. During the observation period venular
diameters (38 ± 6 μm) in WT animals changed insignificantly less
(+1 ± 0.2 μm) than venular diameters (40 ± 5 μm) in HFg mice
(+2 ± 0.6 μm).

We found that HFg caused greater leakage of plasma com-
ponents through both transcellular and paracellular pathways
(Figure 3). While the leakage of BSA-647 from pial venules was
greater in HFg mice than that in WT mice starting from 20 min
(Figure 3B), leakage of FITC was more in HFg mice than in
WT mice only at 20 and 40 min (Figure 3A). Similarly, while at
higher levels of Fg the leakage of BSA-647 through EC layer was
greater starting from 20 min (Figure 3C), leakage of Lucifer Yellow
through Fg-treated cells was more than that in control group only
at 20 and 40 min (Figure 3D).

Stokes–Einstein radii of Lucifer Yellow (∼0.49 nm; Heyman
and Burt, 2008) and FITC (∼0.45 nm; Fu and Shen, 2003) are
significantly less than that (3.5 nm) of BSA (Fu and Shen, 2003).

Therefore, in case of increased level of Fg that affects EC junc-
tions and caveolae formation (Tyagi et al., 2008; Patibandla et al.,
2009; Muradashvili et al., 2011, 2012), Lucifer Yellow (and FITC)
may leak mainly through the cell junctions (Little et al., 1995),
while BSA would leak through the cell junctions, when they are
opened wide enough and traverse via the transcellular route,
when caveolae-mediated transport is stimulated: more caveolae
are formed and become functional (with enhanced mobility and
ability of albumin endocytosis).

Thus, leakage of Lucifer Yellow through EC layer (in vitro) or
leakage of FITC through pial venules (in vivo) induced by high level
of Fg was greater than that in respective control groups starting
from 20 min but was no longer different from the control groups
at 60 and 120 min (Figure 3). This data may indicate that after
40 min Fg no longer had an effect on EC gap formation. However,
leakage of BSA-647 in vitro and in vivo induced by high level of
Fg was greater than that in respective control groups from 40 min
and continued to rise with time (Figure 3). These results sug-
gest that Fg affects junction proteins (JPs) and leads to a transient
opening of gaps between cells enhancing the leakage of LMWMs
(Lucifer Yellow or FITC). This notion is supported by our data
showing that Fg can cause translocation of JPs (Patibandla et al.,
2009). As the effect of Fg on JPs subsides, the difference in Lucifer
Yellow or FITC leakage between the HFg and the control groups
vanish. However, high level Fg-induced leakage of HMWM (BSA)
increases even after the paracellular pathway is no longer stimu-
lated by Fg (Figures 3A,C). Thus BSA may move through MBEC
layer and through pial venular wall first through both transport
pathways and later (after relative closure of the junctional gaps) by
mostly transcytosis.

The complicated nature of microvascular permeability was
defined long ago using intravital microscopy and light absorb-
ing dyes (Landis, 1927). Nakamura and Wayland (1975) tested
leakage of fluorescently tagged BSA and various molecular weight
dextrans. The leakage of these tracers was tested one at a time
(Nakamura and Wayland, 1975). Even earlier, Witte (1965) used
fluorescent tracers in qualitative studies on extravascular circu-
lation in both normal and pathological conditions in mammals.
Since then there were numerous reports related to microvascular
or EC layer permeability using fluorescent dyes. However, none of
them compared leakage kinetics of two different size tracers occur-
ring at relatively the same time course in normal and pathological
conditions.

Use of fluorescent and radioactive tracers to better define mech-
anisms of endothelial or vascular permeability continued. Vogel
et al. (2001) define their method as a “single-sample” technique
of Kern et al. (1983). Later John et al. (2003) presented quan-
titative analysis of albumin uptake and transport in ECs in vitro
using 125I-albumin. Its leakage through the EC layer was compared
to that of unlabeled albumin. The authors showed that transcel-
lular uptake and transport of 125I-albumin can be blocked by
excess of native albumin, and that any remaining leakage in these
Transwell assays was via gaps in the monolayer. The results also
indicated that albumin internalized and transported via caveolae
can be distinguished in overall transendothelial albumin transport
through the EC barrier in vitro. This method, which defines inter-
nalization of albumin in caveolae, was also used to demonstrate
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FIGURE 3 | Differentiation of transcellular from paracellular transport

through microvascular wall and endothelial cell (EC) layer using a

dual-tracer probing method. Leakage of fluorescein isothiocyanate
(FITC; upper left panel) or Lucifer Yellow (bottom left panel) and Alexa Fluor
647-conjugated bovine serum albumin BSA (BSA-647; right column) was
studied in pial venules of wild type (WT) and hyperfibrinogenic (HFg) mice
(A,B), and in mouse brain ECs (MBECs) treated with medium alone
(control) or with 4 mg/ml of Fg in medium (Fg) (C,D). Leakage of FITC was
greater in HFg mice at 20 and 40 min after infusion of the dye but at 60
and 120 min the difference was no longer observed (A). However, leakage
of BSA-647 was more in HFg mice after 20 min of dye infusion (B). These
results indicate that inflammatory changes caused by HFg mediate a

transient opening of the EC junction gaps after infusion of the dye causing
the leakage of FITC. However, when the gaps are no longer opened more
in HFg mice than in WT mice, enhanced caveolae formation and their
function still maintains greater leakage of BSA via transcellular transport.
Similarly, the leakage of Lucifer Yellow was greater through MBECs treated
with 4 mg/ml of Fg at 20 and 40 min after addition of the dye but at 60 and
120 min the difference was no longer observed (C). However, leakage of
BSA-647 was more through the MBECs treated with Fg after 20 min of
addition of dyes (D). These results confirm the data obtained for mouse
pial venules, indicating that HFg affects mainly the transcellular transport
through formation of functional caveolae. *p < 0.05 – versus WT or
control. n = 6 for animals and n = 8 MBECs.

that by interacting with the actin crosslinking protein filamin A,
caveoalin-1 phosphorylation plays a critical role in the mecha-
nism of caveolae-mediated transcytosis and thereby stimulates
transcellular permeability (Sverdlov et al., 2009).

Kovar et al. (1997) compared low and high molecular weight
tracers to investigate perfusion rate in rodent tumors. Use of
two tracers, sodium fluorescein and Texas red-dextran (70 kD),
has been reported by Russ et al. (2001). The first tracer was
used to indicate vessel leak and the second to indicate vessel
filling. Again, this study did not differentiate transcellular and
paracellular transport. Hu et al. (2008) demonstrated a novel

role of caveolae-mediated albumin transport in microvascular
inflammatory hyperpermeability. They showed that intercellular
adhesion molecule-1 activation-dependent caveolin-1 phosphory-
lation stimulated transcytosis of albumin in the pulmonary vascu-
lature and that this increase in inflammatory transcellular albumin
hyperpermeability (125I-albumin permeability surface area prod-
uct) as well as the increase in capillary filtration coefficient (fluid
permeability) was abolished in caveolin-1 knockout mouse lungs.
Leakage of 125I-albumin through ECs was compared to that of
3H-mannitol, a low-molecular-weight (182-Da) tracer that tra-
verses the endothelium via the paracellular pathway. However,
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authors did not record time-dependent changes in leakage of these
tracers. Therefore, the method did not show if albumin leaked
more via the paracellular or transcellular pathway. In addition,
this was not the aim of the study.

A two-tracer isotope method using albumin labeled with 131I
and 125I was used previously to define accumulation of albumin
in vascular and extravascular space of various tissue (Tucker et al.,
1992). Although it has been emphasized that the advantages of the
two-tracer isotope methods to investigate transvascular macro-
molecule transport are becoming more widely recognized (Nagy
et al., 2008), their use with transgenic mouse models has been
limited. Lately this method has been used with better success to
define the effects of atrial natriuretic peptide in microvascular per-
meability (Curry et al., 2010). However, as the two-tracer isotope
method uses the same molecule with two different tracers, the
method may not differentiate between the involvement of tran-
scellular or paracellular transport pathways in total microvascular
permeability. In another study, alterations in blood brain barrier
permeability were studied using Evans blue and 125I-taged albu-
min (Nag, 1991). However, the probes were infused at separate
times and no time-dependent observation of the vascular leakage
was performed (Nag, 1991).

Our data indicate that using the newly developed dual-tracer
probing method allows differentiation of the relative involve-
ment of transcellular and paracellular transport pathways in
inflammation-induced vascular and EC layer permeability. Since
the method is based on comparison of leakage of LMWM and
HMWM during pathology, we conclude that it can be used during
various pathologies to differentiate the role of transcellular versus
paracellular transport in overall vascular or EC layer permeability.
In addition, by assessing the rate (kinetics) of leakage of small and
larger molecules the method may also allow the assessment of the
difference in response time between paracellular and transcellular
protein transport.

LIMITATIONS OF THE METHOD
It has been shown that the addition of fluorescent dyes can alter the
physicochemical characteristics of water-soluble macromolecules
(Bingaman et al., 2003). It was found that the greatest changes
were observed for BSA when it was conjugated with FITC (Binga-
man et al., 2003). Therefore, in our study we used BSA that was
conjugated with Alexa-647. However, properties of BSA still may
have been different from that of unconjugated BSA. This may have
less significance as we compared leakage of the dye alone or dye-
conjugated BSA in the same type of vessels (venules) between the
animals (or ECs).

Since we measured only the relative fluorescence intensity (in
the interstitial space adjacent to a pial venule over the fluores-
cence intensity inside the vessel) and did not evaluate hydrostatic
pressure in the venule, we could not asses the venular permeabil-
ity to LMWM (FITC) as required by Starling’s concept. We made
an assumption that leakage of LMWM (FITC) through the vas-
cular wall occurs via the paracellular pathway and any changes
in this process may occur due to pathology (HFg in our case)
causing alterations in this pathway. Presented data indicate an
accumulation of BSA-647 in interstitium, which can be consid-
ered an adequate measure for venular permeability to proteins. In
addition, we did not find a difference in vascular diameters and
MABPs in response to dual-tracer probe infusion in both groups
of mice.

Thus, the precision of the presented approach is based on the
ability to make a pairwise comparison of simultaneously assessed
leakage kinetics of small and large molecules during normal and
pathological conditions. Therefore, this method does not provide
quantitative assessment for one or the other transport pathway
in overall protein leakage. It defines if one or the other pathway
prevails in total protein leakage.

There are several methods for quantitative analysis of endothe-
lial permeability, which are discussed by Mehta and Malik (2006).
It seems that the most adequate technique for quantitative assess-
ment of microvascular permeability can be the method that uses an
isolated vessel (He et al., 2006). This method is based on the modi-
fied Landis technique (Curry et al., 1976). Quantitative assessment
of EC layer permeability can be best performed with the methods
discussed above and presented elsewhere (John et al., 2003; Hu
et al., 2008).

In addition, due to competition with endogenous albu-
min the sensitivity of fluorescently labeled BSA (infused in
small quantities into the circulation) in detecting transcyto-
sis is limited. Possible use of dextrans (instead of albumin)
may exclude receptor-mediated specificity typically involved
in caveolae-mediated albumin transcytosis (Tiruppathi et al.,
1997).

Since the Stokes–Einstein radius of Lucifer Yellow is slightly
greater than that of FITC, we used the Lucifer Yellow as a LMWM
in vitro. In preliminary experiments, we found that 100 μl of
Lucifer Yellow (3 mg/ml) did not produce detectable fluorescent
light in vivo.
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