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ABSTRACT Characterizing the distribution of fitness effects (DFE) for newmutations is central in evolutionary
genetics. Analysis of molecular data under the McDonald-Kreitman test has suggested that adaptive
substitutions make a substantial contribution to between-species divergence. Methods have been proposed
to estimate the parameters of the distribution of fitness effects for positively selected mutations from the
unfolded site frequency spectrum (uSFS). Such methods perform well when beneficial mutations are mildly
selected and frequent. However, when beneficial mutations are strongly selected and rare, they may make
little contribution to standing variation and will thus be difficult to detect from the uSFS. In this study, I analyze
uSFS data from simulated populations subject to advantageousmutations with effects on fitness ranging from
mildly to strongly beneficial. As expected, frequent, mildly beneficial mutations contribute substantially to
standing genetic variation and parameters are accurately recovered from the uSFS. However, when
advantageous mutations are strongly selected and rare, there are very few segregating in populations at
any one time. Fitting the uSFS in such cases leads to underestimates of the strength of positive selection and
may lead researchers to false conclusions regarding the relative contribution adaptive mutations make to
molecular evolution. Fortunately, the parameters for the distribution of fitness effects for harmful mutations
are estimated with high accuracy and precision. The results from this study suggest that the parameters of
positively selected mutations obtained by analysis of the uSFS should be treated with caution and that
variability at linked sites should be used in conjunction with standing variability to estimate parameters of the
distribution of fitness effects in the future.
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Characterizing the distribution of fitness effects for beneficial muta-
tions is central in evolutionary biology. The rate and fitness effects of
advantageous mutations may determine important evolutionary
processes such as how variation in quantitative traits is maintained

(Hill 2010), the evolution of sex and recombination (Otto 2009) and
the dynamics of evolutionary rescue in changing environments (Orr
and Unckless 2014). However, despite its central role in evolution,
relatively little is known about the distribution of fitness effects (DFE)
for advantageous mutations in natural populations. The DFE for
advantageous mutations can be estimated from data obtained via
targeted mutation or from mutation accumulation experiments (e.g.,
Bank, Hietpas, Wong, Bolon, & Jensen 2014; Böndel et al., 2019;
reviewed in Bailey & Bataillon 2016), but such efforts may be limited
to laboratory systems. Alternatively, estimates of the DFE can be
obtained for natural systems using population genetic methods.

When natural selection is effective, beneficial alleles are promoted
to eventual fixation while deleterious variants are maintained at low
frequencies. Migration, mutation, selection and genetic drift interact
to shape the distribution of allele frequencies in a population (Wright
1937). Parameters of the DFE for both advantageous and deleterious
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mutations can be estimated by modeling population genomic data,
specifically the site frequency spectrum (SFS). The SFS is the distri-
bution of allele frequencies present in a sample of individuals drawn
from a population. By contrasting the SFS for a class of sites expected
to be subject to selection with that of a neutral comparator, one can
estimate the parameters of the DFE if selected mutations are segre-
gating in the population of interest (reviewed in Eyre-Walker &
Keightley 2007). Typically, the DFE for nonsynonymous sites in
protein coding genes is estimated using synonymous sites as the
neutral comparator. Several methods have been proposed that esti-
mate the DFE for deleterious mutations from the SFS under the
assumption that beneficial mutations contribute little to standing
genetic variation (e.g., Barton & Zeng 2018; Boyko et al., 2008;
Keightley & Eyre-Walker 2007; Tataru, Mollion, Glemin, & Bataillon
2017).

The DFE for deleterious mutations can be used when estimating
a, the proportion of between-species divergence attributable to
adaptive evolution (Eyre-Walker and Keightley 2009). a can be
estimated by rearranging the terms of the McDonald-Kreitman test
(MK-test), which assesses the extent of positive selection. Under
strong purifying selection, the ratio of divergence at nonsynonymous
sites (dN) to that of synonymous sites (dS) should be exactly equal
to the ratio of nucleotide diversity at nonsynonymous (pN) and
synonymous sites (pS)(McDonald and Kreitman 1991). Adap-
tive evolution of protein sequences may contribute to dN such that dN
/dS.pN/pS. Charlesworth (1994) suggested rearranging the terms of
the MK-test to estimate the excess dN due to positive selection (a) as

a ¼ 1��dSpN=dNpS

Slightly deleterious alleles may contribute to both standing genetic
variation and between-species divergence, estimates of a may there-
fore be refined by subtracting the contribution that deleterious alleles
make to both polymorphism and divergence and this can be calcu-
lated using the DFE for harmful mutations (Eyre-Walker and
Keightley 2009). Application of such methods to natural populations
suggest that a is of the order of 0.5 in a large variety of animal taxa
(Galtier 2016). However, if adaptive evolution is as frequent as
MK-test analyses suggest, the assumption that advantageous alleles
contribute little to standing variation may be violated and ignoring
them could lead to biased estimates of the DFE (Tataru et al. 2017).

When advantageous alleles contribute to standing variation,
parameters of the DFE for both deleterious and beneficial mutations
can be estimated from the SFS (Schneider et al., 2011; Tataru et al.,
2017). When data from an outgroup species are available, variable
sites within a focal species can be polarized as either ancestral or
derived and the unfolded SFS (uSFS) can be obtained. Inference of
ancestral/derived states is, however, potentially error-prone
(Keightley & Jackson 2018). The uSFS is a vector of length 2n, where
n is the number of diploid genome copies sampled. The ith entry of the
uSFS is the count of derived alleles observed at a frequency i in the
sample. Note that when outgroup data are not available, alleles cannot

be polarized and the distribution of minor allele frequencies (known
as the folded SFS) is analyzed. There is limited power to detect positive
selection from the SFS, so the DFE for beneficial mutations is often
modeled as a discrete class of mutational effects, with one parameter
specifying the fitness effects of beneficial mutations, ga = 2Nesa where
Ne is the effective population size and sa is the positive selection
coefficient in homozygotes, and another specifying the proportion of
new mutations that are advantageous, pa. Estimates of ga and pa for
nonsynonymous sites have only been obtained a handful of species,
and these are summarized in Table 1. The positive selection param-
eter estimates that have been obtained for mice and Drosophila are
fairly similar (Table 1). Note that the estimates for humans obtained
by Castellano et al., (2019) did not provide a significantly greater fit to
the observed data than did a model with no positive selection.
Furthermore, Castellano et al., (2019) estimated the parameters for
numerous great ape species, the parameters shown for humans are
representative of the estimates for all taxa they analyzed.

Depending on the rate and fitness effects of beneficial mutations,
different aspects of population genomic data may be more or less
informative for estimating the parameters of positive selection. As
beneficial mutations spread through populations, they may carry
linked neutral variants to high frequency, causing selective sweeps
(Barton 2000). On the other hand, if advantageous mutations have
mild fitness effects, they may take a long time to reach fixation and
make a substantial contribution to standing genetic variation. Because
of this, uSFS data and polymorphism data at linked sites may both be
informative for understanding the parameters of positive selection.
For example, Campos et al., (2017) used amodel of selective sweeps to
analyze the negative correlation observed between dN and pS in
Drosophila melanogaster and estimated ga = 250 and pa = 2.2 · 1024,
but this method assumes a constant population size. An analysis of
the uSFS from the same dataset that modeled population size change
yielded estimates of ga = 23 and pa = 0.0045 for nonsynonymous sites
(Keightley et al., 2016). The sharp contrast between the two studies’
estimates of the positive selection parameters may due to different
assumptions but could potentially be explained if the DFE for
advantageous mutations in D. melanogaster is bimodal. If this were
so, the different methods (i.e., sweep models vs. uSFS analysis) may be
capturing distinct aspects of the DFE for advantageous mutations, or
it could be that both models are highly unidentifiable. The handful of
studies that have attempted to estimate ga and pa from the uSFS have
yielded similar estimates of positive selection (Table 1), which may
indicate commonalities in the DFE for beneficial mutations across
taxa. On the other hand, uSFS analyses may have only found evidence
for mildly beneficial mutations because the approach is only powered
to detect weakly beneficial mutations. Indeed, verbal arguments have
suggested that rare strongly selected advantageous mutations, which
may contribute little to standing variation, will be undetectable by
analysis of the uSFS (Booker & Keightley 2018; Campos et al., 2017).

The studies describing the two most recently proposed methods
for estimating the DFE for beneficial mutations from the uSFS

n■ Table 1 Estimates of the parameters of positive selection obtained from the uSFS for nonsynonymous sites

Common name Scientific name ga pa Reference Method useda

House mouse Mus musculus castaneus 14.5 0.0030 Booker & Keightley, (2018) DFE-alpha
Fruit fly Drosophila melanogaster 23.0 0.0045 Keightley et al., (2016) DFE-alpha
Humans Homo sapiens 0.0064b 0.000025 Castellano et al., (2019) polyDFE

a
DFE-alpha implements the analysis methods described by Schneider et al., (2011), polyDFE implements the methods described by Tataru et al., (2017)

b
Castellano et al., (2019) estimated the mean fitness effect for an exponential distribution of advantageous mutational effects.
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(Schneider et al. 2011; Tataru et al. 2017) performed extensive
simulations and their analysis methods worked well for parameter
ranges tested. However, neither study tested the case of rare advan-
tageous mutations with strong effects on fitness. Testing this case is
important, as studies that have analyzed patterns of putatively neutral
genetic diversity across the genome have indicated that the DFE for
advantageous mutations contains strongly beneficial mutations in a
variety of taxa (Booker & Keightley 2018; Campos et al., 2017;
Elyashiv et al., 2016; Nam et al., 2017; Uricchio et al., 2019). Note
that Tataru et al., (2017) did simulate a population subject to frequent
strongly beneficial mutations (ga = 800 and pa = 0.02), but the
parameter combination they tested may not be biologically relevant
as the proportion of adaptive substitutions it yielded was far higher
than is typically estimated from real data (a = 0.99). The limited
parameter ranges tested in the simulations performed by Schneider
et al., (2011) and Tataru et al., (2017) leave a critical gap in our
knowledge as to how uSFS based methods perform when advanta-
geous mutations are strongly selected and infrequent.

In this study, I use simulated datasets to fill this gap and examine
how uSFS-based analyses perform when beneficial mutations are
strongly selected and rare. I simulate populations subject to a range of
positive selection parameters, including cases similar to those mod-
eled by Tataru et al., (2017) and cases where beneficial mutations are
strongly selected but infrequent. It has been pointed out that esti-
mating selection parameters by modeling within species polymor-
phism along with between-species divergence makes the assumption
that the DFE has remained invariant since the ingroup and outgroup
began to diverge (Tataru et al. 2017). By analyzing only the poly-
morphism data, one can potentially avoid that problematic assump-
tion. Using the state-of-the-art package polyDFE v2.0 (Tataru and
Bataillon 2019), I analyze the uSFS data and estimate selection
parameters for all simulated datasets with or without divergence.
The results from this study suggest that, when beneficial mutations
are strongly selected and rare, analysis of the uSFS results in spurious
parameter estimates and the proportion of adaptive substitutions may
be poorly estimated.

METHODS

Population genomic simulations
I tested the hypothesis that the parameters of infrequent, strongly
beneficial mutations are difficult to estimate by analysis of the uSFS
using simulated datasets. Wright-Fisher populations of Ne = 10,000
diploid individuals were simulated using the forward-in-time package
SLiM (v3.2; Haller & Messer 2019). Simulated chromosomes con-
sisted of seven gene models, each separated by 8,100bp of neutrally
evolving sequence. The gene models consisted of five 300bp exons
separated by 100bp neutrally evolving introns. The gene models
were based on those used by Campos & Charlesworth, (2019), but
unlike that study, I did not model the untranslated regions of genes.
Nonsynonymous sites were modeled by drawing the fitness effects for
2/3rds of mutations in exons from a distribution of fitness effects
(DFE), while the remaining 1/3 were strictly neutral and used to
model synonymous sites. The fitness effects of nonsynonymous
mutations were beneficial with probability pa or deleterious with
probability 1 – pa. Beneficial mutations had a fixed selection coefficient
of ga = 2Nesa. The fitness effects of deleterious mutations were drawn
from a gamma distribution with a mean of gd = 2Nesd = -2,000 and a
shape parameter ofb = 0.3 (sd being the negative selection coefficient in
homozygotes). The gamma distribution of deleterious mutational
effects was used for all simulated datasets and was based on results

for nonsynonymous sites in Drosophila melanogaster (Loewe and
Charlesworth 2006). Uniform rates of mutation (m) and recombi-
nation (r) were set to 2.5 · 1027 (giving 4Ner = 4Nem = 0.01). Note
that m and r are far higher than is biologically realistic for most
eukaryotes, I scaled up these rates to model a population with a large
Ne using simulations of 10,000 individuals. Across simulations I
varied the ga and pa parameters and performed 2,000 replicates
for each combination of parameters. Thus, I simulated a dataset of
21Mbp of coding sequence for each combination of ga and pa tested.

In this study, I assumed a discrete class of beneficial mutational
effects, which is likely unrealistic for real organisms. Theoretical
arguments have been proposed that the DFE for beneficial mutations
that go to fixation should be exponential (Orr 2003). However, the
studies that have estimated the DFE for beneficial mutations from
population genetic data have often modeled discrete classes of effects
(Campos et al., 2017; Elyashiv et al., 2016; Keightley et al., 2016;
Uricchio et al., 2019). I chose to model discrete selection coefficients
in the simulated datasets in order to better understand the limitations
of the methods rather than to accurately model the DFE for beneficial
mutations.

To model the accumulation of nucleotide substitutions after the
split of a focal population with an outgroup, I recorded all substi-
tutions that occurred in the simulations. Campos & Charlesworth,
(2019) analyzed simulations very similar to those that I performed in
this study and showed that populations subject to beneficial muta-
tions with ga = 250 and pa = 0.0002 took 14Ne generations to reach
mutation-selection-drift equilibrium. In this study I modeled a range
of positive selection parameters, so to ensure that my simulations
reached equilibrium I performed 85,000 (34Ne) generations of bur-
n-in before substitutions were scored. The expected number of
neutral nucleotide substitutions that accumulate per site in T gen-
erations is dNeutral = Tm. The point mutation rate in my simulations
was set to m = 2.5 · 1027per site per generation, so I ran the
simulations for 200,000 generations beyond the end of the burn-in
phase to model a neutral divergence of dNeutral = 0.05. All variants
present in the population sampled at a frequency of 1.0 were also
scored as substitutions.

Using the 2,000 simulated datasets, I constructed 100 bootstraps
by sampling with replacement. From each bootstrap sample, I
collated variants and constructed the uSFS for synonymous and
nonsynonymous sites for 20 diploid individuals.

Analysis of simulation data
I calculated several summary statistics from the simulated datasets. First,
I calculated pairwise nucleotide diversity at synonymous sites (ps) and
expressed it relative to the neutral expectation of p0 = 4Nem = 0.01.
Second, divergence at nonsynonymous sites for both advantageous (dNa)
and deleterious mutations (dNd) was used to calculate the observed
proportion of adaptive substitutions, aObs = dNa/(dNa + dNd). Finally, I
recorded the total number of beneficial mutations segregating in sim-
ulated populations, SAdv, as well as the total number of segregating
nonsynonymous sites (S).

I estimated DFEs from simulated data by analysis of the uSFS
using polyDFE (v2.0; Tataru & Bataillon 2019). polyDFE fits an
expression for the uSFS expected under a full DFE to data from
putatively neutral and selected classes of sites and estimates param-
eters by maximum likelihood. For each set of positive selection
parameters, simulated uSFS data were analyzed under “Model B”
in polyDFE (a gamma distribution of deleterious mutational effects
plus a discrete class of advantageous mutations). Initial parameters
for the maximization were calculated from the data using the ‘-e’
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option and the uSFS was analyzed either with or without divergence
using the “-w” option in polyDFE. Analyzing the uSFS without
divergence causes the selection parameters to be inferred from
polymorphism data alone. For each replicate, I tested whether the
inclusion of beneficial mutations in the DFE improvedmodel fit using
likelihood ratio tests between the best-fitting model and a null model
with pa set to 0.0. Setting pa = 0.0 means that positive selection does
not influence the likelihood, so two fewer parameters are being
estimated. Twice the difference in log-likelihood between the full
DFE model and the null model with pa = 0.0 was tested against a x2

distribution with 2 degrees of freedom. Likelihood surfaces were
estimated by running polyDFE using a grid of fixed values for DFE
parameters. Finally, positive selection parameters obtained under
both the null model (pa = 0.0) and the best-fitting alternative model
were combined using model averaging using weights determined
from each model’s Aikeike Information Criteria (AIC). Model aver-
aging was performed using the “postprocessing.R” script distributed
with polyDFE v2.0.

Data availability
All code and SLiM configuration files needed to reproduce the results
shown in this study are available at https://github.com/TBooker/
PositiveSelection_uSFS. Supplemental material available at figshare:
https://doi.org/10.25387/g3.12233630.

RESULTS

Population genomic simulations
I performed simulations that modeled genes subject to mutation-
selection-drift balance with fitness effects drawn from a distribution
that incorporated both deleterious and advantageous mutations.
The DFE for harmful mutations was constant, but I varied the
fraction (pa) and fitness effects (ga) of beneficial mutations across
simulated datasets (Table 2). For each set of advantageous mutation
parameters, 21Mbp of coding sequences was simulated, of which
14Mbp were nonsynonymous and 7Mbp were synonymous sites.
Variants present in the simulated populations were used to con-
struct the uSFS for a sample of 20 diploid individuals (Figure S1), a
sample size which is fairly typical of current population genomic
datasets (e.g., Castellano et al., 2019; Laenen et al., 2018; Williamson
et al., 2014).

Across simulations, the strength of selection acting on advanta-
geous mutations ranged from ga = 10 to ga = 1,000. For a given pa
parameter, increasing the strength of selection increased the observed
proportion of adaptive substitutions, aObs (Figure 1A). This is
expected and is due to the monotonic increasing relationship between
fixation probability and the strength of positive selection first de-
scribed by Haldane (1927). Additionally, parameter combinations for
which gapa were equal had similar proportions of adaptive substi-
tutions, for example compare ga = 10 and pa = 0.01 to ga = 1,000 and
pa = 0.0001 (Figure 1A). This was also expected because the rate of
adaptive substitutions is proportional to gapa. In some datasets,
particularly when pa = 0.01 and advantageous mutations were very
strongly selected (i.e., ga $ 500), aObs exceeded 0.75, which is higher
than is typically estimated from empirical data (Galtier 2016), so these
parameter combinations may not be biologically relevant.

The effects of selection at linked sites varied across simulated
datasets. The DFE for deleterious mutations was kept constant across
simulations, so the extent of background selection should be fairly
similar across all parameter sets and thus variation in pS/p0 reflects
the effects of selective sweeps. Under neutrality pS/p0 had an
expected value of 1.0 and I found that selection at linked sites reduced
nucleotide diversity below that expectation in all simulations (Figure
1B). Increasing the fitness effects or frequency of advantageous
mutations had a strong effect on genetic diversity at synonymous
sites, as shown by pS/p0 in Figure 1B. The highlighted points in
Figure 1 indicate parameter combinations for which gapa = 0.01. As
expected, aObs for these three parameter sets was very similar (Figure
1A). Figure 1B shows that pS/p0 decreased across these three param-
eter combinations as the strength of positive selection increased.
Finally, differences in pa explained most of the variation in the pro-
portion of segregating advantageous mutations (SAdv./S) across simu-
lated datasets, but SAdv./S. also increased with the strength of positive
selection (Figure 1C). From these results, it is clear that there will be
lower power to estimate positive selection on the basis of standing
variation when advantageous mutations are rare (i.e., pa = 0.0001) than
when they are comparatively frequent (i.e., pa = 0.01).

Analysis of the unfolded site frequency spectrum
Figure 2 shows the observed (bars) and expected (lines) distribution
of derived allele frequencies for beneficial mutations segregating in

n■ Table 2 Parameters of positive selection assumed in simulations and the proportion of polyDFE runs for which modeling positive
selection gave a significantly better fit to the data

ga pa ga pa

Proportion of likelihood ratio tests significant Proportion of analyses with gradient , 0.01

With divergence Without divergence With divergence Without divergence

10 0.0001 0.001 0.02 0.07 0.11 0.71
50 0.005 0.98 0.86 0.10 0.77
100 0.01 0.98 0.02 0.03 0.58
500 0.05 1.00 0.39 0.00 0.99
1,000 0.10 1.00 1.00 0.00 0.71

10 0.001 0.01 0.99 0.96 0.15 0.71
50 0.05 1.00 1.00 0.06 0.98
100 0.10 1.00 1.00 0.00 0.97
500 0.50 1.00 1.00 0.00 0.94
1,000 1.00 1.00 1.00 0.00 0.71

10 0.01 0.10 1.00 1.00 0.03 0.80
50 0.50 1.00 1.00 0.02 0.99
100 1.00 1.00 1.00 0.02 0.95
500 5.00 1.00 1.00 0.00 0.72
1,000 10.0 1.00 1.00 0.00 0.41
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simulated populations. The three panels of Figure 2 correspond to
three parameter combinations for which gapa = 0.01 (ga = 1,000 and
pa = 0.0001, ga = 100 and pa = 0.001 and ga = 10 and pa = 0.01). The
lines in each of the panels of Figure 2 show the analytical expectation
for the uSFS of advantageous mutations calculated using Equation
2 from Tataru et al., (2017). The analytical expectation closely
matches the observed data for all three combinations (Figure 2).
However, for a given value of pa, the analytical expectation for models
with increasing fitness effects were very similar, which likely makes it
difficult to distinguish them on the basis of polymorphism alone
(Figure 2). For the three parameter sets shown in Figure 2, the overall
contribution that advantageous alleles make to the uSFS for non-
synonymous sites is small relative to deleterious ones (Figure S1).
Accurate estimation of positive selection parameters from the uSFS
requires that the distribution of advantageous alleles can be distin-
guished fromdeleterious variants, sowhen pa is small it seems likely that
uSFS analyses will be unable to easily distinguish competing models.

When analyzing a particular uSFS dataset in polyDFE, I either
modeled the full DFE (i.e., a gamma distribution of deleterious
mutations and a discrete class of advantageous mutational effects),
or just a gamma DFE for harmful mutations (dDFE). I compared the
two models using likelihood ratio tests, which tested the null hy-
pothesis that the fit of the full DFE model is similar to that of a model
containing only deleterious mutations. For each of the combinations
of positive selection parameters shown in Table 2, I ran polyDFE on
uSFS data from 100 bootstrap replicates. When modeling the full
uSFS (i.e., with divergence), polyDFE identified models containing
positive selection consistently for all but one (pa = 0.0001 and ga = 10)
of the parameter combinations tested (Table 2). When the DFE was
inferred from polymorphism data alone (i.e., without divergence),
models containing positive selection were identified less often, par-
ticularly when beneficial mutations were rare (pa = 0.0001; Table 2).
Table 2 also shows the proportion of analysis runs for which the
gradient of the likelihood exceeded 0.1. The polyDFEmanual (Tataru
and Bataillon 2019) suggests that gradients .0 indicate that the
program has failed to identify a unique likelihood maximum. When
the full uSFS was modeled, the gradient of the likelihood was
frequently .0, indicating that the model did not converge on a
unique optimum. When modeling the uSFS without divergence,
polyDFE reported gradients ,0.01 for a large proportion of replicate
analyses (Table 2).

Figures 3A and 3B show the parameters of positive selection
estimated by analysis of uSFS from simulated datasets. I found that
when simulated beneficial mutations were mildly advantageous
(ga = 10) but relatively frequent (pa = 0.01), both ga and pa were
estimated accurately regardless of whether divergence was mod-
eled or not (Figures 3A-B). This finding is consistent with both
Schneider et al., (2011) and Tataru et al., (2017). When pa = 0.01
and ga . 10, the analysis of the uSFS with or without divergence
yielded very similar parameter estimates, but in both cases, the
strength of positive selection seemed to be positively correlated
with the estimated pa (Figure 3). In all cases, when beneficial
mutations had ga $ 50, neither ga nor pa were accurately esti-
mated (Figure 3).

Tataru et al., (2017) pointed out that, if one had an estimate of the
full DFE (i.e., with divergence), the proportion of adaptive substitu-
tions could be obtained by taking the ratio of the fixation probability
for a new beneficial mutation over the fixation probability for a
random mutation integrating over the full DFE (Equation 10; Tataru
et al., 2017). The proportion of adaptive substitutions obtained in this
way is denoted aDFE. When modeling the full uSFS, aDFE was
estimated with high accuracy, but with a slight upward bias (Figure
3C). When the DFE was inferred without divergence aDFE was
underestimated when beneficial mutations were strongly selected
and rare (Figure 3).

In the presence of infrequent, strongly beneficial mutations
the parameters of the DFE for deleterious mutations estimated by
polyDFE were very accurate (Figure S2). Estimates of the DFE for
harmful mutations were less accurate when beneficial mutations
occurred with pa $ 0.001 and ga $ 100. This is presumably because
in such cases recurrent selective sweeps eliminate a large amount of
neutral diversity and distort the distribution of standing genetic
variation at nonsynonymous sites. However, as stated above, the
parameter range where the DFE for harmful mutations was poorly
estimated in this study may not be biologically relevant.

Model Identifiability
It is very difficult to tease apart the parameters of positive selection
from the uSFS by maximum likelihood. Figure 4 shows the likelihood
surface for the three sets of positive selection parameters that satisfy
the condition gapa = 0.1. The proportion of adaptive substitutions is
largely determined by the product gapa (Kimura and Ohta 1971) and,

Figure 1 Population genetic summary statistics collated across all simulated genes. aObs is the observed proportion of substitutions fixed by
positive selection.ps/p0 is genetic diversity relative to neutral expectation (p0 = 0.01). SAdv./S is the proportion of segregating nonsynonymous sites
that are advantageous in the simulated datasets.
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as expected, the three parameter combinations shown in Figure 4 all
exhibit a similar aObs (Figure 1A). However, the extent by which
neutral genetic diversity is reduced and the number of segregating
advantageous mutations differ substantially across the three param-
eter combinations (Figure 1). The top row of panels in Figure 4 shows
that when modeling the full uSFS, the likelihood surface closely tracks
the relation gapa = 0.1. Focusing on the top panel in Figure 4A, the
maximum likelihood estimates (MLEs) of the positive selection
parameters (the red dot) are far from the true parameter values
(indicated by the plus sign), but the MLEs obtained satisfy gapa = 0.1.
The ridge in the likelihood surface observed when modeling the full
uSFS was described by both Schneider et al., (2011) and Tataru et al.,
(2017). It comes about because between-species divergence carries
information about a, and a is proportional to gapa.

Inferring the parameters of the DFE from polymorphism alone
avoids the assumption of an invariant DFE, but when doing so it may
be difficult to distinguish competing models. Indeed, across the three
parameter combinations shown, values close to the truth were only
obtained from simulated data when ga = 10 and pa = 0.01 (bottom
panel Figure 4C). In the case of ga = 1000 and pa = 0.0001, the
likelihood surface about the true parameters was very flat (Figure 4A).
Increasing the pa parameter increased likelihood for all strengths of
selection, so that the MLEs shown in Figure 4A are simply the values
with the highest pa in the range tested (the vertical red line in Figure

4A). When ga = 100 and pa = 0.001, the likelihood surface about the
estimates was steep, but the selection parameters identified by
maximum likelihood were incorrect (Figure 4B).

DISCUSSION
In this study, I analyzed simulated datasets modeling a range of
positive selection parameter combinations. I found that estimates of
positive selection parameters obtained by analysis of the uSFS were
only accurate when beneficial mutations had ga , 50, under stronger
selection the individual parameters of positive selection were not
accurately estimated (Figure 3). This is not particularly surprising and
is consistent with verbal arguments made in published studies
(Booker & Keightley 2018; Campos et al., 2017). However, it is
troubling that when beneficial mutations are strongly selected and
rare, the uSFS may often indicate a significant signal of positive
selection, but erroneous parameter estimates are obtained. If one were
to analyze an empirical dataset and estimate parameters of positive
selection of the order ga �10 and pa �0.01, it would be difficult to
know whether those were reflective of the true underlying parameters
or an artifact of strong selection.

On the basis of this study, it seems that researchers should treat
parameters of positive selection obtained by analysis of the uSFS with
caution. Schneider et al., (2011) and Tataru et al., (2017) showed that
uSFS analysis methods perform well when beneficial mutations are

Figure 2 The uSFS for advanta-
geous mutations under different
combinations of positive selec-
tion parameters. The three bar
charts show observed uSFS from
simulations that model positive
selection parameters that yield
similar a. The lines in each panel
show the expected frequency
spectra for different strengths of
beneficial mutations and were
obtained using Equation 2 from
Tataru et al., (2017).
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mildly beneficial and somewhat frequent. However, I found that
fitting the uSFS when advantageous mutations are strongly selected
and rare, models incorporating positive selection were often statis-
tically supported (Table 1), but parameter estimates obtained were
spurious (Figure 3). When fitting uSFS models to empirical data,
researchers should keep this limitation of the method in mind,
particularly when analyzing small samples, and use these results to
help build intuition about specific analyses. The expected uSFS for
advantageous mutations is very similar for DFE models that share the
same pa parameter, and in such cases differing models can only be
distinguished by the density of high frequency derived variants
(Figure 2). Polarization error when estimating the uSFS can generate
an excess in the number of high frequency derived variants (Keightley
& Jackson 2018), so may generate a spurious signal of strong positive
selection. Analysis methods have been proposed which attempt to
estimate the rate of polarization error whenmodeling the uSFS (Barton
& Zeng 2018; Tataru et al., 2017), but further study is required to

determine whether such methods reduce the signal of positive selection
in uSFS-based analyses. Accounting for positive selection when ana-
lyzing the uSFS yielded robust estimates of the DFE for harmful
mutations across the simulated datasets (Figure S2). Although I only
examined a single DFE for harmful mutations in this study, Tataru
et al., (2017) showed that polyDFE accurately recovered the parameters
of a range of DFE models if positive selection is accounted for.

Estimates of a based on analysis of the uSFS may be biased when
beneficial mutations are strongly selected and infrequent. Calculating
a using the rearranged MK-test makes the problematic assumption
that the DFE has remained invariant in the time since the focal species
began to diverge from the outgroup (Tataru et al., 2017). However,
Tataru et al., (2017) pointed out that one can avoid that assumption if
aDFE is calculated from a DFE estimated without divergence data. In
this study, estimates of aDFE obtained when the full uSFS was analyzed
were very precise, but with a slight upward bias (Figure 3). When
simulated beneficial mutations were strongly selected and rare, the

Figure 3 Estimates of the parameters
of advantageous mutations and the
proportion of adaptive substitutions
they imply from simulated datasets.
A) ga is the inferred selective effect
of a new advantageous mutation; B) pa

is the proportion of newmutations that
are beneficial, the horizontal dashed
gray lines indicate the simulated values
in each case; C) aDFE is the proportion
of adaptive substitutions expected un-
der the inferred DFE, the dashed lines
indicate aObs, the proportion of adap-
tive substitutions observed in the sim-
ulated datasets. Error bars indicate the
95% range of 100 bootstrap replicates.
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parameters inferred using polymorphism data alone (i.e., without
divergence) yielded spurious estimates of aDFE (Figure 3). When
analyzing datasets from real populations, aDFE may not capture the
contribution that strongly beneficial mutations make to molecular
evolution. This may make it difficult to contrast aDFE between species
with large differences in Ne, because the number of segregating
advantageous mutations and thus ability to accurately estimate
selection parameters will depend on the population size.

The nature of the distribution of fitness effects for natural
populations is largely unknown. In this study, I analyzed the uSFS
data under the exact DFE model that had been simulated (i.e., a
gamma distribution of deleterious mutational effects plus a discrete
class of beneficial effects). When analyzing empirical data, researchers
have to make assumptions about the probability distribution that best
describes the DFE of focal populations. A gamma distribution is often
assumed for deleterious mutations as it is flexible and is described by
only two parameters (Eyre-Walker and Keightley 2007). However,
when estimating the DFE from empirical data, one may bias their
analyses by strictly adhering to one particular family of probability
distributions (Kousathanas and Keightley 2013). When analyzing
empirical data model averaging provides a way to estimate key
features of the DFE while remaining agnostic to the exact shape of
the distribution (Tataru and Bataillon 2020). I performed model
averaging, combining parameters estimates obtained under both the
null model with no beneficial mutations with the model including
beneficial mutation parameters, applying weights that were propor-
tional to the differences in fit between the null and alternative models.
Figure S4 shows parameter estimates obtained by model averaging, it
is structured similarly to Figure 3 from the main text. For most of the
parameter combinations I tested in this study, there was significant
difference in likelihood between models with and without positive

selection (Table 1). Because of that, models with positive selection
were given greater weightings in the model averages and there was
little impact of the averaging on parameter estimates (Figure S4).
Note, however, that the discrete class of beneficial mutations I
simulated is highly abstract and was used to explore the limits of
the uSFS analysis methods. In reality, the DFE for beneficial muta-
tions is likely continuous andmodel averaging is potentially useful for
fitting DFE models to unknown distributions.

The simulations I performed in this study generated the ideal
dataset for estimating parameters of selection from the uSFS. I
simulated 21Mbp of coding sites in which genotypes and whether
sites were selected or not was unambiguously known. When analyz-
ing real data this is not the case and researchers often have to filter a
large proportion of sites out of their analyses or choose to analyze a
subset of genes that have orthology with outgroups or other biological
properties of interest. Even with perfect knowledge, strongly bene-
ficial mutations only represented a small proportion of the standing
genetic variation at nonsynonymous sites (Figure 1, S1). In addition,
the populations I simulated were randomly mating and had constant
sizes over time. The results I present in this study suggest that even
with perfect knowledge of a population that adheres to the assump-
tions of a Wright-Fisher model, it is inherently difficult to infer the
parameters of strongly beneficial mutations from the uSFS, partic-
ularly so when beneficial mutations occur infrequently.

Estimating parameters of positive selection from the
uSFS vs. estimates from patterns of diversity
As discussed above, studies based on analysis of the uSFS and those
based on selective sweep models have yielded vastly different esti-
mates of the parameters of positive selection. Patterns of neutral
genetic diversity in both humans and wild mice cannot be explained

Figure 4 The likelihood surface for the ga and pa parameters for three simulated datasets. Hue indicates differences in log likelihood between a
particular parameter combination and the best-fitting model. Best fitting models are indicated by red points and the true parameters are given
above the plots and indicated by the white plus signs on the likelihood surface. The relation gapa = 0.1 is shown as a turquoise line and is constant
across the three datasets shown.
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by the effects of background selection alone, and in both species it has
been suggested that strongly beneficial mutations are required to
explain the observed patterns (Nam et al. 2017; Booker and Keightley
2018). In the case of wild house mice, positive selection parameters
obtained by analysis of the uSFS do not explain dips in nucleotide
diversity around functional elements (Booker and Keightley
2018). Recently, Castellano et al. (2019) analyzed the uSFS for
nonsynonymous sites in great ape species but did not find
significant evidence for positive selection. In their dataset,
Castellano et al. (2019) had at least 8 haploid genome sequences
for each of great ape species they analyzed, and they argued that
they were underpowered to detect positive selection on the basis
of the uSFS. In this study, I analyzed datasets of 20 diploid
individuals and found that it was very difficult to accurately
capture positive selection parameters. Increasing the number of
sampled individuals even further may increase the power to
estimate the strength of positive selection, but this study suggests
that the increase in power will depend on the underlying DFE.
When pa is small, the expected number of advantageous muta-
tions present in the uSFS for 200 diploids is less than 10 for most
frequency classes when 14Mbp of nonsynonymous sites have
been used to construct the uSFS (Figure S3). Indeed, Figure S3
shows that even with very large sample sizes, the expected uSFS
for beneficial mutations are very similar and may only be
distinguished on the basis of a small number of high frequency
derived alleles. Thus, it may be that the uSFS is inherently limited
in the information it carries on the DFE for beneficial mutations
so other sources of information may have to be used to accurately
recover parameters.

In this study, I modeled beneficial mutations using a discrete class
of selection coefficients when, in reality, there is likely a continuous
distribution of fitness effects. Indeed, studies in both humans and
D. melanogaster have found evidence for a bimodal distribution
containing both strongly and weakly beneficial mutations contrib-
uting to adaptive evolution using methods which incorporate linkage
information but do not explicitly estimate selection parameters
(Elyashiv et al. 2016; Uricchio et al. 2019). There are currently no
methods that estimate the DFE using an analytical expression for the
uSFS expected under the combined effects of BGS and sweeps. Rather,
nuisance parameters or demographic models are used to correct for
the contribution that selection at linked sites may make to the shape
of the SFS (Eyre-Walker et al. 2006; Galtier 2016; Tataru et al. 2017).
However, as this study shows, the parameters of positive selection are
not reliably estimated when analyzing the uSFS alone. A way forward
may be in using computational approaches to make use of all of the
available data, while not necessitating an expression for the uSFS
expected under the combined effects of BGS, sweeps, population size
change and direct selection. An advance in this direction has recently
been made by Uricchio et al., (2019) who developed an ABC method
for estimating a which makes use of the distortions to the uSFS
generated by BGS and sweeps. By applying their method to data from
humans, Uricchio et al., (2019) found that a = 0.13 for nonsynon-
ymous sites, 72% of which was generated by mildly beneficial
mutations and 28% by strongly beneficial mutations. However, the
computational approach developed by Uricchio et al., (2019)
could readily be extended to model an arbitrarily complex DFE
for beneficial mutations. Their methods could be implemented in a
machine-learning context, with training data generated by for-
ward-simulations that capture confounding factors such as pop-
ulation structure and population size change as well as the effects
of selection at linked sites.
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