
cancers

Review

Role of p53 in the Regulation of the Inflammatory
Tumor Microenvironment and Tumor Suppression

Ikuno Uehara and Nobuyuki Tanaka *

Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School,
1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan; uehar@nms.ac.jp
* Correspondence: nobuta@nms.ac.jp; Tel.: +81-44-733-1860

Received: 18 May 2018; Accepted: 22 June 2018; Published: 27 June 2018
����������
�������

Abstract: p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of
oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism.
Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation
and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer
stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore,
p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes
excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported
by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit
reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory
microenvironment as a tumor suppressor. Here, we review our current understanding of the
mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor
microenvironment, and tumor suppression.
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cancer metabolism; oxidative stress; cellular reprograming

1. Introduction

Increasing evidence has indicated that oncogenesis is a multistep process that reflects
genetic alterations driving the progressive transformation of normal cells into highly malignant
derivatives [1,2]. Such genetic alterations produce oncogenes with a dominant gain of function and
tumor suppressor genes with a recessive loss of function. p53 is the most frequently mutated gene
in human cancer cells [3]. It functions as a transcriptional activator and exerts its biological activity
by inducing the expression of its target genes [4]. p53 is regulated by the ubiquitin E3 ligase Mdm2
that targets p53 for proteasomal degradation. In response to various cellular stresses, such as DNA
damage, hypoxia, and nutrient deprivation, p53 induces the expression of genes regulating the
cell cycle, apoptosis, and DNA repair [4–6]. Through these functions, p53 prevents passing on
altered genetic information evoked by DNA damage and has therefore been termed the “guardian of
the genome” [7,8]. Moreover, the p53-mediated tumor surveillance system, which responds to
oncogenic signals evoked by oncogene activation, triggers apoptosis or cell cycle arrest, resulting in
the elimination of oncogene-activated cells by cell death or induction of senescence [5,7,9]. Therefore,
inactivation of this system by the loss of p53 functions is a critical step in cancer development. Moreover,
p53 responds to metabolic changes and influences metabolic pathways through several mechanisms.
The metabolic alterations induced by p53 mutations might play a major role in the maintenance of
cancers [9,10]. For example, p53 promotes oxidative phosphorylation and hampers glycolysis in cells,
and disruption of this balance is critical for oncogene-induced cell transformation [11,12]. In addition,
mice bearing mutations in three p53 acetylation sites, which cause deficiencies in cell cycle arrest,
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senescence, and apoptosis, retain tumor suppression activity [13]. This mutant p53 retains the ability to
regulate energy metabolism, suggesting that, in addition to regulation of the cell cycle and apoptosis,
regulation of metabolism is an important function of p53-mediated tumor suppression.

Most tumors have missense mutations that generate an aberrant p53 protein [14].
Growing evidence has shown that these mutant p53 proteins have lost wild-type p53 tumor suppressor
activity and gained functions that contribute to malignant progression [15]. For example, a p53
missense mutation in the germline results in significantly earlier cancer onset than loss of p53 protein
expression [16,17], and mice expressing mutant p53 develop more aggressive and metastatic tumors
than p53 null mice [18,19]. Moreover, many types of p53 mutants in cancer cells confer resistance to
anti-cancer drugs [15,20]. Although many different mutations and various phenotypes exist in tumors
expressing different p53 mutants, the mechanisms underlying oncogenic functions of p53 mutants are
not fully understood [15]. Identification of small molecules that restore the wild-type conformation of
p53 and its proper functions is progressing [21].

Recent studies have demonstrated the roles of p53 in regulation of the inflammatory tumor
microenvironment and cell fate reprograming. Therefore, this review will focus on the roles of p53 in
regulation of the inflammatory tumor microenvironment, including the generation and maintenance
of cancer stem cells (CSCs) and tumor suppression.

2. The Inflammatory Microenvironment and Its Effects on Cancer Cells

Tumor-promoting inflammation is one of the hallmarks of cancer [2]. Chronic inflammatory
disease increases the risk of cancers. Epidemiological evidence shows that anti-inflammatory drugs,
particularly aspirin, are powerful chemopreventive agents [22]. Furthermore, tumorigenesis and
wound healing depend on similar molecular mechanisms [23,24]. Wound-healing responses initiate
a cascade of events including immune cell migration to the wound site to prevent infection and remove
debris, followed by fibroblast proliferation, remodeling of the extracellular matrix, angiogenesis,
and the deposition of new connective tissue [23,25]. Initially, inflammatory cells, including neutrophils,
mast cells, macrophages, and lymphocytes, migrate to the wound site and produce growth factors,
cytokines, and proteinases required for new tissue formation. These inflammatory mediators facilitate
the recruitment, proliferation, and differentiation of mesenchymal stem cells (MSCs) that alter
the local inflammatory microenvironment and facilitate the wound repair activities of intrinsic
tissue stem cells by producing immunoregulatory factors, growth factors, and chemokines [26].
Inflammatory cells also migrate to cancer tissues, and MSCs have been reported to migrate to
tumors and differentiate into cells such as tumor-associated MSCs (TA-MSCs) [27]. Similar to the
wound-healing microenvironment, in the tumor microenvironment, inflammatory cells, TA-MSCs,
cancer associated fibroblasts (CAFs), and cancer cells themselves produce inflammatory cytokines,
such as interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α, chemokines, such as MCP1
(monocyte chemoattractant protein 1) and IL-8, and growth factors including members of the EGF
(epidermal growth factor), FGF (fibroblast growth factor), and transforming growth factor β (TGF-β
families, all of which enhance tumor development [23,28]. Furthermore, the extracellular matrix (ECM)
interacts with cells to regulate diverse functions including proliferation, migration, and differentiation.
Dysregulation of the ECM composition and structure caused by inflammation contributes to several
pathological conditions including cancer invasion and metastasis [29,30]. Moreover, additional cell
growth signals induced by growth factors [31] and inflammatory cytokines [32–34] enhance the energy
metabolism of cancer cells in the tumor microenvironment. This tumor microenvironment contributes
to evasion of anti-tumor immune responses [35]. Based on these findings, inhibition of tumor
microenvironment components might provide a more efficient method of cancer chemotherapy [36].

Epithelial-mesenchymal transition (EMT) is a biological process whereby a polarized epithelial
cell, which normally interacts with the basement membrane via its basal surface, undergoes multiple
biochemical changes to assume a mesenchymal cell phenotype characterized by an enhanced migratory
capacity, invasiveness, and increased resistance to apoptosis [37]. Furthermore, inflammatory
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mediators, including proinflammatory cytokines, growth factors, oxidative stress, and toxins, induce
EMT that promotes cancer progression [38]. Epithelial-mesenchymal transition is regulated by
EMT-inducing transcription factors such as Twist1/2, Snail1/2, and Zeb1/2 [39]. In addition, wild-type
p53 interacts with Snail2 to promote Snail2 degradation, whereas p53 mutations upregulates Twist1
expression to enhance Snail2 expression by inhibiting its degradation [40,41], suggesting a connection
between p53 inhibition and EMT. Moreover, EMT promotes the generation of CSCs from differentiated
cancer cells [42].

Like normal stem cells, CSCs reside in microenvironments called niches that regulate stem cell fate
by providing signals from cell-cell contacts and secreted factors. Niches for mammalian stem cells have
been identified in various epithelial tissues such as the intestinal, neural, epidermal, and hematopoietic
systems [43]. CSC niches consist of immune cells, stromal cells, such as TA-MSCs and CAFs, and their
secreted factors including growth factors and cytokines that stimulate CSC self-renewal. Because many
cancer cells have an aberrant differentiation status, multiple developmental signals can be activated in
CSCs and niches. Such developmental signals, including HEDGEHOG (HH), WNT, and NOTCH, may
facilitate maintenance of CSC stemness and regulation of their self-renewal [44]. Moreover, CSCs show
increased quiescence and poor responses to conventional chemotherapeutic strategies that primarily
kill proliferating cells [45]. These mechanisms contribute to the survival of CSCs during drug treatment,
leading to tumor recurrence [46]. Therefore, stem cell-based therapies may be a promising strategy for
cancer chemotherapy, especially by inhibiting tumor recurrence.

3. p53-Mediated Regulation of Inflammation

In addition to the role of p53 in maintaining cellular homeostasis in response to various
stresses, accumulating evidence suggests the involvement of p53 in inflammatory reactions [47,48].
Cancers arise from sites of chronic inflammation [49,50], and p53 is induced by chronic inflammation
through various stimuli including oxidative stress initiated by reactive oxygen species (ROS) [51],
nitric oxide (NO) [52], and viral [53] and bacterial [54] infections. Considering these findings and
the tumor-suppressive function of p53, p53 functions might be suppressed at sites of inflammation.
Numerous studies have reported that the transcription factor nuclear factor-κB (NF-κB) is a key
regulator linking persistent infections and chronic inflammation to increased cancer risk [50]. Indeed,
NF-κB inhibits the transcriptional activity of p53 [55–57]. Moreover, in several renal cell carcinoma
cell lines, inhibition of NF-κB restores p53 functions [58]. In this context, curaxins, small molecules
that simultaneously inhibit NF-κB and activate p53, have shown anti-cancer activities against human
tumor xenografts in mice [59].

Moreover, p53 suppresses inflammation [60]. For example, a significant number of p53-null
mice die before tumor development from inflammation resulting in abscesses, gastroenteritis,
or myocarditis [61]. Furthermore, symptoms of autoimmune disease are more severe in p53-deficient
mice than in wild-type mice [62–64]. However, inflammation caused by loss of p53 itself is not sufficient
for effective tumor development. In a mouse model of carcinogen-induced colon cancer, intestinal stem
cell marker Lgr5-driven deletion of p53 reduces apoptosis and increases proliferation of crypt stem cells
but has no effect on tumor incidence or size. Conversely, in a mouse model of colitis-associated cancer,
stem cell-specific p53 deletion greatly enhances tumor size and incidence in the colon, suggesting
that the loss of p53 functions in stem cells enables colonic tumor formation only when combined
with DNA damage and chronic inflammation [65]. One of the mechanisms involved in enhanced
tumor development of p53-deficient mice might be suppression of NF-κB by p53 [47,60]. In addition
to the suppression of p53 by NF-κB, p53 and NF-κB compete for the limited transcription coactivator
p300 and the closely related cyclic adenosine monophosphate (cAMP) response element-binding
protein-binding protein (CBP), resulting in their mutual inhibition [55–57]. Furthermore, we have
found that p53 directly suppresses transcriptional activity of the NF-κB subunit p65 through inhibition
of p65 binding and p65 activation by IκB kinase (IKK) β [66]. In addition, p53 inhibits NF-κB by
suppressing proteasomal degradation of IκB (an inhibitor of NF-κB) [67]. Considering these findings,
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p53 might function as a restrictor and attenuator of inflammatory reactions via the balance between
p53 and NF-κB.

4. Role of p53 in the Inflammatory Tumor Microenvironment

In addition to the reciprocal inhibitory mechanism between p53 and NF-κB-mediated
inflammation, studies have reported the role of p53 in the inflammatory tumor microenvironment [60,
68]. Cancer-associated mutant p53, whose transcriptional activity is lost, augments NF-κB
transcriptional activity in response to the cytokine TNF-α. Conversely, downregulation of the mutant
p53 sensitizes cancer cells to the apoptotic effects of TNF-α [69]. Mutant p53 promotes inflammatory
responses by repression of secreted interleukin-1 receptor antagonist (sIL-1Ra) [70]. Moreover, p53
mutants enhance TLR3 (Toll-like-receptor 3; a pattern recognition receptor for pathogens)-induced
cytokine and chemokine expression in response to its ligand [71]. The role of mutant p53 has also
been analyzed in the regulation of gene expression [68,72]. It has been recently shown that p53
mutants interact directly with NF-κB, and that TNF-α signaling promotes the enhancer binding and
transcriptional interplay between mutant p53 and NF-κB [73]. These findings suggest that, in the
inflammatory tumor microenvironment, cancer cells that harbor a p53 mutation enhance inflammation
in response to inflammatory cytokines/chemokines and pathogens. Therefore, this positive feedback
activation system in cancer cells and their microenvironment may enhance tumor development using
the chronic inflammation-tissue regeneration system described above.

Senescence induced in oncogene-expressing cells is a p53-dependent tumor-suppressor
mechanism that prevents malignant transformation by suppressing cellular proliferation [5].
Senescence is also characterized by secretion of a set of cytokines and chemokines known as the
senescence-associated secretory phenotype (SASP) by constitutively active NF-κB [74]. However,
NF-κB acts as a master regulator of SASP, and NF-κB suppression cooperates with p53 inactivation to
bypass senescence, suggesting dual roles of NF-κB [74]. In relation to this finding, the ability of NF-κB
under some circumstances to behave as a tumor suppressor has also been discussed [75]. From another
viewpoint, it is possible that acquisition of a SASP phenotype also changes senescent fibroblasts into
proinflammatory cells that promote tumor progression [76]. Moreover, it has been reported that mutant
p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated
cancer [30]. In addition to oncogene-expressing cells, p53 is induced in aging cells through various
mechanisms including the accumulation of oxidative damage triggered by ROS [75]. Therefore, in aging
tissues or tissues that acquire oncogenic DNA changes, such as continuous exposure to mutagens or
infection by oncogenic viruses, p53-induced senescence followed by senescence-induced production
of cytokines/chemokines in the tissue microenvironment might induce chronic inflammation and
enhance the risk of cancer.

5. Metabolic Changes Caused by p53 in the Inflammatory Tumor Microenvironment

The loss of p53 functions changes the source of energy from cellular respiration to glycolysis.
This metabolic shift towards aerobic glycolysis, termed the Warburg effect, has been observed
in cancer cells [10,76]. We previously found that IKKα/β activity, the transcriptional activity
of NF-κB, and glycolysis are enhanced in p53-deficient cells, and that oncogenic Ras-induced
cell transformation and enhanced aerobic glycolysis in p53-deficient cells depend on NF-κB [11].
Moreover, we reported that enhanced glycolysis-induced O-GlcNAcylation of IKKβ in p53-deficient
cells activates NF-κB, which subsequently induces glucose transporter 3 (GLUT3) expression.
This observation suggests that the positive feedback activation from enhanced glucose metabolism
to NF-κB-induced GLUT3 expression is involved in the enhanced energy production of cancer
cells [77]. Moreover, p53 regulates mitochondrial respiration by synthesis of cytochrome c oxidase
2 (SCO2), a cytochrome c oxidase assembly factor, and loss of p53 inhibits oxygen consumption [12].
Therefore, the loss of p53 functions may induce a Warburg effect-type metabolic shift using these
mechanisms. In cancer tissues, the regulation of energy production systems by cellular interactions
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is complex. Lactate from a hypoxic, glycolytic tumor cell population fuels ATP production in
the oxygenated region of a tumor, indicating that lactate is an important metabolite for oxidative
phosphorylation in neighboring oxygenated cancer cells and tissues. Furthermore, this metabolic
symbiosis, the so-called “reverse Warburg effect”, induces aerobic glycolysis of CAFs and provides
cancer cells with metabolites for oxidative phosphorylation [78–80]. In addition, under hypoxic
conditions in the cancer microenvironment, the transcription factor hypoxia inducible factor (HIF)-1
induces GLUT1, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 (PDK-1) that limit pyruvate
utilization for oxidative phosphorylation and enhance aerobic glycolysis [81,82]. Moreover, growth
factors [31] and inflammatory cytokines [32–34] enhance the energy metabolism of cancer cells,
suggesting that cytokines promote metabolic symbiosis with surrounding cancer stromal cells in
combination with suppression of p53 by NF-κB.

Reactive oxygen species are produced as byproducts of mitochondrial respiration, other cellular
elements, exogenous pollutants, pathogens, and radiation. They modulate various cell signaling
pathways that are mediated by transcription factors, including NF-κB, signal transducer and activator
of transcription 3 (STAT3), and HIF-1, which are linked to inflammation, tumor growth, invasion,
and metastasis [83,84]. p53 is induced by oxidative stress initiated by ROS [51], which monitors
and maintains ROS levels to prevent excessive ROS accumulation that might compromise genome
integrity [85]. Indeed, p53 functions as a regulator of antioxidant genes that restrict ROS levels
and prevent endogenous oxidative stress [86,87]. In this context, p53 is activated by NO, a free
radical, produced in the colon tissues of patients with ulcerative colitis, a cancer-prone inflammatory
bowel disease, and activated p53 protects against NO-induced DNA damage [88]. Therefore, in the
inflammatory tumor microenvironment, p53 may be a negative feedback regulator of oxidative stress,
which suppresses oxidative stress-induced tumor promoting events.

6. Maintenance of CSCs in the Tumor Microenvironment and p53

In 1863, Rudolf Virchow, “the father of modern pathology”, noted leucocytes in neoplastic tissues
and proposed a connection between inflammation and cancer. He suggested that the “lymphoreticular
infiltrate” reflected the origin of cancer at sites of chronic inflammation [24]. Crosstalk between cancer
development and inflammatory processes was proved experimentally, and its underlying mechanism
has been analyzed at the molecular level [49,50]. Moreover, recent findings have suggested that,
similar to induced pluripotent stem (iPS) cells, oncogenic genomic mutations under an inflammatory
microenvironment promote cancer development through chromatin remodeling caused by epigenetic
plasticity [89,90]. In relation to this notion, it was stated that “tumors are wounds that do not heal” [91].
The wound-healing process triggered by inflammation is followed by new tissue formation and tissue
remodeling. In the tumor microenvironment, stromal cells in wounds and tumors, including fibroblasts,
endothelial cells, and inflammatory cells, are important regulators of the migration and proliferation of
normal epithelial cells in wounds and cancer cells in tumors [23,25]. In addition, although the effects
on tissue repair and regeneration by multiple activated metabolic pathways are not fully understood,
activation of metabolic pathways including glycolysis has been observed in injured tissues, especially
in infiltrating macrophages [92]. In the inflammatory tumor microenvironment, inflammatory and
stromal cells are considered to constitute niches that regulate stem cell fate by providing signals in
the form of cell-cell contacts and secreted factors [43]. Therefore, it has been suggested that targeting
the tumor microenvironment may useful for chemoprevention of cancer [26,93]. Because genetic
analysis of mammary tumor stromal cells obtained by laser capture microdissection has revealed
a high frequency of mutations in the p53 gene [94], it is also important to consider suppression and
mutation of p53 for such treatment. Moreover, inflammation promotes selection of cells with oncogenic
mutations including p53 mutations [95,96]. Thus, inflammation can select for oncogenic mutations,
and the growing oncogenic clone would promote further inflammation as a feed-forward loop to
enhance tumor development [95,96].
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Studies have shown that p53 inhibits reprogramming of somatic cells to stem cells [97]. iPS cells
produced by enforced expression of genes encoding four transcription factors, c-Myc, Klf4, Sox2,
and Oct3/4, in mouse fibroblasts have the same capabilities as embryonic stem cells, including
self-renewal and differentiation into all tissue types [98]. During the production of iPS cells, inactivation
of p53 markedly increases the efficiency [99–102]. Moreover, p53 deficiency has simplified iPS cells
generation by introducing only two factors, Oct3/4 and Sox2 [103]. In salamanders, a group of
amphibians, p53 activity is critical for limb regeneration [104]. This finding suggests that p53 is critical
for controlling key cell fate decisions throughout regulation of dedifferentiation and redifferentiation
events, and that deregulation of these events by mutation of p53 might result in cancer development.
MSCs are adult stem cells that differentiate into various cell types of mesodermal origin, including
bone, cartilage, fat, muscle and marrow stroma [105]. Furthermore, p53 regulates the proliferation and
differentiation of MSCs [106]. These findings suggest that p53 regulates the differentiation of stem
cells and suppresses dedifferentiation. Therefore, the loss of functional p53 supports dedifferentiation,
maintains the stemness of cells, and induces the generation of CSCs. Moreover, reprogramming
factors Oct3/4, Sox2, Klf4, and c-Myc evoke senescence and reprogramming. Under expressing
these factors, p53 limits in vivo reprogramming, and its inhibitor, Ink4a/Arf, promotes in vivo
reprogramming through the production of IL-6 that creates a permissive tissue microenvironment
for in vivo reprogramming [107]. Therefore, biological conditions linked to senescence, such as tissue
injury and aging, favor in vivo reprogramming.

In the inflammatory tumor microenvironment, various mechanisms suppress the functions of
p53 as described in Sections 3 and 4. Previous studies have reported the role of inflammation in the
maintenance and generation of CSCs [43,108]. For example, the critical role of STAT3 induced by
IL-6 and other inflammatory cytokines has been widely reported for the maintenance of CSCs [109].
IL-8, also known as CXCL8 (C-X-C motif chemokine ligand 8), is a potent neutrophil attractant
and activator produced by monocytes and macrophages in response to inflammation. Interleukin-8
and its receptors, C-X-C motif chemokine receptor (CXCR) 1/CXCR2, induce the maintenance of
CSCs [110,111]. Moreover, developmental signals, such as HH, WNT, and NOTCH, are produced
in the tumor microenvironment and might maintain the stemness of CSCs and regulate their
self-renewal [44,112]. In this context, these signals inhibit p53 [113–115]. Furthermore, CSCs exhibit
an altered energy balance and metabolic status such as enhanced glycolysis compared with non-CSC
counterparts in various tumor types. The distinct metabolic phenotype of CSCs is similar to the
metabolic phenotype of normal stem cells, suggesting the importance of the metabolic shift to support
stemness properties [116,117]. In addition, O-GlcNAcylation regulates the reprogramming of somatic
cells to iPS cells and their pluripotency through modification of the core reprogramming factors
Oct3/4 and Sox2 [118]. O-GlcNAcylation is promoted by the hexosamine biosynthetic pathway
that is enhanced by increased glucose flux in response to increased glycolysis and has important
roles in cancer-relevant processes such as cell signaling, transcription, cell division, metabolism,
and cytoskeletal regulation [119]. Therefore, in the tumor microenvironment, inflammation-induced
metabolic changes might be involved in the generation of CSCs and oncogenesis.

7. Conclusions

Accumulating studies have demonstrated the roles and regulatory mechanisms of p53 in the
inflammatory tumor microenvironment. Based on the evidence described above, the relationship
between p53 and inflammation in cancer can be considered as follows (Figure 1). In response
to inflammation induced by infections, wounds or tissue damage, p53 is activated to suppress
inflammation. Under these conditions, inflammation also restricts p53 functions by several mechanisms
including NF-κB. In addition to p53 regulating this fine-tuning system of inflammation, p53 hampers
energy metabolism. These regulatory systems of p53 in inflammation and metabolism inhibit the
generation and maintenance of CSCs via a p53-mediated barrier system that inhibits reprogramming
of somatic cells to undifferentiated stem cells. Conversely, in the absence of p53 functions, enhanced
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inflammatory reactions cause cells in the local microenvironment to be continuously exposed to
inflammatory cytokines, chemokines, and growth factors, resulting in accumulation of DNA damage
induced by oxidative stress and enhanced energy metabolism. These conditions might cause
reprogramming of cells to facilitate the production of CSCs, tumor development, and metastasis.
In this context, p53 might function as a cellular guardian by reducing the oncogenic effects of
chronic inflammation. Therefore, it is desirable to develop a therapeutic such as TA-MSCs, CAFs,
and inflammatory cells, and the reprogramming system that induces CSCs and that converts
mutant p53 to the wild-type phenotype. It has also been considered that NF-κB activation in
chronic inflammation is involved in cancer development of Barrett’s esophagus as a precursor
of esophageal adenocarcinoma, Helicobacter pylori–induced gastric cancer, and colon cancers [120].
Such a role of NF-κB has also been demonstrated in experimental animal models [50]. Furthermore,
tumor stromal cells in the inflammatory microenvironment are considered to be a target for cancer
therapy [26,93]. Considering these findings and the abovementioned role of p53, it is conceivable
that the reciprocal inhibition and relationship between NF-κB and p53 are important regulatory
mechanisms of oncogenesis in the inflammatory tumor microenvironment.
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Figure 1. Role and regulatory mechanism of p53 in the inflammatory tumor microenvironment. p53 is
regulated by inflammation and inhibits the generation and maintenance of cancer stem cells (CSCs).
In the absence of p53 functions, enhanced inflammatory reactions cause cells to be continuously
exposed to inflammatory cytokines, chemokines, and growth factors, resulting in accumulation of DNA
damage induced by oxidative stress and enhanced energy metabolism. These conditions might cause
reprogramming of the cells to facilitate the production of CSCs, tumor development, and metastasis.

Recently, small molecules that reactivate missense mutant p53 and induce tumor cell death
have been identified by various approaches [20,21]. Indeed, CP-31398 was identified as a compound
that protects wild-type p53 from thermal denaturation and restores wild-type functions of some p53
mutants. Moreover, PRIMA-1 and APR-246 promote refolding of mutant p53 and induce p53 target
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genes. A growing number of small molecules that promote proper folding and/or reactivation of
missense-mutant p53 proteins have been identified. Among these compounds, several have significant
antitumor activities in cultured tumor cells and various mouse tumor models [20,21]. In addition
to the compounds that restore wild-type activity to p53 mutants, the compounds that selectively
promote mutant p53 degradation are expected to be candidate therapeutic agents [15]. Considering the
deficiency in tumor suppressor functions of p53 and the effect of the cancer-promoting activity of
mutant p53 in cancer cells, it is conceivable that p53-targeted therapy could effectively act on cancer
cells themselves and the cancer microenvironment.
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