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SUMMARY
While there have been extensive analyses characterizing cellular and humoral responses across the severity
spectrum in COVID-19, outcome predictors within severe COVID-19 remain less comprehensively elucidated.
Furthermore, properties of antibodies (Abs) directed against viral antigens beyond spike and their associations
with disease outcomes remain poorly defined. We perform deep molecular profiling of Abs directed against a
wide range of antigenic specificities in severe COVID-19 patients. The profiles included canonical (spike [S], re-
ceptor-binding domain [RBD], and nucleocapsid [N]) and non-canonical (orf3a, orf8, nsp3, nsp13, and mem-
brane [M]) antigenic specificities. Notably, multivariate Ab profiles directed against canonical or non-canonical
antigens are equally discriminative of survival in severe COVID-19. Intriguingly, pre-pandemic healthy controls
have cross-reactive Abs directed against nsp13, a protein conserved across coronaviruses. Consistent with
these findings, amodel built on Ab profiles for endemic coronavirus antigens also predictsCOVID-19 outcome.
Our results suggest the importanceof studyingAbs targetingnon-canonical severeacute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and endemic coronavirus antigens in COVID-19.
INTRODUCTION

The continued spread of severe acute respiratory syndrome co-

ronavirus 2 (SARS-CoV-2) remains a significant threat globally, in

spite of deployment of effective vaccines, due to newly emerging

variants. A critical challenge is posed by the high symptomatic

heterogeneity and unpredictable course of disease progression

in COVID-19 (Rodebaugh et al., 2021). Progression from asymp-

tomatic infection or mild symptoms to severe disease has been

broadly linked to advanced age and certain comorbidities (Ng

et al., 2021). However, for those with severe COVID-19 disease,

there is still a lack of personalized predictors of the course of

disease and its outcomes. Although significant effort has been

dedicated to establishing the immunological underpinnings of

COVID-19 (Carvalho et al., 2021), the immunological drivers of

mortality and survival outcomes within severe COVID-19 pa-

tients remain unclear. Recently, we identified dysregulated

monocyte states as key predictors of outcomes within severe

COVID-19 (Cillo et al., 2021).
This is an open access article under the CC BY-N
The humoral response directed against selected SARS-CoV-

2 antigens, e.g., spike (S) and nucleocapsid (N), or their sub-

domains, e.g., receptor-binding domain (RBD) of S, which

taken together we term as canonical antigens here, have

been extensively studied (Atyeo et al., 2020; Bartsch et al.,

2021; Zohar et al., 2020). Relative to those with asymptomatic

infection or with mild symptoms, antibody titers against canon-

ical antigens are higher in patients with severe disease, leading

to early concerns about antibodies contributing to disease pa-

thology, potentially via mechanisms like antibody-dependent

enhancement (ADE) (Iwasaki and Yang, 2020; Lee et al.,

2020) or via the antibody-mediated activation of inflammatory

pathways, especially since proinflammatory antibody Fc struc-

tures have been found to correlate with disease severity (Bye

et al., 2021; Chakraborty et al., 2020; Hoepel et al., 2021;

Larsen et al., 2021). Vaccine studies, meanwhile, have shown

that titers of vaccine-elicited neutralizing antibodies directed

against the S antigen are a key correlate of protection (Khoury

et al., 2021; Sadarangani et al., 2021). Recently, longitudinal
Cell Reports 39, 111020, June 28, 2022 ª 2022 The Authors. 1
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profiling of antibodies against canonical antigens, after natural

infection, has revealed distinct temporal trajectories of immu-

noglobulin (Ig) subclasses and non-neutralizing functions of

these antibodies that track with disease severity and outcome

(Zohar et al., 2020). However, it remains to be determined

which of these features of antibodies (Abs) directed against ca-

nonical antigens are predictive of recovery from severe COVID-

19 disease.

Beyond the canonical antigens, the SARS-CoV-2 genome is

predicted to encode up to 25 additional proteins (Gordon et al.,

2020), which we term here as non-canonical antigens. It has

been observed that cellular and humoral immune responses

directed against these non-canonical targets also arise upon

SARS-CoV-2 infection (Grifoni et al., 2020; Shrock et al.,

2020). Ab responses against some non-canonical antigens

have been shown to be serological markers of COVID-19 at

early and late time points of illness (Hachim et al., 2020). How-

ever, it remains to be determined whether Abs directed against

non-canonical antigens versus those directed against canoni-

cal antigens can independently or combinatorially predict the

outcomes of severe COVID-19 disease. Given the prolonged

exposure to a high viral burden in patients with severe

COVID-19, Abs against non-canonical antigens may play a

role in protection or exacerbation of disease. In the context of

other viral infections, generation of Abs directed against non-

neutralizing targets has been linked to either protective, neutral,

or detrimental effects (Lamere et al., 2011; To et al., 2012).

Indeed, in the context of COVID-19 as well, there is evidence

pointing to the lack of selective targeting of S versus N antigens

being linked to disease severity in COVID-19 (Zohar et al.,

2020). In addition, it is notable that a number of these non-ca-

nonical SARS-CoV-2 protein antigens are known to share high

sequence similarity with the corresponding proteins in endemic

human coronaviruses (eHCoVs) (Hicks et al., 2021). Whether

prior eHCoV exposure and the associated immune memory

affect outcome after SARS-CoV-2 infection remains an unset-

tled debate, and both protective and pathological effects

have been reported in recent literature (Aydillo et al., 2021;

Guo et al., 2021). Thus, tracking the Ab responses against

these antigens could provide important insights in formulating

improved SARS-CoV-2 as well as pan-coronavirus vaccines

beyond the S-based formulations in current use.

To address these questions, we developed a highly multi-

plexed, sample-sparing SARS-CoV-2 humoral profiling platform

that measures biophysical properties of antigen-specific Abs

directed against a broad set of canonical and non-canonical

antigens as well as eHCoV antigens, including their isotypes,

subclasses, Fc receptor binding, and glycosylation from corre-

sponding serum samples. Importantly, we found that Abs

directed against canonical and non-canonical antigens were

independently equally predictive of disease outcomes. Notably,

pre-pandemic healthy controls were found to have Abs against

specific non-canonical antigens with high similarity to those in

eHCoVs. Finally, eHCoV-specific Abs were themselves also

predictive of outcome in severe COVID-19. Thus, our results

suggest the importance of Abs targeting non-canonical SARS-

CoV-2 and endemic CoV antigens in favorable outcomes of se-

vere COVID-19.
2 Cell Reports 39, 111020, June 28, 2022
RESULTS

Multivariate antibody responses against canonical
antigens are predictive of severe COVID-19 outcomes
Using our highly multiplexed, SARS-CoV-2 Ab profiling platform,

we characterized and quantified serum Abs directed against ca-

nonical antigens for 21 severe (14 survivors and 7 non-survivors)

COVID-19 patients from blood drawn soon after their intensive

care unit (ICU) admission (Figure 1A, Pittsburgh UPMC cohort).

Demographic details for these patients have been previously

described (Bain et al., 2021; Cillo et al., 2021). Briefly, COVID-

19 was diagnosed in these subjects based on reference-stan-

dard nasopharyngeal swab SARS-CoV-2 qPCR. Patients were

admitted to the ICU a median of 6 days after symptom onset,

and serum was collected from these patients within 24 h post-

enrollment in the study. Of a wide range of measured clinical co-

variates, higher age and higher BMI showed trends of being

associated with higher mortality and the administration of gluco-

corticoids trended to being associated with survival; however,

none of these factors were of univariate significance given the

sample size of the cohort (Bain et al., 2021; Cillo et al., 2021).

Further, a multivariate model built using clinical features was

not significantly predictive (in a k-fold cross-validation frame-

work with permutation testing) either, demonstrating that these

clinical features have limited utility in predicting outcome bifurca-

tion. This underscored the need for high dimensional profiling im-

mune system features, such as deep Ab profiling.

Unlike well-characterized differences in S Ab titers of

COVID-19 patients across the severity spectrum, we wished to

determine whether Ab profiles at the point of ICU admission

could predict bifurcation of subsequent outcomes—survival

versus death (Figure 1A). Furthermore, unlike previous studies

that have focused on temporal differences (Zohar et al., 2020),

we focused on Ab profiles measured at the point of ICU admis-

sion, as it represents a clinically relevant and actionable time

point. Further, as noted above, there were not significant differ-

ences in other characteristics, including age, treatment, and viral

loads, between the survivors and non-survivors.

We observed that both survivors and non-survivors had signif-

icantly higher Abs across canonical specificities than pre-

pandemic healthy controls, confirming the quality and specificity

of our assay (Figures S1A–S1O). However, the univariate differ-

ences between survivors and non-survivors were not striking

(Figures 1B and S1A–S1O). Examination of pairwise relation-

ships also did not reveal significant differences in the underlying

correlation structure (Figure S1P). No single feature was discrim-

inative by clinical outcomes. Therefore, we pursued a multivar-

iate machine-learning approach that incorporates different

quantitative and qualitative aspects of the Ab response to deter-

mine whether it could discriminate patients by clinical outcome.

We used a two-step machine-learning approach, as previously

described (Ackerman et al., 2018; Das et al., 2020; Lu et al.,

2020; Sadanand et al., 2018; Suscovich et al., 2020), to identify

a minimal set of predictive Ab features that could discriminate

between survivors and non-survivors. Our approach comprised

feature selection using the least absolute shrinkage and selec-

tion operator (LASSO): the use of L1 regularization on high-

dimensional data (i.e., data where the number of Ab features
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Figure 1. Multivariate antibody responses against canonical antigens are predictive of severe COVID-19 outcomes

(A) Conceptual overview of the SARS-CoV-2 antibody profiling platform used to characterize and quantify serum Abs directed against canonical and non-ca-

nonical antigens.

(B) Polar plots illustrating measured Ab features against canonical Ag specificities—spike, spike RBD, and nucleocapsid.

(C) Performance of LASSOmodel to discriminate between survivors and non-survivors built using deep humoral profiles against canonical Ag specificities. Model

performance is measured in a k-fold cross-validation framework with permutation testing. Actual denotes the performance of the model, built on real data.

Permuted denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(D) LASSO-selected features from model built using deep humoral profiles against canonical Ag specificities. ns, non-survivor; s, survivor.

(E) PLS-DA using only the LASSO-selected features from the model in (D) to discriminate between survivors and non-survivors.

(F) Performance of the model (built using the Pitt cohort) on an orthogonal (Boston) cohort.
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far exceeds the number of subjects) that helps prevent overfitting

(Ackerman et al., 2018; Das et al., 2020; Lu et al., 2020; Sada-

nand et al., 2018; Suscovich et al., 2020). This was followed by

classification using the down-selected features. We found that

a model generated using this approach was significantly predic-

tive of outcome as measured in a k-fold cross-validation frame-

work with permutation testing (Figure 1C; STAR Methods). We

also evaluated the model using three additional metrics—preci-

sion, recall, and F1 score. Based on all three metrics, the model

performed significantly better than a negative-control model

(based on permutation testing), across folds and replicates of

k-fold cross-validation (Figures S1Q–S1S). Interestingly, a multi-

variate model that includes clinical features in addition to the

deep Ab profiles does not perform better than the above model

built on deep Ab profiles. This suggests that the clinical features

do not add anything additional in terms of discrimination beyond

the deep Ab profiles.

The model was based on three features—anti-S IgA, anti-S

RBD IgA2, and RBD-directed Ab galactosylation (Figure 1D).

These features were stable across folds and replicates of

k-fold cross-validation (Figure S1T). These sensitivity analyses

demonstrate that these are indeed the most stable features
that serve as a minimal set of robust predictive biomarkers of

outcome bifurcation. The same features also did not show clear

trends in stratifying acute respiratory distress syndrome (ARDS)

survivors and non-survivors (Figure S1U). While given the small

size of this cohort, we are underpowered to make definite con-

clusions; these results suggest there are both similarities and dif-

ferences in Ab features that can stratify COVID-19 survivors and

non-survivors versus non-COVID ARDS survivors and non-

survivors.

As an orthogonal way to visualize the stratification achieved by

these Ab features, we performed partial least squares discrimi-

nant analyses (PLS-DA) using just these three down-selected

features. The PLS-DA demonstrated that these three markers

were able to stratify the survivors and the non-survivors (Fig-

ure 1E). Notably, all three Ab features were higher in survivors

compared with non-survivors (Figure 1D), suggesting that higher

levels of IgA Abs directed against the S protein or its RBD and the

increased levels of galactosylation of RBD-specific Abs are

associated with favorable outcomes.

To validate the robustness of the uncovered Ab features, we

tested the performance of our model on an independent cohort

of severe ICU patients (Boston Massachusetts General Hospital
Cell Reports 39, 111020, June 28, 2022 3
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Figure 2. Multivariate antibody responses against non-canonical antigens independently predict severe COVID-19 outcomes

(A) Polar plots illustrating measured antibody responses against non-canonical antigenic specificities ORF3a, ORF8, NSP3, NSP13, and M.

(B) Performance of LASSO model to discriminate between survivors and non-survivors built using deep humoral profiles against non-canonical Ag specificities.

Model performance is measured in a k-fold cross-validation framework with permutation testing (negative control).

(C) LASSO-selected features from model built using deep humoral profiles against non-canonical Ag specificities.

(D) PLS-DA using only the LASSO-selected features from the model in (C) to discriminate between survivors and non-survivors.

(E) Performance of LASSOmodel to discriminate between survivors and non-survivors built using deep humoral profiles against canonical and non-canonical Ag

specificities. Model performance is measured in a k-fold cross-validation framework with permutation testing (negative control).

(F) LASSO-selected features from combined canonical and non-canonical antigenic specificities.

(G) Post hoc feature selection based on the ratios of IgA to IgG and IgA to IgM.

(H) PLS-DA using only the ratios of IgA to IgG and IgA to IgM to discriminate between survivors and non-survivors.

Report
ll

OPEN ACCESS
[MGH] cohort; Zohar et al., 2020). The Boston cohort had pa-

tients in three categories—moderate (n = 82), severe (n = 76),

and deceased (n = 35). However, they measured fewer features

(probes and antigens) for each sample. Critically, we had no role

in the study design or recruitment strategy for this cohort. Our

model generated using the Pittsburgh cohort remained signifi-

cantly predictive for the Boston cohort Figure 1F), albeit with a

slightly decreased performance. We attributed this reduction in

performance to the availability of fewer features in the Boston

cohort dataset, specifically the lack of antigen-specific Ab glyco-

sylation measurements, one of the three discriminating features

for our model. The other two features (anti-S IgA and anti-RBD

IgA2) exhibited identical univariate trends across the two cohorts

and datasets (Figure S1V). Thus, the multivariate cross-predic-

tion provides a lower-bound estimate of the performance of

our model on an orthogonal cohort. Overall, our results demon-

strate that a model built using Ab profiles corresponding to ca-

nonical specificities is robust, both to cross-validation and

cross-prediction with a distinct cohort. More importantly, they

demonstrate that, within severe COVID-19 patients, outcome

bifurcation can be accurately predicted at the point of ICU

admission based on IgA rather than IgG Abs directed against S

and its RBD as well as RBD-specific Ab galactosylation.
4 Cell Reports 39, 111020, June 28, 2022
Multivariate antibody responses against non-canonical
antigens independently predict severe COVID-19 out-
comes
Next, we sought to examine the levels of Ab responses directed

against non-canonical antigens (nsp3, nsp13, orf3a, and orf8) in

patients with severe COVID-19 and whether they were indepen-

dently predictive of outcome. We detected Ab responses to

these non-canonical antigens both in the survivors and non-sur-

vivors, with no significant univariate differences between them

(Figures 2A and S2A–S2O), similar to what was observed for ca-

nonical Ab specificities. Examination of pairwise relationships

also did not reveal significant differences in the underlying corre-

lation structure (Figure S2P). So we constructed a multivariate

model, as described above, using only the Ab responses corre-

sponding to non-canonical specificities. Strikingly, this model

was also significantly predictive of outcomes (Figure 2B), and

the performance of this model was as good as that of our previ-

ousmodel built using canonical specificities (Figures 1C and 2B).

Model performance remained significantly better than a nega-

tive-control model, across folds and replicates of k-fold cross-

validation with various evaluation metrics (Figures S2Q–S2S).

The model selected four features: anti-orf8 IgA, anti-nsp13

IgG3, anti-membrane (M) Ab FcR3A binding, and anti-M Ab
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galactosylation (Figure 2C). As in the earlier analyses, these

features were stable across folds and replicates of k-fold

cross-validation (Figure S2T), demonstrating their robustness.

The same features also did not show clear trends in stratifying

ARDS survivors and non-survivors (Figure S2U). Analogous to

our previous analyses, a PLS-DA visualization also demon-

strated that these four features were able to stratify the survivors

and the non-survivors (Figure 2D). Importantly, these four Ab fea-

tures, unlike many others (Figures S2A–S2O), were higher in sur-

vivors. Our findings thus address an important question

regarding higher Ab titers, especially against non-neutralizing,

non-canonical target antigens being potentially associated with

worse outcomes in severe COVID-19 (Lee et al., 2020). The re-

sults suggest that higher Ab titers with particular isotypes

directed against specific canonical as well as non-canonical

antigens are associated with favorable outcomes in severe

disease.

As noted above, IgA Abs for both canonical (S and S-RBD) and

non-canonical (orf8) antigens were higher in survivors compared

with non-survivors (Figures 1D and 2C). Further, increased gal-

actosylation of both RBD- and M-specific Abs was associated

with favorable outcomes (Figures 1D and 2C). Thus, similar Ab

profiles for both canonical and non-canonical specificities

were associated with survival. This was next corroborated by

constructing a predictive model by combining canonical and

non-canonical specificities. As anticipated, the predictive perfor-

mance of the model remained unchanged (Figure 2E), and it

highlighted a subset of the Ab features revealed by those based

on canonical and non-canonical Ag specificities alone (Fig-

ure S2V). Next, we examined whether the ratios of IgA/IgG or

IgA/IgM Abs directed against S, RBD, and orf8 (antigens identi-

fied in the earlier analyses) were predictive of outcomes. This

was a post hoc analysis (STAR Methods) where we focused on

ratios of IgA/IgG Abs for features identified in the canonical

and non-canonical models (Figure 2G). A multivariate PLS-DA

visualization using just these three ratios discriminated between

survivors and non-survivors (Figure 2H). These results reinforce

the importance of IgA Abs directed against both canonical and

non-canonical specificities as important predictors of outcome

in severe COVID-19. Overall, our results demonstrate that Abs

with particular non-canonical antigen specificities are indepen-

dently as informative as those Abs directed against the canonical

S protein in predicting severe COVID-19 disease mortality

outcomes.

Antibodies directed against endemic CoV antigens as
predictors of severe COVID-19 outcome
In the process of analyzing corresponding Ab profiles in pre-

pandemic healthy controls, we noticed significant levels of

reactivities to specific non-canonical SARS-CoV-2 antigens,

particularly nsp13 and nsp3 (Figures S2A–S2O and S3A–S3P).

This was unlike Abs directed against canonical antigens,

including S, which were, on the other hand, very close to or at

baseline in these controls (Figures S2A–S2O and S3A–S3O).

Given this surprising finding of Ab reactivity to nsp13 and nsp3

in sera of pre-pandemic individuals, we hypothesized that

these Abs may have been generated by prior infections of

such individuals with eHCoVs and their cross-reactivity to
SARS-Cov-2 nsp13 and nsp3 was a consequence of the greater

conservation of these proteins across coronaviruses. To test this

hypothesis, we analyzed the sequence similarity of nsp13 and S

to corresponding antigens in SARS- and Middle East respiratory

syndrome (MERS)-CoV and eHCoVs (Figure 3D). While S shares

low sequence similarity to SARS-CoV and eHCoV S antigens,

nsp13 has high sequence similarity to corresponding SARS-

and MERS-CoV and eHCoV antigens (Figure 3D). Thus, Abs

directed against endemic eHCoV nsp13 may cross-react with

their SARS-CoV-2 homologs.

Given the possibility of pre-existing, cross-reactive Abs to

SARS-Cov-2 antigens, we constructed a multivariate three-

waymachine-learningmodel that could discriminate not only be-

tween survivors and non-survivors but also pre-pandemic

healthy controls. The three-way model performed even better

(using all four metrics—area under the ROC curve [AUC], preci-

sion, recall, and F1 score) than the previous two-waymodels that

discriminated between survivors and non-survivors (Figures 3A

and S3Q–S3S). The LASSO model selected five features that re-

flected the intriguing trends described above. These features

included anti-S IgG3, S-specific and N-specific Ab galactosyla-

tion, and anti-nsp13 IgA1 and IgM (Figure 3B). Analogous to our

earlier analyses, a PLS-DA visualization also demonstrated that

these five features were able to stratify survivors, non-survivors,

and healthy controls (Figure 3C). Strikingly, while anti-S IgG3

was close to baseline in pre-pandemic healthy controls, the

anti-nsp13 IgM was highest in pre-pandemic healthy controls

and anti-nsp13 IgA1 was highest in survivors followed by healthy

controls (Figure 3B). This raises the possibility that boosting of a

pre-existing cross-reactive memory B cell response to nsp13

may account for the increased levels of these IgA Abs in severe

COVID-19 patients and in turn their association with favorable

outcomes.

To further test the possibility that boosting of pre-existing Abs

to eHCoVs that may cross-react with SARS-CoV-2 antigens

can associate with severe COVID-19 disease outcomes, we

analyzed Abs directed against eHCoV antigens (OC43 S and

NL63 S) and used that dataset to build a multivariate machine

learning (ML) model. Remarkably, a multivariate model built

only on Abs directed against OC43 S and NL63 S was signifi-

cantly predictive of outcomes and was also independently able

to accurately discriminate between survivors, non-survivors,

and pre-pandemic healthy controls (Figure 3E). The model per-

formance remained significantly better than a negative-control

model (based on permutation testing) across folds and repli-

cates of k-fold cross-validation when precision, recall, and F1

score were used as the evaluation metric (Figures S3T–S3V).

Interestingly, while both survivors and non-survivors had signifi-

cantly higher IgG Abs to OC43 S than healthy controls, IgA, IgG3

Abs, and Ab binding to Fc receptor 3A were higher in survivors

and healthy controls compared with non-survivors (Figure 3F).

IgA and IgG3 Abs against OC43 S were also found to be higher

in survivors relative to healthy controls. A PLS-DA visualization

also demonstrated that these five markers were able to stratify

survivors, non-survivors, and healthy controls (Figure 3G). These

findings suggest that pre-existing Abs to canonical and non-ca-

nonical antigens of eHCoVs and their boosting, especially of

particular isotypes and subclasses, by SARS-CoV-2 infection
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Figure 3. Antibodies directed against endemic CoV antigens as predictors of severe COVID-19 outcome

(A) Performance of LASSOmodel to discriminate between survivors, non-survivors, and healthy controls built using deep humoral profiles against canonical and

non-canonical Ag specificities. Model performance (three way) is measured in a k-fold cross-validation framework with permutation testing. Actual denotes the

performance of the model, built on real data. Permuted denotes performance of the model on shuffled data in a matched cross-validation framework (negative

control).

(B) LASSO-selected features from model built using deep humoral profiles against canonical and non-canonical Ag specificities. h, healthy.

(C) PLS-DA using only the LASSO-selected features from the model in (B) to discriminate between healthy controls, survivors, and non-survivors.

(D) Sequence similarities of SARS-CoV-2 spike and NSP13 with corresponding homologs in OC43, NL63, HKU1, 229E, SARS CoV, and MERS CoV.

(E) Performance of LASSO model to discriminate between survivors, non-survivors, and healthy controls built using deep humoral profiles against non-SARS-

CoV-2 Ag specificities. Model performance is measured in a k-fold cross-validation framework with permutation testing (negative control) for outcome prediction

between survivors, non-survivors, and healthy controls (three way).

(F) LASSO-selected features from model built using deep humoral profiles against non-SARS-CoV-2 Ag specificities.

(G) PLS-DA using only the LASSO-selected features from the model in (F) to discriminate between healthy controls, survivors, and non-survivors.
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may have a beneficial role in favorable outcomes in severe

COVID-19.

DISCUSSION

Our study represents the deepest humoral profile of Abs against

canonical specificities and the first comprehensive profile of Abs

directed against non-canonical antigens as well as those

directed against eHCoV antigens, in the context of severe

COVID-19 disease. Prior studies focusing on longitudinal
6 Cell Reports 39, 111020, June 28, 2022
profiling provide insights into how trajectories are predictive

(Zohar et al., 2020), while profiling at a single early time point in

this study provides insights specific to an actionable time point.

Critically, we found that multivariate models incorporating Ab re-

sponses against both canonical and non-canonical antigens

were both discriminative of outcome. Interestingly, similar mo-

lecular features of Abs for both canonical and non-canonical

specificities drove outcome bifurcation with survivors having

more IgA and IgG3 isotypes, as well as higher Ab galactosyla-

tion. Further, the SARS-CoV-2 canonical-antigen-specific
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features that stratified non-survivors and survivors were specific

only to SARS-CoV-2 antigens, i.e., the same Flu hemagglutinin

(HA)- or Ebola-GP-specific features were not able to discrimi-

nate survivors and non-survivors, suggesting context-specific

antigen specificities for the uncovered features. Interestingly,

pre-pandemic healthy controls were found to have humoral re-

sponses against SARS-CoV-2 proteins with high sequence sim-

ilarity with endemic coronaviruses, particularly nsp13. Notably,

higher levels of IgA Abs against nsp13 were found to be corre-

lated with protection in severe COVID-19. Humoral profiles of

eHCoV Abs were also predictive of outcome bifurcation, with

higher levels of IgA and IgG3 Abs against OC43 and NL63 S

being associated with survival.

While previous studies have focused solely on a small subset

of SARS-CoV2 antigens, our study provides the first concrete

evidence that Ab responses against different subsets of antigens

(canonical, non-canonical, and endemic) are independently and

equally discriminative of outcome. It has been speculated that

higher Ab titers, especially against non-neutralizing targets,

could be reflective of more severe disease and could also poten-

tially be tied to ADE (Lee et al., 2020). Instead, our results suggest

IgA and IgG3 Abs directed against canonical as well as non-ca-

nonical SARS-CoV-2 antigens could have a beneficial role in dis-

ease outcomes. IgA Abs function at mucosal surfaces and have

previously been tied to vaccine-induced protection (Ackerman

et al., 2018). In addition, IgG3 is known to be a particularly potent

inducer of Ab effector functions via higher affinity association

with Fc receptors (FcRs). Further, complementary to earlier find-

ings of aberrant glycosylation, specifically afucosylation of

S-specific Abs being correlated to disease severity (Larsen

et al., 2021), we find here that differential glycosylation, specif-

ically higher galactosylation, of Abs specific to both canonical

and non-canonical antigens is associated with survival in severe

COVID-19.

While there has been speculation regarding the roles of cross-

reactive B and T cells as well as Abs in driving outcome bifurca-

tion for COVID-19 (Anderson et al., 2021; Le Bert et al., 2020;

Shrock et al., 2020; Loyal et al., 2021), our study identifies for

the first time a range of multivariate humoral profiles of Abs

that can be robustly associated with outcome bifurcation in se-

vere COVID-19. A recent study reported that not everyone

exposed to SARS-CoV-2 necessarily develops seropositivity,

suggesting that some individuals clear sub-clinical infections

(Swadling et al., 2021). In these individuals, pre-existing,

nsp13-specific T cells are expanded (Swadling et al., 2021).

These findings strongly complement those described herein

and collectively suggest that pre-existing nsp13-specific B cell

responses are also likely boosted on exposure to SARS-CoV-2

and in turn associate with favorable outcomes.

Although our study was performed during the first wave before

the emergence of viral variants, including Delta and Omicron, we

note that these and other variants of concern (VOCs) vary mostly

in their surface proteins, primarily the S protein (and the RBD

epitope within the S protein). These changes have a major

impact on the binding affinity of S- and RBD-specific Abs, e.g.,

monoclonals that worked as neutralizing Abs for the Delta variant

had significantly lowered neutralization efficacy for Omicron. By

focusing on non-canonical and non-envelope proteins that are
not impacted by these viral variants, we demonstrate that a

model built using only features corresponding to non-canonical

specificities is significantly predictive of outcome bifurcation.

Furthermore, we analyze both Fab specificities and Fc proper-

ties; the latter features are not expected to be modulated by

the viral variants. Finally, we show that we can predict outcome

bifurcation even with profiles of Abs corresponding to endemic

CoV specificities. Thus, our overall findings regarding Ab fea-

tures driving severe COVID-19 outcomes are predicted to be

stable across the spectrum of viral variants.

Our approach can now be extended to identify humoral corre-

lates of breakthrough infections in vaccinated individuals and

disease severity in unvaccinated individuals. Previous studies

focusing on differences in the nature, quality, and durability of

natural and vaccine-induced humoral responses have focused

on canonical antigens. Our study demonstrates the importance

of looking at non-canonical specificities. These considerations

are of direct relevance in the current context, and the identified

humoral correlates are likely to be more robust across VOCs

for the reasons described above. Our characterization of the pro-

tective nature of Ab responses against a broad panel of antigens

has implications for the formulation of improved second-gener-

ation SARS-CoV-2 vaccine as well as pan-coronavirus vaccine

design.

Limitations of the study
Our study is focused on the identification of humoral correlates

of outcome bifurcation in severe COVID-19 in unvaccinated sub-

jects, with a key emphasis on Abs directed against non-canoni-

cal SARS-CoV-2 and endemic CoV antigens. The same corre-

lates may not directly predict outcomes in mild and moderate

COVID-19 patients, especially in vaccinated and boosted

individuals. However, the same framework can be directly

extrapolated to identify corresponding humoral correlates.
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Antibodies

IgG Fc-PE Southernbiotech Cat#9040-09

IgG1 Fc-PE Southernbiotech Cat#9052-09

IgG2 Fc-PE Southernbiotech Cat#9070-09

IgG3 Hinge-PE Southernbiotech Cat#9210-09

IgG4 Fc-PE Southernbiotech Cat#9200-09

IgM Southernbiotech Cat#9020-09

IgA Southernbiotech Cat#2050-09

IgA1 Southernbiotech Cat#9130-09

IgA2 Southernbiotech Cat#9140-09

Biological samples

Serum samples from SARS-CoV2

patients and healthy controls

University of Pittsburgh and

University of Pittsburgh Medical Center

N/A

Chemicals, peptides, and recombinant proteins

HA (Michigan) ImmuneTech Cat #1920

HA phuket Immunetech Cat #1171

HA Singapore Immunetech Cat #2123

Ebola Zaire ImmuneTech Cat#1805

BSA Thermofisher scientific Cat #29130

PBS Corning Cat #MT21040CMX

NHS Pierce Cat#PI24510

EDC Pierce Cat#PG82079

SARS- CoV-2 Spike ImmuneTech Cat #IT-002-032p

SARS- CoV-2 Spike RBD ImmuneTech Cat #IT-002-036p

SARS- CoV-2 Nucleocapsid SinoBiological Cat #IT-002-036p

SARS- CoV-2 ORF3a Bioworld Cat #NCP0026P

SARS- CoV-2 ORF8 Bioworld Cat #NCP0025P

SARS- CoV-2 NSP3 mybiosource Cat #MBS156024

SARS- CoV-2 NSP13 mybiosource Cat #MBS2563852

SARS- CoV-2 M protein mybiosource Cat #MBS156019

HCoV-OC43 SinoBiological Cat #40607-V08B

HCoV-NL63 SinoBiological Cat #40604-V08B

CD64 Acrobiosystems Cat #FCA-H82E8-25ug

CD32a Acrobiosystems Cat #CDA-H82E6-25ug

CD32b Acrobiosystems Cat # CDB-H82E0-25ug

CD16a Acrobiosystems Cat # CDA-H82E9-25ug

CD16b Acrobiosystems Cat # CDB-H82Ea-25ug

Lectin kit I Vector labs Cat# RLK-2200

Native human C1q protein Abcam Cat #ab96363

Deposited data

Antibody-omic data This study https://github.com/jishnu-lab/

Covid19AbOmics

Software and algorithms

R Statistical Computing Environment R Statistical Computing Environment https://www.r-project.org/
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Lead contact
Requests for data and code used for the study should be directed to and will be fulfilled by the Lead Contact Jishnu Das (jishnu@pitt.

edu).

Materials availability
d This study did not generate new unique reagents.

Data and code availability
d Detailed code, associated datasets and documentation are available at https://github.com/jishnu-lab/Covid19AbOmics. A

corresponding stable release can be accessed at https://doi.org/10.5281/zenodo.6585876.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort details
After obtaining written informed consent from patients or legally authorized representatives acting on their behalf, subjects with acute

hypoxemic respiratory failure and symptoms of COVID-19 were recruited in a prospective, observational cohort study (University of

Pittsburgh Institutional Review Board study number 20040036). The patients were hospitalized in ICUs at two hospitals (Presbyterian

and Shadyside) within the University of Pittsburgh Medical Center system. All patients underwent at least one nasopharyngeal swab

testing for SARS-CoV-2 qPCR, which may have been repeated at the discretion of the treating physicians when the first test was

negative and significant clinical suspicion for COVID-19 remained. In this study, we profiled subjects from this cohort (14 survivors

and 7 non-survivors). No a-priori power calculations were used to determine cohort size and the 2:1 survival:death ratio reflects an

inherent feature of the cohort. Survivors had a mean age of 65.4 years (with a standard deviation of 9.4 years). Non-survivors had a

mean age of 70.9 years (with a standard deviation of 12.2 years). Therewere 10males and 4 females within survivors, and 2males and

5 females within non-survivors.

METHOD DETAILS

Sample preparation
Serum was obtained as described earlier and stored at �80C until used. Upon thawing before use, all samples were transferred to a

96well U-bottom plate at an appropriate dilution for the intended probe (1:500 for IgG2, IgG3, IgG4, IgA, IgA1, IgA2, IgM, RCA I, SNA,

C1Q & 1:2000 for IgG, IgG1, FcRs).

Multiplexed antigen-specific antibody profiling
A multiplexed antigen-specific Ab profiling workflow was developed based on a protocol reported earlier (Brown et al., 2017).

Briefly, pooled barcoded antigen-coupled beads were incubated with samples and then with fluorescently labeled probes.

Following set of probes were used: 1) Antigen-specific subclass/isotype titers were measured using PE-labeled mouse-anti-hu-

man IgG1, IgG2, IgG3, IgG4, total IgG, IgA1, IgA2, IgM. 2) Antigen FcR/complement binding profiles were measured using bio-

tinylated FcRs (FcR1, FcR2A, FcR2B, FcR3A, FcR3B) tetramerized with streptavidin-PE or PE-labeled complement (C1q). 3) An-

tigen-specific glycosylation profiles were measured using lectin-binding using PE-labeled lectins (SNA for sialic acid, RCA1 for

galactosylation).

All antigens including SARS-CoV-2 Antigens (Spike [ImmuneTech IT-002-032p], Spike RBD [ImmuneTech IT-002-036p], Nucleo-

capsid [SinoBiological IT-002-036p], Orf3a [Bioworld NCP0026P], ORF8 [Bioworld NCP0025P], NSP3 [mybiosource MBS156024],

NSP13 [mybiosource MBS2563852], M protein [mybiosource MBS156019]) and eHCoV antigens (HCoV-OC43 [SinoBiological

40607-V08B], HCoV-NL63 [SinoBiological 40604-V08B]) were coupled to Luminex MagPlex magnetic microsphere beads of

different regions at a ratio of about 8ug of antigen per million beads using an EDC-NHS chemistry and then blocked with and stored

until use in storage buffer (1XPBS, 0.1%BSA, 0.1%Tween) at 4C. PE coupled anti-Igs (Southern Biotech) were diluted from the stock

vials to a concentration of 1ug/ml in 1XPBS. Biotinylated FcRs (Acro Biosystems) were reacted with Streptavidin-PE (Thermo Fisher)

at a 4:1 molar ratio for 20 min and then diluted to a concentration of 1ug/ml in 1XPBS. Rhodamine/Cy-3 coupled lectins (Vector Labs)

were diluted in lectin buffer to a concentration of 20ug/ml.

Conjugated beads were diluted in assay buffer (1XPBS, 0.1% BSA) to make a working bead solution and added at a 1:9 sample:-

bead volume ratio in wells of a 96 well flat bottom plate, and incubated for 1 h. Sample-bound beads were then washed twice in a

wash buffer (PBS, 0.1% Tween) using a magnetic plate separator and resuspended in the appropriate probe buffer. Diluted probe

solution was then added to the wells at a1:9 bead:probe volume ratio and incubated for 30 min. All incubation steps were performed
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at room temperature on a plate shaker. Probe-bound beads were then washed twice with wash buffer and resuspended in Luminex

MagPix drive fluid before reading on a Luminex MagPix instrument. All assays were performed in duplicate and a correlation coef-

ficient of R2 > 0.8 was verified for technical replicability. An arithmetic mean of the two measured MFI values from the replicates is

then used as the readout.

QUANTIFICATION AND STATISTICAL ANALYSES

Machine learning models to discriminate by outcome using humoral responses against different specificities
(canonical, non-canonical and endemic CoV antigens)
Data was pre-processed to remove features with low values (mean MFI <50). This was done in an unsupervised setting to avoid any

biases. All features were centered and scaled (i.e., z-scored) to have a mean 0 and standard deviation 1.

We used a two-step machine learning model to identify a minimal set of predictive biomarkers of outcome. This comprised feature

selection on the high-dimensional data (features >> number of subjects) using the least absolute shrinkage and selection operator

(LASSO) (Tibshirani, 1996), followed by classification using the down-selected features using support vector machines(SVM)

(Breiman, 2001). The use of LASSO (L1 regularization) helps prevent over-fitting on high dimensional data. This two-step procedure

is similar to what has been successfully used earlier for high-dimensional humoral immunemeasurements (Ackerman et al., 2018; Lu

et al., 2020; Sadanand et al., 2018).

The performance of the models were evaluated in a rigorous 10-fold cross validation framework, and the significance of the

models was quantified using permutation testing (Ojala and Garriga, 2010). The overall framework is analogous to what has

been previously described (Ackerman et al., 2018; Lee et al., 2020a; Sadanand et al., 2018). Briefly, the dataset was split into

10 subsets – 9 subsets are used for training while the 10th one is used for testing. Each subset served as the test set once, there-

fore each individual was in the test fold exactly once for each cross-validation run. For each test fold, LASSO-based feature se-

lection was performed using the nine training folds. The coefficient for the LASSO penalty term (i.e., lambda for regularization) was

determined via a second internal cross-validation using only the fold-specific training dataset. A fold-specific linear support vector

machine (SVM) model was built using the LASSO-selected features and training data for that fold. This fold-specific classifier was

subsequently used to predict the labels for the individuals in the test set for that fold. This process was repeated for each of the ten

folds to generate a set of predicted outcomes for each individual. This was then compared to the true set of outcome labels to

calculate a classification accuracy for that cross-validation replicate. We performed 100 independent ten-fold cross-validation

replicates, to account for different ways in which the training and test folds can be split. This is a stringent and appropriate

way of performing cross-validation, as both steps involved in the model (feature selection and subsequent classification using

the selected features) are performed in a cross-validation setting with data held out. The significance of model performance

was evaluated using permutation testing (Ojala and Garriga, 2010), by randomly shuffling the data with respect to the arm labels,

within the cross-validation framework described above (i.e., a cross-validation framework matched to the actual model). The

model is deemed significantly predictive if it meets an exact p value (based on a permutation test) threshold of <0.01 and an effect

size threshold of 0.15 in AUC i.e., it has an AUC that is at least 0.15 better than the negative control model (we calculate the dif-

ference in medians across replicates of k-fold cross-validation).

To visualize the modules selected by the LASSO model on the whole dataset, we applied a partial least squares

discriminant analysis (PLS-DA). PLS-DA is a supervised dimension reduction method, which transforms a new set of features

that are a linear combination of the original features and then fits a linear model via least squares using these new features.

We carried out separate PLS-DA analyses using down-selected features from applying LASSO on the whole dataset. PLS-DA

was applied for both 2 groups (between survivors and non-survivors) and 3 groups (among survivors, non-survivors, and healthy

controls).

We analyzed the canonical, non-canonical and non-SARS-CoV2 specificities separately. We start with humoral responses for ca-

nonical (S/RBD/N) antigenic specificities to generate a multivariate machine learning model for outcome (survivors vs non-survivors)

bifurcation. We applied a similar approach on the non-canonical (orf3a/orf8/nsp3/nsp13/M) antigenic specificities for outcome bifur-

cation. We then combined both the canonical and non-canonical antigens to generate a multivariate machine learning model for

outcome bifurcation between survivors and non-survivors. Then we also included the healthy controls along with the survivors

and non-survivors to generate amultivariate machine learning model for outcome prediction (3-way). We also built a multivariate ma-

chine learning model using endemic coronavirus antigenic specificities.

Validation-cohort
We sought to validate the robustness of biomarkers, corresponding to humoral responses against canonical Ag specificities,

identified in the Pittsburgh cohort. Specifically, we examined their predictive power in an orthogonal Boston cohort (Zohar

et al., 2020). Model training (both down-selection of features and model fitting) was performed using only our cohort (Pitts-

burgh), and the model generation process was completely blinded to this second orthogonal validation cohort (Boston),

ensuring that this is a true cross-prediction. Then we tested the performance of the model learned using the Pittsburgh cohort

on the Boston cohort.
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PLS-DA based visualization using IgA/IgG and IgA/IgM ratios
Weperformed a post-hoc greedy feature selection based on the ratios of IgA to IgG and IgA to IgM.We took the Spike, RBD, andOrf8

specificities for the ratios. We then performed a PLS-DA on the selected ratios and to exhibit the discriminating power of these

feature-ratios between survivors and non-survivors.

Implementation of LASSO and PLS
LASSOwas implemented using glmnet in R. If no feature was selected by LASSO in a specific fold for a given replicate, we randomly

selected 5 features (only for that fold in that replicate) and used an ordinary least squares estimator. PLS-DA was implemented using

the plsr function in R.
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