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ABSTRACT
Myeloid-derived suppressor cells (MDSCs) are highly immunosuppressive myeloid cells 
that show increased expression in cancer patients; however, the molecular mechanisms 
underlying their generation and function are unclear. Whereas granulocytic-MDSCs correlate 
with poor overall survival in breast cancer (BC), the presence and relevance of monocytic 
(Mo)-MDSCs are unknown. Here, we report for the first time increased chemokine and 
chemokine receptor production by Mo-MDSCs in BC patients. A clear population of Mo-
MDSCs with the typical cell surface phenotype (human leukocyte antigen-antigen D related 
[HLA-DR]low/− CD11b+ CD33+ CD14+) increased significantly during disease progression. In 
addition, the chemokine receptor expression level on Mo-MDSCs in patients with invasive 
BC was the highest. Furthermore, different chemokine receptor expression patterns were 
noted in Mo-MDSCs between healthy controls (HC) and BC patients. Additionally, CD4 T 
cells proliferations were significantly decreased in the invasive BC groups compared with the 
HC group. However, the ductal carcinoma in situ (DCIS) group had no significantly compared 
with the HC group. Our data suggest that monitoring chemokine and chemokine receptor 
production by Mo-MDSCs may represent a novel and simple biomarker for assessing disease 
progression in BC patients.

Keywords: Myeloid-derived suppressor cells; Chemokines; Chemokine receptors;  
Breast neoplasms

INTRODUCTION

Breast cancer (BC) are the most common human cancers and the leading cause of cancer-
related deaths worldwide. Cancer tumorigenesis involves numerous pathological factors and 
suppression of the immune response (1,2). Tumors avoid the immune system by inhibiting 
the development of immune responses for tumor progression (3,4).
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In patients with cancer, tumors inhibit the differentiation of common myeloid progenitor 
cells and enhance the accumulation of immature myeloid cells (IMCs). A block in IMC 
differentiation during acute or chronic infection and enhancement of the tumor environment 
expand this population of cells, known as myeloid-derived suppressor cells (MDSCs).

Therefore, the characterization of these immunosuppressive cells has important implications 
for cancer diagnosis and therapy (5). MDSC-mediated immunity is also believed to be 
involved in this mechanism, but research on this topic is limited (6,7).

Monocytic (Mo)-MDSCs and granulocytic/polymorphonuclear (PMN)-MDSCs are 2 main MDSC 
subtypes that inhibit immune responses via different mechanisms (8). Although several studies 
of MDSC subtypes have been conducted in mice, their human counterparts have no universal 
marker, and their functions and pathophysiological relevance in human oncology are less well 
defined. Similar to murine MDSCs, MDSCs are referred to as human leukocyte antigen-antigen 
D related (HLA-DR) −CD33+ cells in pancreatic cancer patients and different combinations of 
markers including HLA-DR, CD33, CD11b, and CD14 have been used to investigate human 
MDSCs subtype (9). The balance of MDSC subtypes should be affected by cancer type.

In human, the ratios of PMN-MDSCs and Mo-MDSCs are very variable in different tumor 
environment and the factors regulating their proportion are not entirely known (10,11).

Recently, much focus has been put on the PMN-MDSCs that are frequently enriched in cancer 
patients (12,13).

Furthermore, while local induction of MDSCs has been extensively investigated and involves tumor 
derived factors such as IL-10, transforming growth factor (TGF) β, vascular endothelial growth 
factor (VEGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) the origin and 
mechanism of generation of circulating Mo-MDSCs is, as of yet, largely unknown (14,15).

Although the differential expression of chemokines and chemokine receptors plays a key role 
in determining the tissue infiltration of different leukocyte subsets, the mechanism by which 
MDSCs are recruited to the tumor microenvironment remains unclear (16,17).

Recent research has determined that several chemokines and their cognate receptors are 
responsible for the migration of MDSCs into the tumor microenvironment (18). Additionally, some 
evidence suggests that chemokine receptors are differentially expressed by Mo-MDSCs and PMN-
MDSCs, which aids in their differential recruitment by C-C chemokine receptor type 2 (CCR2) and 
C-X-C chemokine receptor type 1 (CXCR1), type 2 (CXCR2), and type 4 (CXCR4) (17,19-24).

Therefore, we analyzed the presence and function of circulating and tumor-infiltrating 
Mo-MDSCs and chemokine receptors with the aim to investigate the clinical relevance of Mo-
MDSCs in BC patients.

MATERIALS AND METHODS

Peripheral blood samples
This study was approved by the Institutional Review Board of Konkuk University Medical Center 
(KUH-1160090). Patients were excluded if they had histories of 1) chemotherapy, 2) radiotherapy, 
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3) immunosuppressive agent use, 4) bone marrow transplantation, and 5) any present symptom 
or sign of infection. Patients were assigned to the ductal carcinoma in situ (DCIS) non-invasive 
BC group or invasive BC group according to the presence of tumor, nodes, metastasis (TNM) 
stage; the latter was determined based on preoperative computed tomography (CT) and bone 
scans, intraoperative surgical and pathological findings, and postoperative pathological findings. 
The stage of BC was confirmed by perioperative evaluations and pathological findings. Staging 
followed the American Joint Committee on Cancer (AJCC) scheme using TNM classifications. 
The T stage describes the size of the primary colorectal cancer tumor and whether it has invaded 
nearby tissue (depth). The N stage describes the regional lymph nodes that are involved (regional 
lymph node metastasis). The M stage describes distant metastasis.

Peripheral blood mononuclear cell (PBMC) isolation
Heparin-anticoagulated peripheral blood samples were obtained from each patient with 
cancer, and PBMCs were isolated by density gradient centrifugation using Biocoll gradient 
solution (Biochrom, Berlin, Germany). PBMCs were collected in conical tubes and washed in 
PBS (Gibco, Gaithersburg, MD, USA). Before staining, PBMCs were washed with FACS buffer 
(PBS, 1% bovine serum albumin [BSA] and 0.01% NaN3).

FACS of MDSCs
After PBMC isolation, cells were stained with the following antibodies to detect MDSCs: PE 
anti-human CD11b (clone ICRF44; BioLegend, San Diego, CA, USA), peridinin chlorophyll 
protein anti-human HLA-DR (clone L243; BioLegend), allophycocyanin (APC) anti-human 
CD33 (clone WM53; BioLegend), and APC-cy7 anti-human CD14 (clone M5E2; BioLegend). 
To detect chemokine receptors, the antibodies used were FITC anti-human CCR2 (clone 
K036C2; BioLegend), CXCR1 (clone 8F1/CXCR1; BioLegend), PE-cy7 anti-human CXCR2 
(clone 5E8/CXCR2; BioLegend), and CXCR4 (clone 12G5; BioLegend). For MDSC detection, 
bone marrow cells were stained with FITC anti-mouse Ly-6G (clone 1A8; Miltenyi Biotec, 
Gladbach, Germany), APC anti-mouse Ly-6C (clone 1G7.G10; Miltenyi Biotec), and APC-cy7 
anti-mouse/human CD11b (clone M1/70; BioLegend).

Staining was performed for 30 min at room temperature and cells were washed with FACS 
buffer. After washing, samples were collected on a BD FACSAria (Becton Dickinson, Franklin 
Lakes, NJ, USA). All statistical analyses were performed with FlowJo software (Tree Star Inc., 
Ashland, OR, USA).

Isolation of Mo-MDSCs for the proliferation assay
PBMCs were isolated using density-gradient centrifugation over a Ficoll-Hypaque gradient 
(GE Healthcare, Piscataway, NJ, USA) to collect PBMCs. PBMCs were washed with PBS (137 
mM NaCl, 2.7 M KCl, 10 mM Na2HPO4 and 2 mM KH2PO4, pH 7.4) and re-suspended in flow 
cytometry (FACS) buffer (0.1% BSA in PBS). The cells were stained with PE anti-human CD11b 
(clone ICRF44, Biolegend), peridinin chlorophyll protein (PerCP) anti-human HLA-DR (clone 
L243, Biolegend), APC anti-human CD33 (clone WM53, Biolegend) and APC-cy7 anti-human 
CD14 (clone M5E2, Biolegend) for 30 min to detect Mo-MDSCs. After washing, samples were 
isolated on BD FACSAria (Becton Dickinson) according to the manufacturer's protocol (Becton 
Dickson, Brea, CA, USA).

T cell suppression assay
The 0, 1,000 and 5,000 Mo-MDSCs were co-cultured with 10,000 naive CD4+ T cells from 
healthy blood donors at indicated stimulator:responder ratios in Roswell Park Memorial 
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Institute medium 1640 (RPMI 1640) supplemented with penicillin/streptomycin (Thermo 
Scientific, Rockford, IL, USA), 10 ng/ml GM-CSF in all cultures and controls and CD3+/
CD28+ T cell activating dynal beads according to the manufacturer's instructions (Gibco Life 
Technologies, AS, Oslo, Norway) for a total of 48 h. The 1 μCi/ml [methyl-3H] thymidine was 
added for the last 18 h and incorporation was measured in a Microbeta Counter (PerkinElmer, 
Boston, MA, USA). The background signal from monocytes was subtracted before calculating 
the relative proliferation of CD4+ T lymphocytes.

Statistical analysis
Data were analyzed using IBM SPSS Statistics 22.0 software (IBM Inc., Armonk, NY, USA) 
and GraphPad Prism 6.0 software (GraphPad Software Inc., La Jolla, CA, USA). Data 
are presented as the mean±standard deviation or the mean±standard error of the mean. 
Unpaired Student's t-test or 1-way analysis of variance was used to determine significant 
differences between groups. The p-values <0.05 were considered to be significant.

RESULTS

In total, 69 subjects were eligible for this study, which was conducted from 2015 to 2016. 
Informed consent was obtained from all subjects, who were divided into three groups: 1) 29 
healthy controls (HC) with a mean age of 46.90±15.99; 2) 21 DCIS patients with a mean age of 
48.57±9.93, and 3) 19 invasive BC patients with a mean age of 46.84±13.37 (Table 1). Table 1 are 
showed the clinical characteristics of all subjects in the study. We were used standard laboratory 
methods. And we were gained the blood from patients before surgery. There are no significantly 
difference in age between HCs, DCIS and invasive BC patients. This study confirmed the 
existence of 2 circulating subtypes of MDSCs using a flow cytometry analysis of the peripheral 
blood of patients with BC. To detect the percentage of MDSCs, PBMCs were stained with 
CD11b, CD33, HLA-DR, and CD14 monoclonal antibodies. Mo-MDSCs were defined as 
CD11b+CD33+HLA-DR−CD14+, and PMN-MDSCs as CD11b+CD33+HLA-DR−CD14−.

The frequency of circulating MDSCs was high in patients with invasive BC (2.78±0.54 in the HC 
group vs. 3.52±0.82 in the DCIS group vs. 4.14±0.29 in the invasive BC group, p<0.01; Fig. 1).

In addition, the frequency of Mo-MDSCs showed a pattern similar to that of MDSCs. On 
the contrary, the frequency of PMN-MDSC significantly decreased in patients with invasive 
BC (Fig. 2). However, the circulating of MDSCs, and Mo- and PMN-MDSCs did not differ 
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Table 1. Baseline characteristics
Characteristics Group

HC (n=29) DCIS (n=21) Invasive BC (n=19)
Age (yr) 46.90±15.99 48.57±9.93 46.84±13.37
Final stage

0 9 (42.9)
I 12 (57.1)
II 15 (78.9)
III 4 (21.1)

Estrogen receptor
Positive 15 (71.4) 17 (89.5)
Negative 4 (19.0) 2 (10.5)
Unknown 2 (9.6)

Values are presented as mean±standard deviation or number (%).

https://immunenetwork.org


between the DCIS and HC groups (Mo-MDSCs; 51.36±5.63 in the HC group vs. 52.27±5.19 in 
the DCIS group vs. 65.32±11.58 in the invasive BC group, p<0.05; Fig. 2).

To confirm the frequency of chemokine receptors in cancer, I analyzed the expression of 
CCR2, CXCR1, CXCR2, and CXCR4 in each cancer. The amount of all chemokine receptors in 
Mo-MDSCs was significantly higher in the invasive BC groups than in the HC group (Fig. 3). 
However, the CXCR2/CXCR4 receptors showed no significant increases between the DCIS and 
HC groups (Fig. 3).

Additionally, CD4 T cells proliferations were significantly decreased in the invasive BC 
groups, compared to the HC group. However, CD4 T cell proliferation was not significantly 
different between the DCIS group and the HC group (Fig. 4).

DISCUSSION

In this study, we analyzed the peripheral blood MDSCs populations from patients with DCIS 
as well as with invasive BC in relation to HC.
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Figure 1. (A) Representative dot plots of the population of HLA-DRlow/− CD11b+ CD33+ MDSCs. MDSCs are presented by the percentages of CD11b+ CD33+ of gated 
HLA-DRlow/− cells. (B) Expression of circulating HLA-DRlow/− CD11b+ CD33+ MDSC in 3 groups. 
**p<0.01.
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This study revealed that demonstrates that expression of 2 main subsets in MDSCs, Mo-
MDSCs and granulocytic-MDSCs. Moreover, several chemokines and chemokine receptors 
significantly correlate as Mo-MDSCs.

In this study, we investigated the distribution of 2 MDSC subsets between BC and HC in 
peripheral blood by staining for CD11b, CD33, HLA-DR, and CD14. Importantly, presence of 
Mo-MDSCs Association correlated with more severe disease, as patients with high frequency 
of Mo-MDSCs presented with more severe stage and metastases.

Zhang et al. (25), demonstrated that the increase in circulating inflammatory myeloid 
cells in peripheral blood affects tumor progression via local immune suppression and the 
stimulation of tumor neovasculogenesis (26).

Also, in tumor tissue, MDSCs are believed to play an important role in inhibiting immune 
responses by T cells and natural killer cells, and elevated MDSC infiltration is correlated 
with a poor prognosis and resistance to therapy (27-30). Yu et al. (31) reported that CD33+ 
myeloid cells displayed the characteristic phenotype of MDSCs in tumor tissue based on 
immunohistochemical staining. They obtained CD33+ myeloid cells from primary cancer 
tissue. In this study, MDSCs were detected by immunohistochemical staining by using 
CD33 antibody. In a microscope of 40× magnification, CD33+ cells were also more abundant 
invasive BC tissue compared with normal tissue (data not shown).
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Additionally, Zhao et al. (32) reported that the RNA level of MDSCs of mice, there has been 
reported that CCR2 and CXCR4 are highly expressed in Mo-MDSCs and CXCR1 and CXCR2 
are highly expressed in PMN-MDSCs. Therefore, we focused on the CCR2, CXCR1, CXCR2 
and CXCR4 in the present study. Unlike previous studies in mice, CXCR2 and CXCR4 were 
significantly increased in patients with invasive BC than in HC and DCIS. Interestingly, 
CXCR2 and CXCR4 have been demonstrated to stimulate MDSCs generation and migration 
to tumor sites (20,32). Our data further support these findings, as Mo-MDSCs from invasive 
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BC patients expressed CCR2, CXCR1, CXCR2, and CXCR4. This finding is consistent with 
previous studies. Indeed, T cell proliferation was suppressed by Mo-MDSCs from patients 
invasive BC than in HC and DCIS. It may also be of interest to note that the higher ratio used 
for the T cell suppression assay may have limited relevance for the HC as the CXCR2 and 
CXCR4 ratio is lower in HC compared to invasive BC patients.

One possible scenario for this observation is that factors secreted from tumor cells stimulate 
the overexpansion of chemokines in MDSCs, and recruited Mo-MDSCs promote tumor cell 
survival and invasion. Therefore, a disruption of this vicious cycle may hold great promise for 
enhancing treatment efficacy for cancer. Further studies are required in order to elucidate the 
impact that invasive BC have on the Mo-MDSC population.

Reports also indicate that a co-inhibition of CXCR2 and CXCR4 is more effective in reducing 
gastric cancer metastasis (33,34). It also shows that the expression of CXCR2 and CXCR4 
each other to promote the metastasis of gastric cancer (35).

In conclusion, our results also indicate that an increased level of CXCR2 and CXCR4 of Mo-
MDSCs with invasive BC.

Therefore, CXCR2 and CXCR4 may serve as a prognostic indicator in patients with invasive BC.

Based on our findings, we suggest that monitoring the chemokines and chemokine receptors 
of Mo-MDSC levels in BC patients may represent a novel and simple biomarker for assessing 
disease progression.
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