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In this paper, we consider an array of FitzHugh-Nagumo (FHN) systems with 𝑅 close neighbors. Each element 
(𝑗) connects to another (𝑚) and its 2𝑅 neighbors. Shifting these neighbors produces particular phenomena such 
as chimera and multi-chimera. Step traveling chimera is observed for a time dependent shift. Results show that, 
basing oneself on both shift parameter 𝑚 and close neighbors 𝑅, a full control on the chimera dynamics of the 
network can be ensured.
1. Introduction

A particular and remarkable spatiotemporal pattern in a ring net-

work of coupled phase oscillators was discovered in 2002 by Kuramoto 
and Battogtokh [1]. This pattern was characterized by the coexistence 
of a coherent or synchronized and incoherent or unsynchronized en-

semble of oscillators [1]. That behavior, which was called chimera by 
Abrams and Strogatz in 2004 [2], was later discovered in many systems 
such as electronic circuits [3, 4, 5, 6, 7], mechanical system [8, 9, 10, 
11, 12] chemical systems [13, 14, 15, 16, 17], optical systems [18, 19], 
and animal world [20]. Some particular patterns of that same behav-

ior have been found such as chimera death states [21, 22], spiral wave 
chimera [23], multi-chimera [24, 25, 26, 27, 28, 29, 30] and traveling 
chimera [29, 31, 32, 33]. After its discovery, the chimera state has been 
investigated in several neuronal processes [29, 34, 35, 36, 37, 38, 39]

among which the unihemispheric sleep to explain the sleeping behavior 
of some animals [20, 40] or migratory birds [20].

The dynamics of arrays of coupled nonlinear oscillators has been 
a subject of much attention in recent years [41, 42, 43]. In 2017 the 
authors of [41] found chimera state in an array of coupled oscillators. 
They show that the discrete Lugiato-Lefever equation supports chimera-

like states in an array of coupled-waveguide resonators.
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An important topic in applied complex systems science is the control 
of non-linear systems. Recently, some control techniques, which allow 
to stabilize chimera patterns in non-locally coupled oscillator networks 
have been proposed. Among these techniques, we have the tweeter feed-

back control which can stabilize and fix the position of chimera states 
[44, 45], the spatial pinning control which can induce a chimera state 
where the nodes belonging to one domain, either the coherent or the 
incoherent, are fixed by the control action [46].

Few years ago, some authors such as Changhai Tian et al. [39] or R. 
Gopal et al. [25] considered the nearest neighbors coupling technics to 
generate chimera.

Previously, in 2013 the authors of ref. [47] in their investigation on 
the nearest neighbors coupling technics, defined the rotational coupling 
matrix to model the cross couplings between activator and inhibitor 
variables of FitzHugh-Nagumo oscillators. They found that, depending 
on the coupling strength and range, different multi-chimera states arise 
in a transition from classical chimera states. In their work, each node 𝑗 is 
connected to its 𝑅 nearest neighbors in each direction namely from 𝑗−𝑅

to 𝑗 +𝑅. The network topology is fixed and is not time dependent. Each 
node maintains the same neighbors and the same number of neighbors 
along the time. This can be seen as a great draw back in case of the 
description of the dynamics of a class of networks.
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In fact, human brains are plastic, malleable and able to make new 
pathways. Most of us have very different behaviors and thoughts today 
than we did 20 years ago. This shift is called neuroplasticity [48, 49]. 
It is the capacity of neurons and neural networks in the brain to change 
their connections and behavior in response to new information, sensory 
stimulation, development, damage, or dysfunction [50, 51, 52].

In this manuscript, we investigate the influence of a new integer 
parameter that we named shift parameter 𝑚 on the state of similar os-

cillators used in [29, 47]. Introducing the shift parameter in non-local 
coupled oscillators based network gives possibility to have different net-

work configurations along the time. In fact, by applying the shift, each 
node (𝑗) is not directly connected to its nearest neighbors that is from 
𝑗 −𝑅 to 𝑗 +𝑅, but to the nearest neighbors of its corresponding shifted 
node 𝑗 + 𝑚 namely from 𝑗 + 𝑚 − 𝑅 to 𝑗 + 𝑚 + 𝑅. Then whenever the 
parameter 𝑅 introduces the nonlocal coupling of the network [29, 33, 
34, 39], the parameter 𝑚 induces the slipping of this nonlocal coupling 
which is a new process. We found that, for a fixed shift parameter, inco-

herent regions arise as a function of the values of 𝑚. Thus, the number 
and the mean position of incoherent regions are linked to the parameter 
𝑚 and their widths are function of the number of the considered close 
neighbors. The random variation of 𝑚 from one step to another pro-

duces multi-chimera with a number of incoherent regions for each step, 
depending on 𝑚. By varying step by step the shift parameter 𝑚 in time, 
we are changing the shape of network at each step (the step Δ𝑇 of in-

dex 𝑙 is defined as the time duration of one possible configuration of the 
considered network). Thus step traveling chimera is introduced since a 
particular dynamics remains only for a considered step and changes for 
the next one. With our consideration, we have an almost complete con-

trol on the dynamics of the network since we can manage the width 
and the mean position of incoherent region, and can also impose the 
direction and the speed of the traveling chimera.

The rest of the paper is organized as follows. In Section 2 the net-

work model is presented and how its topology changes at each time step 
is described. In Section 3, several dynamical behaviors are investigated. 
Through our simulations it comes out that due to the shift the network 
can displays chimera, multi chimera, step traveling chimera and so on. 
At the end of this section, the influence of close neighbors number is 
investigated. The last section is devoted to the conclusion.

2. Model description

The model in consideration is given by the following set of equa-

tions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑏
𝑑𝑥𝑗

𝑑𝑡
= 𝑥𝑗 −

𝑥3
𝑗

3 − 𝑦𝑗

+ 𝜎

2𝑅(𝑙)

𝑗+𝑚(𝑙)+𝑅(𝑙)∑
𝑘=𝑗+𝑚(𝑙)−𝑅(𝑙)

[𝑏𝑥𝑥(𝑥𝑘 − 𝑥𝑗 ) + 𝑏𝑥𝑦(𝑦𝑘 − 𝑦𝑗 )]

𝑑𝑦𝑗

𝑑𝑡
= 𝑥𝑗 − 𝑎+ 𝜎

2𝑅(𝑙)

𝑗+𝑚(𝑙)+𝑅(𝑙)∑
𝑘=𝑗+𝑚(𝑙)−𝑅(𝑙)

[𝑏𝑦𝑥(𝑥𝑘 − 𝑥𝑗 ) + 𝑏𝑦𝑦(𝑦𝑘 − 𝑦𝑗 )]

(1)

In this model 𝑥𝑗 and 𝑦𝑗 are the activator and inhibitor variables, 
with 1 ≤ 𝑗 ≤ 𝑀 , 𝑏 is a small parameter characterizing the time scale 
of separation. The system exhibits limit cycle relaxation oscillations for 
proper choice of the excitability threshold 𝑎. The system exhibits either 
oscillatory behavior for |𝑎| < 1 or excitable behavior for |𝑎| > 1. 𝜎 de-

notes the coupling parameter. Parameters 𝑏𝑥𝑥, 𝑏𝑥𝑦, 𝑏𝑦𝑥, 𝑏𝑦𝑦 come from 
the rotational coupling matrix taken as in [5], defined by:

𝐵 =
(

𝑏𝑥𝑥 𝑏𝑥𝑦
𝑏𝑦𝑥 𝑏𝑦𝑦

)
=
(

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙

−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

)
with 𝜙 ∈ [−𝜋,𝜋] (2)

For the numerical simulation, we have considered an isolated chain 
of oscillators. This implies that a signal is null after 𝑀 nodes and thus 
the boundary conditions are (𝑥𝑘 − 𝑥𝑗 ) and (𝑦𝑘 − 𝑦𝑗 ) for 𝑘 < 1 or when 
𝑘 >𝑀 .

The present topology differs from the one in [47] not only by the 
fact that we are dealing with an array but also by the introduction of 
2

Fig. 1. Changing of network topology for 𝑀 = 12 oscillators with 𝑅 = 3. We 
select 𝑗 = 5th oscillator and the network is represented for 𝑚 = 0, for 𝑚 = 3, for 
𝑚 = 4 and for 𝑚 = 5 from up to down respectively. In the last case, 𝑘 is supposed 
to vary from 7 to 13, but connection between 𝑗 = 5 and 𝑗 = 13 does not exist 
since in this example 𝑀 = 12.

the shift parameter 𝑚 (𝑚 = 0, 1, 2, 3, ...𝑀). 𝑅 is the number of connected 
neighbors in each direction, not of the node 𝑗 (𝑗 = 1, 2, 3, ..., 𝑀) but of the 
node 𝑗 +𝑚. 𝑙 (𝑙 = 1, 2, 3, ..., 𝐿) is the index of the step Δ𝑇 , where 𝐿 is the 
total number of topology changes over time. According to this model 
and considering 𝑀 = 12, 𝑅 = 3 and 𝑗 = 5, Fig. 1 presents the change of 
the network topology when the shift parameter is changing as 𝑚 = 0, 
𝑚 = 3, 𝑚 = 4 and 𝑚 = 5. This topology changing shows the variation of 
connections for each value of the parameter 𝑚.

From the model, it comes out that, when 𝑚 ≤ 𝑅, oscillator 𝑗 is con-

nected to 2𝑅 neighbors while it is rather linked to 2𝑅 + 1 for 𝑚 >𝑅.

3. Dynamical behaviors in the network

In this section, the behavior of the network described by Eq. (1)

according to the shift parameter 𝑚 and the connected neighbors 𝑅 is 
investigated. For this investigation, the parameters are fixed at 𝑏 = 0.08, 
𝑎 = 0.985, 𝜙 = 𝜋∕2 − 0.1, 𝜎 = 0.26, 𝑀 = 120 and the coupled systems are 
under the initial conditions 𝑥(𝑗) = 0.5 − 0.01𝑗, 𝑦(𝑗) = 0.047961 − 0.00995𝑗
for the 𝑗th oscillator.

3.1. State for 𝑚 = 0

To better study the influence of the shift parameter 𝑚, it is firstly 
consider a case that there is no shift parameter, namely 𝑚 is equal to 
zero. In this case, each considered oscillator is directly connected to its 
𝑅 neighbors in left and right [47]. The space-time plot of the oscillators 
variables 𝑥𝑗 and their corresponding snapshot are given in Fig. 2. It is 
observed a solitary state in which the position depends on the initial 
conditions. In this case the most part of the nodes are in stationary state 
while only the 117th is unsynchronized to the others.

3.2. Shift implies chimera

For fixed values of the shift parameter (𝑚 ≠ 0), the network is in 
such a way that, each considered oscillator 𝑗 is not directly connected 
in each direction to its 𝑅 nearest neighbors, but to the nearest neighbors 
of its corresponding shifted oscillator 𝑗+𝑚. The changing of the network 
topology from the case 𝑚 = 0 is shown in Fig. 1. The consequence of the 
introduction of the shift is the fact that chimera occurs and changes 
depending on the value of 𝑚 as shown in Fig. 3. By taking 𝑀

𝑛+1 ≤𝑚 ≤ 𝑀

𝑛
, 

we obtain chimera with 𝑛 incoherent domains of width 2𝑘𝑅 + 1 around 
the (𝑀 −𝑘𝑚)th oscillator, with 𝑘 = 1, 2, 3, ..., 𝑛 respectively. Fig. 3 𝑎 and 𝑏
show for 𝑛 = 1 (𝑚 = 95) the presence of one incoherent region depending 
on the close neighbors around the (𝑀 −𝑚)th. Fig. 3 𝑐 and 𝑑 are plotted 
for 𝑛 = 2 implying (𝑚 = 48) and 𝑛 = 3 implying (𝑚 = 36) and present two 
and three new incoherent regions respectively.
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Fig. 2. Dynamics of the nodes for 𝑚 = 0 and 𝑅 = 3. (a) Space-time plot of all nodes variables 𝑥𝑗 . (b) Snapshot of variables 𝑥𝑗 for 105 iterations, a time step of 0.001
and a transient time of 92%.

Fig. 3. Chimera state when introducing a shift parameter. Panels present the space-time plot of the oscillators variables 𝑥𝑗 and their corresponding snapshot 
at the stationary states. (a) For 𝑀

2
≤ 𝑚 = 95 ≤ 𝑀

1
, 𝑅 = 5 it appears one incoherent domain of width 2𝑅 + 1 = 11 around the (𝑀 − 𝑚)th = 25th oscillator. (b) For 

𝑀

2
≤𝑚 = 95 ≤ 𝑀

1
, 𝑅 = 10 it appears around the (𝑀 −𝑚)th = 25th oscillator one incoherent domain of width 2𝑅 +1 = 21. (c) For 𝑀

3
≤𝑚 = 48 ≤ 𝑀

2
, 𝑅 = 5 it appears two 

incoherent domains: the first one of width 2𝑅 + 1 = 11 and the second one of width 4𝑅 + 1 = 21 respectively around the (𝑀 −𝑚)th = 72th and the (𝑀 − 2𝑚)th = 24th

oscillator. (d) For 𝑀
4
≤ 𝑚 = 36 ≤ 𝑀

3
, 𝑅 = 4 it appears three incoherent domains: the first one of width 2𝑅 + 1 = 9, the second one of width 4𝑅 + 1 = 17 and the third 

one of width 6𝑅 + 1 = 25 respectively around the (𝑀 −𝑚)th = 84th, the (𝑀 − 2𝑚)th = 48th and the (𝑀 − 3𝑚)th = 12th oscillator.
Plotting the time histories of the oscillators in each domain in Fig. 4, 
a bursting behavior of the nodes is observed in the new incoherent 
domains (Fig. 4 𝑐) as in [33].

From the results in Figs. 3 𝑎 and 𝑏 where just one major inco-

herent region was present and in Figs. 3 𝑐 and 𝑑 where they were 
respectively two and three major incoherent regions, it is obvious that 
3

one can switch from one type to another, that is from the case of 
one or two incoherent regions to higher number incoherent regions 
by simply changing the value of the shift parameter 𝑚 at a certain 
time as shown in Fig. 5. Figs. 5 𝑎 and 𝑐 present the switch from two 
incoherent regions to one, while Figs. 5 𝑏 and 𝑑 depict the reverse 
way.
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Fig. 4. Time series and phase diagrams of three oscillators (a) 𝑗 = 25, (b) 𝑗 = 50 and (c) 𝑗 = 117 piked out in the incoherent regions (𝑗 = 25, 117) and coherent region. 
The network shows coexistence of chaotic bursting, stable behaviors and chaotic oscillation respectively.

Fig. 5. Change of type of chimera when changing the value of the shift parameter 𝑚 at a certain time for 𝑅 = 5. (a) Space-time plot of the oscillators variables 𝑥𝑗
showing the switch from two to one incoherent regions for the value of 𝑚 changing from 𝑀

2
≤ 𝑚 = 75 ≤ 𝑀

1
to 𝑀

3
≤ 𝑚 = 53 ≤ 𝑀

2
and their corresponding snapshot 

at the stationary states. (b) The space-time plot of the nodes variables 𝑥𝑗 showing the switch from one to two incoherent regions for the value of 𝑚 changing from 
𝑀

3
≤𝑚 = 53 ≤ 𝑀

2
to 𝑀

2
≤𝑚 = 75 ≤ 𝑀

1
and their corresponding snapshot at the stationary states.
3.3. Effects of stochastic shift parameter and range on the chimera states

Here, it is considered that the total time for numerical simulation 
is 𝑇 . 𝑇 is divided by a chosen number 𝐿 which is the total number 
of topologies adopted by the network over time. It is the number of 
changes in network structure during the period 𝑇 . Thus, the duration 
of each configuration which can also be considered as the duration of 
each step is defined as follows:
4

Δ𝑇 = 𝑇

𝐿
. (3)

In this part, during the period 𝑇 , we suppose that each configuration 
or new experience of the network corresponding to the step Δ𝑇 occurs 
randomly by the stochastic variation of 𝑚 or of 𝑅.

The stochastic functions defining evolution of 𝑚 and 𝑅 in each step 
are designed to be integers greater than zero and less than 𝑀 and 𝑀2
respectively. They are given by the following equations:
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Fig. 6. Step by step change of multi-chimera type when changing randomly the value of the shift parameter 𝑚 for 𝑅 = 2 and 𝑚1 = 44. (a) Space-time plot of the 
oscillators variables 𝑥𝑗 for the first simulation. (b) The space-time plot of the nodes variables 𝑥𝑗 for the second simulation.

Fig. 7. Step by step change of multi-chimera type when changing randomly the value of the parameter 𝑅 for 𝑅1 = 6 and 𝑚 = 32. (a) Space-time plot of the oscillators 
variables 𝑥𝑗 for the first simulation. (b) The space-time plot of the nodes variables 𝑥𝑗 for the second simulation.

Fig. 8. Step traveling chimera obtained with 𝑅 = 5 and 𝐿 = 30. (a) Left step traveling obtained by increasing 𝑚(𝑙) with 𝑝 = 1. (b) Right step traveling obtained by 
decreasing 𝑚(𝑙) with 𝑝 = −1. (c) Enlargement of one small zone of panel (a) confirms the step traveling behavior. (d) Time series of three oscillators 𝑗 = 34, 𝑗 = 36, 
𝑗 = 38, exhibiting coherent behavior before and after traveling disorder characterized by the bursting.
𝑚(Δ𝑇 ) = 1 + 𝑟𝑜𝑢𝑛𝑑(𝑚1.𝑟𝑎𝑛𝑑) (4)

𝑅(Δ𝑇 ) = 1 + 𝑟𝑜𝑢𝑛𝑑(𝑅1.𝑟𝑎𝑛𝑑) (5)

Where the function “𝑟𝑎𝑛𝑑” returns random real value between 0
and 1. The expression “𝑚1.𝑟𝑎𝑛𝑑” returns a random value between 
0 and 𝑚1. Since the shift parameter 𝑚 has to be integer, we used 
“𝑟𝑜𝑢𝑛𝑑(𝑚1.𝑟𝑎𝑛𝑑)” which provides the nearest integer from “𝑚1.𝑟𝑎𝑛𝑑”. 
The same analogy is done for “𝑟𝑜𝑢𝑛𝑑(𝑅1.𝑟𝑎𝑛𝑑)”. 𝑚1 is taken to be less 
than 𝑀 and 𝑅1 is taken to be less than 𝑀2 .

Figs. 6 and 7 present multi-chimera behavior for two simulations 
using the same stochastic expressions of 𝑚 and of 𝑅 respectively.

Results from Figs. 6 and 7 are always the same as the one of previous 
subsection namely, by taking 𝑀

𝑛+1 ≤ 𝑚 ≤ 𝑀

𝑛
, we obtain multi-chimera 

with 𝑛 incoherent domains of width 2𝑘𝑅 + 1 around the (𝑀 − 𝑘𝑚)th
oscillator, with 𝑘 = 1, 2, 3, ..., 𝑛 respectively. The different is only due to 
the fact that, in this case, this behavior occurs for each step Δ𝑇 and the 
5

structure of multi-chimera changes from one step to another depending 
on the value taken by 𝑚.

3.4. Step traveling chimera

𝑚 can change progressively by increasing or decreasing step by step. 
Basing on what has been previously obtained, to have only one new 
incoherent region, 𝑚 must be taken between 𝑀

2 and 𝑀 . In what fol-

lows, the shift parameter changes discretely as a function of the step 
Δ𝑇 represented by its index 𝑙 according to the following relation:

𝑚(Δ𝑇 ) =𝑚0 + 𝑝.𝑙 (6)

where 𝑚0 is the initial value of the shift parameter, 𝑝 the slope or the 
speed of incoherent region. The step traveling chimera can be obtained 
by increasing (right direction as in Fig. 8 𝑎 with 𝑝 > 0) or decreasing (left 
direction as in Fig. 8 𝑏 with 𝑝 < 0) step by step the values of 𝑚(Δ𝑇 ) be-
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Fig. 9. Broken step traveling chimera obtained when modifying the slope value and/or the sign of the shift parameter with 𝑚0 = 78 and 𝑅 = 4. (a) For 𝑝 stepping 
from 1 to 0 the step traveling of incoherent subpopulation breaks to become a simple disorder of width 2𝑅 +1 = 9 around the (𝑀 −𝑚)th = 42th. (b) The stepping of 𝑝
from 1 to −1 changes immediately the direction of the step traveling of the incoherent subpopulation. (c) The changing of speed of the step traveling of incoherent 
region is induced by the stepping of 𝑝 firstly from 2 to 1 and secondly from 1 to 2 along the time.

Fig. 10. (a) Propagation step by step of incoherent behavior for 𝑞 = 1. (b) Regression step by step of incoherent behavior for 𝑞 = 1.
tween 𝑀∕2 and 𝑀 . Fig. 8 𝑐 shows the time series of 𝑥𝑗 , 𝑗 = 34, 36, 38
exhibiting coherent behavior before and after the traveling disorder 
characterized by a bursting.

By playing with the slope 𝑝 along the time, it appears that the step 
traveling chimera can be broken and its direction can be switch depend-

ing on slope 𝑝 in terms of value and sign as shown in Fig. 9.

3.5. Effect of number of neighbors

In ref. [47] the author considered a fixed number of neighbors. How-

ever, according to the neuroplasticity, the number of neighbors with 
which a neuron in a brain is coupled changes in time. In our case we 
consider that the variation of the number of neighbors is done step by 
step based on the following formula:

𝑅(Δ𝑇 ) =𝑅0 + 𝑞.𝑙 (7)

where 𝑅0 is the initial value, 𝑞 the slope of the straight line and 𝑙 is the 
index defining the step of variation of 𝑅 (𝑙 = 1, 2, 3, ..., 𝐿). 𝐿 is the to-

tal number of different topologies adopted by the network over time. 
We observe two different behaviors when we fix 𝑚 = 92 and 𝐿 = 30 ac-

cording to the value of 𝑞. While propagation of incoherent behavior is 
developed in Fig. 10 𝑎 by increasing step by step the number of neigh-

bors (𝑞 > 0), regression of incoherent behavior is observed in Fig. 10 𝑏

by decreasing step by step the number of neighbors (𝑞 < 0) by step.
6

4. Conclusion

The main objective of this work was to investigate the dynamic of 
FitzHugh-Nagumo oscillators in an array for which there is a shift of 
close neighbors. We found that the shift implied chimera when its value 
is fixed and can be used to change the nature of the chimera one is 
dealing with by a simple variation of the shift parameter. In addition 
of the occurrence of multi-chimera in Fig. 4 of [47], we are presently 
able to control the widths and positions of incoherent regions through 
the nearest neighbors number 𝑅 and the shift parameter 𝑚. For a time 
depending shift parameter, the network displays step by step multi-

chimera or a step traveling chimera due to the change of the network 
topology at each step. Step traveling chimera can be controlled in di-

rection and/or speed or can be broken as shown in Figs. 8 and 9.
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