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Importance of Thyroid Hormone 
level and Genetic Variations in 
Deiodinases for Patients after 
Acute Myocardial Infarction: A 
Longitudinal Observational Study
Nijole Kazukauskiene1, Daina Skiriute2, Olivija Gustiene3, Julius Burkauskas4 ✉, 
Violeta Zaliunaite5, Narseta Mickuviene6 & Julija Brozaitiene4

This study aimed to examine the influence of thyroid hormone (TH) levels and genetic polymorphisms 
of deiodinases on long-term outcomes after acute myocardial infarction (AMI). In total, 290 patients 
who have experienced AMI were evaluated for demographic, clinical characteristics, risk factors, TH and 
NT-pro-BNP. Polymorphisms of TH related genes were included deiodinase 1 (DIO1) (rs11206244-C/T, 
rs12095080-A/G, rs2235544-A/C), deiodinase 2 (DIO2) (rs225015-G/A, rs225014-T/C) and deiodinase 
3 (DIO3) (rs945006-T/G). Both all-cause and cardiac mortality was considered key outcomes. Cox 
regression model showed that NT-pro-BNP (HR = 2.11; 95% CI = 1.18– 3.78; p = 0.012), the first 
quartile of fT3, and DIO1 gene rs12095080 were independent predictors of cardiac-related mortality 
(HR = 1.74; 95% CI = 1.04–2.91; p = 0.034). The DIO1 gene rs12095080 AG genotype (OR = 3.97; 95% 
CI = 1.45–10.89; p = 0.005) increased the risk for cardiac mortality. Lower fT3 levels and the DIO1 gene 
rs12095080 are both associated with cardiac-related mortality after AMI.

Recent clinical research in cardiovascular disease as well as in coronary artery disease (CAD) has provided evi-
dence that altered thyroid hormone (TH) metabolism, including low total triiodothyronine (T3) syndrome or 
pre-existing subclinical primary hypothyroidism, is an important indicator of adverse short-term and long-term 
outcomes, including mortality1–5. These changes in thyroid homeostasis are known as “euthyroid sick syn-
drome”6,7 or “non-thyroidal illness syndrome” (NTIS)8,9 and are defined by low serum levels of free T3 (fT3), T3 
and high levels of reverse T3 (rT3) followed by normal or low levels of thyroxine (T4) and thyroid-stimulating 
hormone (TSH). Low T3 syndrome is observed in about one third of patients following acute cardiovascular 
events and has been linked to the severity of the disease and its adverse prognosis10. This syndrome has been 
established in patients with heart failure (HF)11–14, myocardial infarction (MI)2,15–18, and has been linked to the 
cardiac remodelling process19–21 and poor prognosis1,3,4,13,22,23. Studies suggest that variations of TH within clin-
ically normal ranges, such as isolated reduction in fT3 level or higher level of free T4 (fT4), could constitute a 
model of abnormal TH metabolism. These variations could act as a risk factor for CAD, in a similar fashion to 
overt or subclinical hypothyroidism, thereby influencing the occurrence as well as severity of coronary athero-
sclerosis and its related outcomes2,24–32.
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Recent studies acknowledge the influence of common genetic variations in TH pathway genes on 
thyroid function33–36. The production of TH, in particular the prohormone T4, is controlled by the 
hypothalamic-pituitary-thyroid axis, whereas its biological activity is primarily regulated by iodothyronine 
deiodinases enzymes. Maintenance of euthyroidism at a serum level and peripherally is determined by deiodinase 
type 1 (DIO1), deiodinase type 2 (DIO2) and deiodinase type 3 (DIO3)37–41. Both DIO1 and DIO2 are predom-
inantly activating enzymes and convert T4 to T3 and rT3 to diiodothyronine (T2), while DIO3 inactivates TH 
and converts T3 to T2 and T4 to rT320,37,38,42,43. During recent years, it has been demonstrated that certain genetic 
polymorphisms in gene coding for deiodinases could alter gene function and are associated with variations in 
TH levels, such as fT3, fT4, T4 and rT3 in hypothyroid patients, healthy individuals34,42,44,45 and CAD patients46.

To our knowledge, there are no reports studying the association between circulating TH ranges and genetic 
variability of genes related to TH axis on the long-term mortality in CAD patients after acute MI (AMI). Our 
study aimed to examine the prognostic importance of TH level and genetic polymorphisms DIO1, DIO2, and 
DIO3 on long-term outcomes in patients with CAD after AMI.

Methods
Study population.  In total, 330 AMI patients with ST-segment elevation and non ST-segment elevation in 
the cardiac Intensive Care Unit (ICU) at the Lithuanian University of Health Sciences Hospital were invited to 
participate in the study. Standard treatment had been given according to the existing guidelines for AMI manage-
ment47–50. Inclusion criteria covered ages over 18 years and an AMI diagnosis. Patients were excluded if they were 
taking thyroid medications or amiodarone, had increased levels of TSH ( > 4.8 mIU/l), indicating hypothyroid-
ism, reduced TSH ( < 0.5 mIU/l), indicating hyperthyroidism, or if they had serious systemic disease (e.g. cancer, 
autoimmune disease, or chronic renal disease). All eligible participants provided written informed consent. The 
final study population was comprised of 290 patients with AMI (72% men and 28% women; mean age, 62 ± 11 
years).

Study design.  Eligible participants were evaluated for socio-demographic factors and clinical characteristics 
such as history and type of AMI, HF, left ventricular ejection fraction (LVEF), Killip class, and current medica-
tion use. Participants were also evaluated for known CAD risk factors, including diabetes mellitus (DM), arterial 
hypertension (AH), and body mass index (BMI). All patients underwent coronary angiography. The majority 
of patients were after primary percutaneous coronary intervention (PCI). Troponin I, lipid profiles, N-terminal 
pro-B-type natriuretic peptide (NT-pro-BNP), TH concentrations, and DIO1, DIO2, DIO3 genetic polymor-
phisms were evaluated from a blood samples drawn before intervention procedures.

Follow-up data on mortality (time and cause of death) was used in the analysis as a primary outcome of 
interest. During a period of two-year follow-up, outcome data from 283 of the 290 participants was collected. The 
data was obtained from death certificates, post-mortem reports, and medical records. When data could not be 
obtained from these sources, the study team attempted to conduct telephone interviews with participant family 
members to obtain self-report mortality data or contacted the Causes of Death Register at the Institute of Hygiene 
of the Lithuanian Ministry of Health. Cardiac and all-cause mortality were ascertained. Documentation of death 
due to cardiac arrest or arrhythmias, death due to MI or progressive HF were regarded as cardiac-related mortal-
ity. The prospective study protocol was approved by The Regional Biomedical Research Ethics Committee and is 
described elsewhere51.

Evaluation of TH and NT-pro-BNP.  Blood samples were taken within 24 hours of patients’ admission to 
the ICU. The blood was centrifuged and the serum was frozen at –80° C. Serum samples were analysed in a single 
batch after completion of this study. Serum levels of T3, fT3, fT4, rT3 and TSH were analysed using an automated 
enzyme immunoassay analyser (Advia Centaur XP; Siemens Osakeyhtio). The normal range for total T3 was 
0.89–2.44 nmol/L, fT3 3.50–6.5 pmol/L, fT4 11.50–22.70 pmol/L, rT3 24.50–269.30 pg/mL and TSH 0.55–4.78 
mIU/L. The serum NT-pro-BNP levels were assessed using two-side chemiluminescent immunometric assay with 
Immulite 2000 immunoassay System; Siemens, Germany. All subjects included in the study were also evaluated 
for troponin I, lipid concentrations, serum glucose levels and underwent a common blood test.

Genotyping.  Six SNPs were evaluated for thyroid axes related genes including DIO1 (rs11206244-C/T, 
rs12095080-A/G, rs2235544-A/C); DIO2 (rs225014-T/C, rs225015-G/A) DIO3 (rs945006-T/G). SNPs were 
selected if they were associated with serum TH levels in individual gene studies or based on data from Genome 
wide association studies45,52,53. We used minor allele frequency (MAF) of at least 10%. SNPs sequence in the 
studied genes - in DIO1 gene locus rs11206244 (c.*29 C > T), rs12095080 (c.*1058 A > G), rs2235544 (c.682-
34 C > A), DIO2 gene locus rs225014 (p.Thr92Ala), rs225015 (c.*1453 C > T), DIO3 gene locus rs945006 
(c.*529 T > G). Information for genotyped SNPs is represented in Table 1. Genomic DNA was extracted from 
peripheral blood samples by the salting out procedure as described elsewhere54. The genotyping was completed 
using TaqMan SNP genotyping assays . (Applied Biosystems, Foster City, CA, USA): C_15952583_10 (rs2235544), 
C_31601225_10 (rs12095080), C_334342_20 (rs11206244), C_568127_10 (rs225015), C_15819951_10 
(rs225014), C_7565113_10 (rs945006), and ABI 7900HT real-time PCR Thermocycler (Applied Biosystems, 
Foster City, CA, USA). Samples were measured in duplicates and nuclease-free water was used (AG00021000, 
2114 BATCH 15595401, Sharlau, Spain) as no-template control.

Statistical analysis.  Data is expressed as mean ± standard deviation (SD) for variables with Gaussian dis-
tribution and as median (25th–75th percentile) for variables without normal distribution. Normality of contin-
uous data was assessed using the Kolmogorov-Smirnov test, analysis of the Q-Q plots and distribution in the 
histograms. Normal distribution was assessed and if necessary variables were natural-log transformed (ln). We 
specifically used a log transformation for NT-pro-BNP, TSH, and rT3 parameters.
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Each SNP was tested for Hardy-Weinberg equilibrium (HWE) http://ihg.gsf.de/cgi-bin/hw/hwa1.pl 55, in case 
and contro l populations, using the Chi-square test or the Fisher’s exact test before inclusion in the association sta-
tistics (p > 0.01 threshold). Baseline clinical characteristics, TH levels, fT3 ranges (1st quartile versus ≥2nd quartile 
of fT3), NT-pro-BNP, and DIO1, DIO2, DIO3 genotypes were compared across the cardiac-related death and 
survivors groups. Student’s t, Mann-Whitney’s U, Chi-square or Fisher’s exact tests were used to compare group 
scores as appropriate. Correlations between fT3, NT-pro-BNP were assessed using Pearson product-moment 
analysis (Pearson r). A p value <0.05 (two-tailed) was regarded as significant.

Univariate and multivariable Cox regression analyses were used to assess hazard ratio [HR] for all-cause 
and cardiac mortality. We made stringent attempts to control for the potentially confounding effect of (ln) 
NT-pro-BNP and other relevant sociodemographic and clinical factors such as age, Killip class, history of MI, 
history of hypertension, history of diabetes mellitus, history of chronic pulmonary disease and ST-elevation myo-
cardial infarction. Kaplan-Meier survival curves for cardiac-related death and a log-rank (Mantel-Cox) test were 
employed for the analysis of survival curves. Statistical analyses was performed using the Statistical Package for 
the Social Science (SPSS23) for Windows.

Results
Baseline clinical characteristics, biomarkers levels and outcomes.  Baseline demographics, clinical 
characteristics, CAD risk factors, concomitant disease, current treatment and concentration of biomarkers of 290 
AMI patients are shown in Table 2. Two hundred and twenty four patients (77%) had AMI with ST-elevation, 
66 (23%) with non ST-elevation, 236 (82%) had AH, 55 (19%) with DM and nine patients (3%) had chronic 
pulmonary disease. The majority of patients were Killip class II (74%), Killip class III (5%), and Killip class IV 
(3%). The mean of LVEF was 42.6 ± 9.8%. Eighty one percent of patients were taking beta-blockers, 92% – platelet 
antiaggregants, 89% – angiotensin-converting-enzyme inhibitors, and 10% – diuretics, and other medications.

During the two-year follow-up period there were a total of 14 cardiac-related and 21 all-cause deaths. Patients 
in the cardiac-related death group were older, with more frequent cases of previous MI, a higher Killip class, 
a higher level of NT-pro-BNP, and more frequent cases of first quartile fT3 levels, as compared to survivors 
(Table 3). As well, there was a trend between first quartile of fT3 and higher cardiac-related mortality rates during 
first 30-days after a cardiac event (data not shown): patients with first quartile of fT3 consisted of older women 
with more severe HF (Killip class>I), followed by more cases of DM, higher NT-pro-BNP and troponin I lev-
els, lower T3, reduced hemoglobin and hematocrit levels. Negative associations between fT3 and NT-pro-BNP 
(r = −0.30, p < 0.001) were established.

Association between deiodinases gene polymorphisms and cardiac mortality.  Genotype dis-
tributions of all SNPs were found to be in HWE (p = 0.203 for rs11206244-C/T, p = 0.457 for rs12095080-A/G, 
p = 0.105 for rs2235544-A/C, p = 0.492 for rs225014-T/C, p = 0.677 for rs225015-G/A, p = 0.226 for 
rs945006-T/G). A relationship between gene polymorphisms and mortality was made in both cardiac mortality 
and survivor patient groups. Associations between DIO1 (rs11206244-C/T, rs12095080-A/G and rs2235544-A/C), 
DIO2 (rs225014-T/C, rs225015-G/A), and DIO3 (rs945006-T/G) gene variants and cardiac mortality showed that 
in a case of assessed DIO2, DIO3 polymorphisms, none of the SNPs were significantly associated with cardiac 
mortality in this AMI cohort.

However, the DIO1 gene rs12095080 heterozygous AG genotype (OR = 3.97; 95% CI = 1.45–10.89; p = 0.005) 
showed a significant increased risk for cardiac-related mortality, while the major wild type homozygous AA gen-
otype (OR = 0.26; 95% CI = 0.09–0.71; p = 0.006) was linked to increased survival. Allele analysis revealed that 
mutant G allele was significantly associated (OR = 3.31; 95% CI = 1.27–8.61; p = 0.036) with the risk of two year 
cardiac mortality (Table 4).

The prognostic importance of clinical variables, thyroid hormones, NT-pro-BNP and deiodinase 
genotypes on the mortality.  Univariate regression analysis indicated that age, Killip class, NT-pro-BNP 
and history of chronic pulmonary disease were associated with all-cause mortality. The multiple Cox regression 
model showed no significant predictors of all-cause mortality (Table 5).

Univariate regression analysis indicated that age, Killip class, previous MI, NT-pro-BNP, history of chronic 
pulmonary disease as well as first quartile versus ≥ second quartile of fT3 and DIO1 gene rs12095080 were 

Gene/chromosome location Polymorphism ID Function Variation MAF‡ MAF

DIO1/1p32.3 rs11206244 3’UTR c.*29 C > T T = 0.313 T = 0.348

rs12095080 3’UTR c.*1058 A > G G = 0.093 G = 0.081

rs2235544 int3 c.682-34 C > A A = 0.460 A = 0.481

DIO2/14q31.1 rs225014 missense, 3’UTR p.Thr92Ala C = 0.458 C = 0.279

rs225015 3’UTR c.*1453 C > T A = 0.443 A = 0.260

DIO3/14q32.31 rs945006 3’UTR c.*529 T > G G = 0.189 G = 0.066

Table 1.  General information about genotyped loci for DIO1, DIO2 and DIO3 polymorphisms. DIO – 
deiodinases, MAF‡ – reported minor allele frequencies in  single nucleotide polymorphisms databases from 
1000 Genome Phase III combined population (http://www.ncbi.nlm.nih.gov/snp), MAF – minor allele 
frequencies in the present cohort, UTR – untranslated region; int – intron.
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all significantly associated with cardiac-related mortality. Furthermore, after adjustment for clinical and demo-
graphic variables, the multiple Cox regression model showed that NT-pro-BNP (HR = 2.11; 95% CI = 1.18–3.78; 
p = 0.012) and first quartile of fT3, and DIO1 gene rs12095080 are significant risk factors for cardiac-related 
mortality (HR = 1.74; 95% CI = 1.04–2.91; p = 0.034) after AMI (Table 5).

Kaplan-Meier two-year survival curves stratified on fT3 levels, according quartiles, provided significant prog-
nostic information. The highest risk for cardiac mortality was among AMI patients within the first quartile of fT3, 
compared to patients with all other quartiles (HR = 3.57; 95% CI = 1.20–10.62; p = 0.022) (Fig. 1). Moreover, 
Kaplan-Meier analyses showed decreased length of survival in a group of DIO1 gene rs12095080 AG genotype 
carriers (HR = 4.09; 95% CI = 1.42–11.78; p = 0.009) (Fig. 2). Patients carrying rs12095080 heterozygous gen-
otype were found to experience death 2.5 months earlier (19.7 ± 1.0 months vs. 22.2 ± 0.23 months; log-rank 
χ2 = 7.99, p = 0.005), as compared to AA genotype carriers (Fig. 2).

Discussion
In this research study we aimed to explore possible associations between serum levels of TH, genetic polymor-
phisms of DIO, and NT-pro-BNP with long-term outcomes in AMI patients.

It was found that lower fT3 levels, DIO1 gene rs12095080, as well as higher NT-pro-BNP on admission are all 
associated with cardiac-related mortality after AMI. The hypothesis proposing that

Characteristics N = 290

Age (years), mean ± SD 62.0 ± 11.4

Body mass index, mean ± SD 29.9 ± 17.8

Systolic pressure (mmHg), mean ± SD 141.8 ± 25.9

Diastolic pressure (mmHg), mean ± SD 82.5 ± 13.5

Gender, n (%):

Men 209(72.1)

Women 81(27.9)

Acute myocardial infarction type, n (%):

With ST-segment elevation 224(77.2)

Non ST-segment elevation 66(22.8)

Myocardial infarction number, n (%):

First 246(84.8)

Previous 44(15.2)

Killip class, n (%):

I 53(18.3)

II 214(73.8)

III 15(5.2)

IV 8(2.7)

History of hypertension, n (%) 236(81.6)

History of diabetes mellitus, n (%) 55(19.0)

History of chronic pulmonary disease, n (%) 9(3.1)

Coronary Angioplasty and Stenting, n (%) 240(82.8)

Medications

Nitrate, n (%) 238(82.1)

Beta-blockers, n (%) 235(81.0)

ACE inhibitors, n (%) 258(89.0)

Diuretics, n (%) 29(10.0)

Antiplatelet, n (%) 267(92.1)

Statins, n (%) 264(91.0)

Insulin therapy, n (%) 22(7.6)

N-terminal pro-B-Type natriuretic peptide  
(pg/mL), median (interquartile ranges) 1330.0(489.0–3461.0)

Thyroid-stimulating hormone (mIU/l), median 
(interquartile ranges) 1.00(0.6–1.5)

Free Thyroxine (pmol/l), mean ± SD 16.8 ± 2.7

Free Triiodothyronine (pmol/mL), mean ± SD 4.4 ± 0.7

Reverse Triiodothyronine (pg/mL), median 
(interquartile ranges) 646.9(489.5–1473.5)

Total Triiodthyronine (nmol/l), mean ± SD 1.6 ± 0.3

Table 2.  Sociodemographic, clinical characteristics and biomarkers of patients with acute myocardial 
infarction. Values are presented as the mean ± SD, median (interquartile range), or percentage.

https://doi.org/10.1038/s41598-020-66006-9
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variations in TH concentrations within the statistically normal range may influence disease outcomes is not 
entirely new26,56,57. Nevertheless, a low T3 syndrome does not only reflect AMI status, but it has also been docu-
mented in a number of other disorders58–61.

Independent of time-course, type and severity, a low T3 state may serve as an adaptive mechanism which 
reduces metabolic demands by reducing the catabolic processes of the disease8. A low T3 syndrome was a fre-
quent finding in patients with cardiac pathology and without a history of thyroid dysfunction, particularly among 
patients with HF, AMI, and those following cardiac surgery15–17,62–65. However, the exact point of occurrence of 
THs alterations, after an ACS, is not clearly understood2,66–68. Timing of TH alterations is still debated topic in 
the scientific literature. However, most of the studies agree that the first five days of ACS are the most crucial for 
changes in T3 and rT3. Iltumur et al.69 observed that patients with complicated MI (caused by ischemia) have 
a lower total and fT3. Besides, patients with prolonged cardiac arrest showed lower total T3 and fT3 levels than 
those with shorter one. Furthermore, during the AMI stage, drugs like nonsteroidal anti-inflammatory agents, 
aspirin, heparin and furosemide (>80 mg/day) might have an effect of displacing T4 and T3 from TH binding 
sites on TH binding proteins, which modify hormone delivery to the location of its use70,71.

Our study findings correspond to the findings of Zhang et al.17 exemplifying that patients with AMI and with 
first quartile of fT3 levels, are more likely to be older women, with severe HF (Killip class>I), followed by DM. 
Our study AMI patients also had a higher level of troponin I, lower T3, as well as lower hemoglobin and hema-
tocrit levels. The low T3 pattern pathophysiological role is not well understood, although high mortality among 
patients with low T3 levels is found in numerous studies1,12,17,37,63. Conversely, other studies have not discovered 
an independent prognostic role for low T3 levels in cardiovascular patients72–75. Our study revealed a decreased 
length of survival in AMI patients with first quartile of fT3, confirming previous findings. Additionally, we esti-
mate that fT3 levels within the normal concentration ranges was probably due to omitted analysis of TH during 
the later post-AMI period when greater fT3 downregulations could be observed2,16,18,66–68,76.

Characteristics

Cardiac death Survived

p-valuen=14 n=269

Age (years), mean ± SD 69.6 ± 8.4 61.3 ± 11.3 0.003

Body mass index, mean ± SD 30.7 ± 4.2 29.9 ± 18.3 0.603

Gender, n (%): 0.548

Men 9(64.3) 194(72.1)

Women 5(35.7) 75(27.9)

Myocardial infarction classification, n (%): 0.205

ST-elevation myocardial infarction 9(64.3) 211(78.4)

Non-ST elevation myocardial infarction 5(35.7) 58(21.6)

Myocardial infarction number, n (%):

First 9(64.3) 230(85.5) 0.049

Previous 5(35.7) 39(14.5)

Killip class, n (%): 0.004

I 1(7.1) 51(19.0)

II 8(57.1) 202(75.1)

III 4(28.6) 11(4.1)

IV 1(7.1) 5(1.9)

Hystory of Hypertension, n (%) 13(92.9) 217(80.7) 0.480

History of Diabetes mellitus, n (%) 5(35.7) 48(17.8) 0.149

History of Previous stroke, n (%) 2(14.3) 11(4.1) 0.130

History of Chronic renal disease, n (%) 1(7.1) 11(4.1) 0.463

History of Chronic pulmonary disease, n (%) 2(14.3) 6(2.2) 0.054

N-terminal pro-B-Type natriuretic peptide (pg/mL), median 
(interquartile ranges) 5104.0(1648.5–13863.0) 1238.0(475.0–3191.0) <0.001

Thyroid-stimulating hormone (mIU/l), median (interquartile 
ranges) 1.1(0.5–2.4) 1.0(0.6–1.5) 0.773

Free Thyroxine (pmol/l), mean ± SD 17.4 ± 3.5 16.8 ± 2.6 0.579

Free Triiodothyronine (pmol/mL), mean ± SD 4.1 ± 0.8 4.4 ± 0.7 0.195

1st quartile of Free Triiodothyronine versus ≥2nd quartile of 
Free Triiodothyronine, n (%): 0.021

1st quartile of Free triiodothyronine 7(58.3) 63(23.4)

≥2nd quartile of Free triiodothyronine 6(46.2) 206(76.6)

Reverse Triiodothyronine (pg/mL), median (interquartile 
ranges) 941.8(329.5–1858.7) 635.6(491.5–1451.7) 0.849

Total Triiodthyronine (nmol/l), mean ± SD 1.6 ± 0.4 1.6 ± 0.3 0.855

Table 3.  Clinical characteristics of patients, who experienced cardiac death or survived due to MI. Values are 
presented as the mean ± SD, median (interquartile range), or percentage. p-values are presented for Student’s t 
test, Mann-Whitney’s U test, the Chi-square test or Fisher’s exact test as appropriate.
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The present study lends support to the theory advanced by other research teams that fT3 represents the biolog-
ically active form of TH, so an isolated reduction in its level could constitute a model of abnormal TH metabolism 
acting as a risk factor for CAD3,27–29. Further, subclinical hypothyroidism, characterized by normal serum con-
centrations of fT4 and elevated TSH showed as a predictor of atherosclerosis and MI risk in elderly women3,27,77,78. 
It is suggested that even within the clinically normal range variations of TH indicate abnormal TH metabolism 
associated with coronary disease risk and outcomes24,27–30,79. However, Ertas et al.28 showed that within the nor-
mal range fT3 levels were inversely associated with CAD severity. It was also found that lower fT3 concentrations 
independently predicted the severity of CAD29. Mayer et al., showed that even minor changes of fT4 may relate 
with severity of HF30,31. fT4 serum concentration levels association with coronary disease severity was also exam-
ined in Jung et al.’s study26. When compared with survivors patients that died within seven days after AMI had 
a higher fT4 level, thus it is possible to make an assumption that higher levels of fT4 might be associated with 
increased survival rate2,25. Our present and previous studies and those of others, indicate association between 
fT3 or low-T3 syndrome with elevated NT-pro-BNP levels. This is a traditional predictor of poor prognoses in 
patients with AMI, indicating that a lower fT3 level would be a predictor of a poor prognosis in CAD and AMI 
patients17,23,80,81. The current study also presented a negative association between fT3, NT-pro-BNP levels and 
CAD outcomes which was confirmed by others authors80–83.

Gene SNPs

Cardiac 
death Survived

χ2 OR 95% CI p-valuen=14 n=269

DIO1

rs11206244 0.437 0.803

CC 7(50.0%) 111(41.4%) 0.403 1.390 0.501–3.857 0.526

CT 6(42.9%) 130(48.5%) 0.170 0.805 0.287–2.261 0.680

TT 1(7.1%) 27(10.1%) 0.128 0.698 0.095–5.136 1.000

C allele 0.71 0.66 0.39 1.307 0.565–3.024 0.531

T allele 0.29 0.34 0.39 0.756 0.331–1.771 0.531

rs12095080 8.027 0.065

AA 8(57.1%) 229(85.1%) 7.657 0.259 0.094–0.711 0.006

AG 6(42.9%) 39(14.5%) 8.003 3.967 1.446–10.885 0.005

GG 0 1(0.4%) 0.052 — — 1.000

A allele 0.79 0.92 6.66 0.302 0.116–0.788 0.036

G allele 0.21 0.08 6.66 3.306 1.269–8.610 0.036

rs2235544 3.162 0.226

AA 1(7.1%) 66(24.7%) 2.263 0.246 0.003–1.844 0.200

AC 8(57.1%) 146(54.7%) 0.033 1.100 0.392–3.086 0.857

CC 5(35.7%) 55(20.6%) 1.810 2.046 0.712–5.879 0.179

A allele 0.36 0.52 2.85 0.512 0.232–1.129 0.092

C allele 0.64 0.48 2.85 1.955 0.886–4.313 0.092

DIO2

rs225014 2.899 0.248

TT 10(71.4%) 134(49.8%) 2.488 2.413 0.775–7.514 0.170

TC 4(28.6%) 115(42.8%) 1.098 0.551 0.177–1.716 0.408

CC 0 20(7.4%) 1.120 — — 0.609

T allele 0.86 0.71 2.78 2.428 0.829–7.113 0.095

C allele 0.14 0.29 2.78 0.412 0.141–1.206 0.095

rs225015 2.209 0.312

GG 10(71.4%) 143(53.2%) 1.788 2.124 0.682–6.613 0.181

GA 4(28.6%) 108(40.1%) 0.746 0.611 0.196–1.900 0.577

AA 0 18(6.7%) 1.000 — — 0.610

G allele 0.86 0.73 2.15 2.193 0.748–6.429 0.143

A allele 0.14 0.27 2.15 0.456 0.156–1.337 0.143

DIO3

rs945006 0.009 1.000

TT 12(85.7%) 233(86.6%) 0.009 0.931 0.217–3.997 0.923

TG 2(14.3%) 36(13.4%) 0.009 1.075 0.250–4.615 1.000

GG 0 0 — — — —

T allele 0.93 0.93 0.01 0.932 0.213–4.085 0.812

G allele 0.07 0.07 0.01 1.073 0.245–4.700 0.812

Table 4.  Association between deiodinases genotype and two year cardiac-related mortality. DIO – deiodinases, 
SNP – single nucleotide polymorphism. Values are presented as number (percentage). p-values are presented 
for Hardy-Weinberg equilibrium (HWE) test and the Chi-square test or Fisher’s exact test as appropriate. 
Bold values: p-value <0.05 was regarded as significant. Source: HWE: www.had2know.com/academics/hardy-
weinberg-equilibrium-calculator.
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There are several well-known TH-pathway genes such as DIO, TSH receptor (THR), and TH transporters 
(SLCO, MCT), which have been associated with TH levels84. Variants in both DIO1 and DIO2 genes were recently 
reported to alter TH levels in healthy individuals34,45,85,86. TH metabolism roles are determined by three iodothy-
ronine deiodinases DIO1, DIO2 and DIO3 encoded by a separate gene37,38,40,87. The DIO1, which is responsible for 
converting T4 into T3, and contributes to the local hypothyroid state in the failing heart4,12,37. It was shown, exper-
imentally, that alterations in DIO1 and DIO2 promote cardiac activity of DIO3, converting T4 and T3 to inactive 
reverse T3 and diiodothyronine (T2) in rats following MI88. Altered thyroid homeostasis in patients with cardio-
vascular disorders could modify cardiac gene expression and contribute to impaired cardiac function89,90. A can-
didate gene study revealed rs2235544 in DIO1 gene was associated with higher fT3 and lower fT4 and rT3 levels 
in both patients receiving TH replacement therapy and in a large population of healthy individuals. Rare C allele 
was associated with improved DIO1 function44,52. Several studies identified rs11206244 in DIO1, which was also 
associated with fT4, rT3 and fT3 concentrations34,91. Numerous studies disclosed an association between DIO1, 
DIO2, DIO3 polymorphisms and fT3 and other TH levels33,34,42,92. Our data of the same cohort also endorsed that 
DIO1, DIO2 gene polymorphisms are mainly associated with T3, fT4, fT3/fT4, (ln)rT3 levels, while organic anion 
transporter polypeptide 1C1 rs1515777-AG minor allele homozygous genotype was associated with a decrease in 
circulating fT3, fT3/fT4 in CAD patients after AMI46.

Genetic variations in deiodinases may affect multiple clinical endpoints36,37,42,93. It was shown that the develop-
ment of CAD is the result of complex interactions between numerous environmental factors and genetic variants 

Variable

Univariate Multivariable

HR (95% CI) p-value HR (95% CI) p- value

All-cause mortality

Age 1.09(1.04–1.13) <0.001 1.04(0.99–1.10) 0.097

Killip class 2.90(1.72–4.90) <0.001 1.74(0.79–3.82) 0.167

Previous myocardial infarction 1.79(0.65–4.88) 0.258 0.92(0.28–2.99) 0.886

(ln) N-terminal pro-B-Type natriuretic peptide 1.92(1.35–2.72) <0.001 1.45(0.93–2.26) 0.104

History of hypertension 2.25(0.52–9.67) 0.275 1.18(0.26–5.42) 0.837

History of diabetes mellitus 2.24(0.90–5.55) 0.082 1.48(0.50–4.41) 0.480

History of chronic pulmonary disease 5.89(1.73–50.01) 0.005 2.57(0.55–12.06) 0.233

ST-elevation myocardial infarction 2.12(0.88–5.10) 0.096 1.81(0.69–4.79) 0.230

Free Thyroxine 1.00(0.85–1.18) 0.987 0.88(0.75–1.02) 0.096

Free Triiodothyronine 0.55(0.26–1.18) 0.124 0.69(0.34–1.41) 0.691

1st quartile of Free Triiodothyronine versus ≥2nd quartile of 
Free Triiodothyronine 2.07(0.85–5.07) 0.111 1.57(0.58–4.26) 0.371

DIO1rs12095080 0.45(0.17–1.16) 0.096 0.52(0.19–1.46) 0.214

rs12095080 AG 2.23(0.87–5.75) 0.096 1.94(0.69–5.47) 0.211

rs12095080 AA 0.45(0.17–1.16) 0.096 0.52(0.18–1.46) 0.212

1st quartile of Free Triiodothyronine versus ≥2nd quartile of 
Free Triiodothyronine & rs12095080 1.66(1.09–2.51) 0.018 1.41(0.90–2.20) 0.131

Cardiac-related mortality

Age 1.07(1.02–1.13) 0.008 1.01(0.95–1.08) 0.668

Killip class 2.94(1.53–5.67) 0.001 1.79(0.71–4.48) 0.217

Previous myocardial infarction 3.06(1.02–9.14) 0.045 1.43(0.40–5.17) 0.582

(ln) N-terminal pro-B-Type natriuretic peptide 2.37(1.50–3.74) <0.001 2.11(1.18–3.78) 0.012

History of hypertension 3.09(0.40–23.61) 0.277 1.47(0.18–12.20) 0.722

History of diabetes mellitus 2.50(0.84–7.46) 0.101 2.11(0.59–7.58) 0.252

History of chronic pulmonary disease 6.39(1.43–28.58) 0.015 3.61(0.61–21.30) 0.157

ST-elevation myocardial infarction 1.97(0.66–5.87) 0.226 2.27(0.65–7.95) 0.199

Free Thyroxine 1.08(0.89–1.29) 0.446 1.01(0.95–1.08) 0.652

Free Triiodothyronine 0.43(0.16–1.14) 0.089 0.82(0.28–2.36) 0.547

1st quartile of Free Triiodothyronine versus ≥2nd quartile of 
Free Triiodothyronine 3.57(1.20–10.62) 0.022 2.30(0.68–7.73) 0.180

DIO1rs12095080 0.25(0.09–0.71) 0.009 0.32(0.10–1.09) 0.069

rs12095080 AG 4.09(1.42–11.78) 0.009 3.14(0.92–10.72) 0.069

rs12095080 AA 0.25(0.09–0.71) 0.009 0.32(0.09–1.09) 0.069

1st quartile of Free Triiodothyronine versus ≥2nd quartile of 
Free Triiodothyronine & rs12095080 2.40(1.48–3.92) <0.001 1.74(1.04–2.91) 0.034

Table 5.  Cox regression analysis for factors associated with all-cause and cardiac-related mortality. aMultiple 
Cox regression analyses adjusted for age, Killip class, previous myocardial infarction, (ln) N-terminal pro-B-
Type natriuretic peptide, history of hypertension, history of diabetes mellitus, history of chronic pulmonary 
disease, ST-elevation myocardial infarction.
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at many loci94,95. In our previous study we found that DIO1 rs12095080 was associated with AH, while DIO2 
rs225015 was associated with DM, and SNP rs974453-genotypes was associated with STEMI within the OATP1C1 
gene46.

Lee et al. found that cardiovascular mortality was higher in subjects with the rs4977574 GG genotype than in 
those with other genotypes96. The association between four SNPs on chromosome 9p21, CAD, and MI has been 
replicated several times in multiple populations97–100 In patients with MI with ST-segment elevation Szpakowicz 
et al. revealed association between the rs12526453 of the phosphatase and actin regulator 1 (PHACTR1) gene and 
5-year mortality101. However, in another study, the DIO2 Thr92Ala polymorphism was not related with thyroid 
parameters, cognitive functioning and health-related quality of life102. In the present study we found a relationship 
between SNPs in DIO1 gene rs12095080 heterozygous genotype (AG) and cardiac-related mortality. It should be 
noted that no patients in the cardiac-related death group carried the homozygous mutant GG genotype of this 
SNPs. Patients carrying rs12095080 heterozygous genotype experienced 2.5 months shorter median survival as 
compared to AA genotype carriers. Our preliminary analysis shows that G allele could be a favourable variable 
to investigate for AMI patient’s prognosis. To our knowledge, there are no reports showing the importance of fT3 
ranges and genetic variability of DIO1 in the long-term outcomes of the patients with AMI. There is evidence that 
the G variant in rs12095080, identified in the 3’ UTR of human DIO1 mRNA, is associated with higher T3/rT3 
ratio in serum. This may suggest that some variants in this SNPs may result in increased DIO1 activity103. Palmer 
et al.104 showed that angiotensin-converting enzyme genotype powerfully predicted mortality in patients after 

Figure 1.  Two year Kaplan-Meier survival curves for cardiac-related death in patients with AMI stratified on 
fT3 quartiles. A log-rank test was used to compare survival curves.

Figure 2.  Two year Kaplan-Meier survival curves for cardiac-related death in patients with AMI according to 
D1O1rs12095080 genotypes. A log-rank test was used to compare survival curves.
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AMI. They also showed that the ACE genotype DD was positively associated with the B type natriuretic peptide 
and was an independent predictor of death and the effects the response to treatment105.

To our knowledge this study is the first one to examine how concentrations of TH and genetic markers in 
patients after AMI might contribute to long term outcomes. However, our findings are still exploratory and it 
would be premature to use them as a basis for risk stratification in patients with CAD. For example, future studies 
are needed to explore fT3 and gene polymorphism mutual interaction on the underlying cardiovascular mortal-
ity mechanisms. Understanding the genetic factors contribution to TH expression that predict cardiac-related 
mortality may open new markers and treatment targets for management of cardiovascular disease. For example, 
as suggested by Pingitore et al.18 by knowing the exact mechanism we might not only measure fT3 concentration 
in patients after an AMI and patients with multiple CAD risk factors but also treat those with low fT3 and see 
whether their clinical outcomes improve.

The main limitation of this study is that clinical research was performed in a single centre with a limited num-
ber of subjects. These results require validation in studies that replicate the model and include a higher number 
of cases and controls. Additionally, the majority of studied AMI patients had mild to moderate HF and we did 
not include other risk factors in our study, such as left ventricular ejection fraction or smoking. Thus, the results 
presented may be limited in their generalizability and may not apply to patients with more advanced HF.

Finally, baseline levels of TH were not evaluated in this study, as TH was measured only on admission to the 
ICU and was not investigated during the later post-AMI period when the hormone concentration decline is last-
ing2,66–68. The strengths of this study include its novelty – the assessment of an impact of the fT3 ranges and TH 
gene polymorphisms on long-term mortality while controlling for disease severity and other CAD risk factors in 
patients with AMI.

Conclusions
Lower fT3 level and DIO1 gene rs12095080 as well as higher NT-pro-BNP on admission are associated with 
cardiac-related mortality after AMI. In a case of DIO1 gene rs12095080, heterozygous AG genotype was signifi-
cantly associated with a higher risk for cardiac mortality. Conversely, major wild type homozygous AA genotype 
was linked to better survival within the two year follow-up period.

Ethics approval and consent to participate.  The study and its consent procedures were approved by the 
Kaunas Regional Biomedical Research Ethics at Lithuanian University of Health Sciences, Kaunas, Lithuania and 
conform to the principles outlined in the Declaration of Helsinki. Written informed consent was obtained from 
each study patient.
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