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Abstract: The prognostication of colorectal cancer (CRC) has traditionally relied on staging as defined
by the Union for International Cancer Control (UICC) and American Joint Committee on Cancer
(AJCC) TNM staging classifications. However, clinically, there appears to be differences in survival
patterns independent of stage, suggesting a complex interaction of stage, pathological features, and
biomarkers playing a role in guiding prognosis, risk stratification, and guiding neoadjuvant and
adjuvant therapies. Histological features such as tumour budding, perineural invasion, apical lymph
node involvement, lymph node yield, lymph node ratio, and molecular features such as MSI, KRAS,
BRAF, and CDX2 may assist in prognostication and optimising adjuvant treatment. This study
provides a comprehensive review of the pathological features and biomarkers that are important in
the prognostication and treatment of CRC. We review the importance of pathological features and
biomarkers that may be important in colorectal cancer based on the current evidence in the literature.
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1. Introduction

Colorectal cancer (CRC) is a common malignancy and one of the leading causes of
cancer death worldwide [1]. It represents a heterogenous group of tumours that display
diverse clinicopathological features and outcomes [2]. The prognosis of CRC patients varies
greatly between patients with 5-year survival rates ranging from 90% to 10% depending
on stage and other factors [3].

Prognostication of colorectal cancer (CRC) relies mainly on cancer stage as defined
by the Union for International Cancer Control (UICC) and American Joint Committee on
Cancer (AJCC) TNM staging classification. However, there are considerable differences in
clinical outcomes and prognosis within patients of the same pathological stage, especially
within the intermediate stages of CRC (stages II and III) [4,5]. Further risk stratification
may be important to identify patients at a high risk of recurrence or metastases and to
guide prognosis and management.

Histological features, such as tumour budding, perineural invasion, apical lymph
node positivity, lymph node yield, lymph node ratio, and molecular features such as
microsatellite instability (MSI), Kirsten rat sarcoma virus (KRAS), v-RAF murine sarcoma
viral oncogene homolog B (BRAF), and caudal type homeobox 2 transcription factor (CDX2)
have been used to guide prognostication and optimise adjuvant treatment, but there is no
consensus on their role. This review summarises the available evidence in the literature
pertaining to pathological features and biomarkers that are important in the prognostication
of CRC patients.

2. Literature Search

Two databases (MEDLINE and Embase) were searched using the following search
strategy: “colorectal cancer” or “colorectal neoplasms”, “tumour stage”, “nodal stage”,
“metastasis” or “distant metastasis”, “tumour size”, “BRAF” or “BRAF mutation”, “KRAS”

Curr. Oncol. 2021, 28, 5356–5383. https://doi.org/10.3390/curroncol28060447 https://www.mdpi.com/journal/curroncol

https://www.mdpi.com/journal/curroncol
https://www.mdpi.com
https://orcid.org/0000-0002-7617-8214
https://doi.org/10.3390/curroncol28060447
https://doi.org/10.3390/curroncol28060447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/curroncol28060447
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com/article/10.3390/curroncol28060447?type=check_update&version=2


Curr. Oncol. 2021, 28 5357

or “KRAS mutation”, “tumour budding”, “tumour location”, “tumour infiltrating lym-
phocytes”, “CDX2 mutation”, “lymph node yield”, “lymph node ratio”, “apical lymph
node status”, “perineural invasion”, “circumferential resection margin”, “tumour grade”,
“lymphovascular invasion” and “prognosis”. After excluding non-relevant studies, 1447 ab-
stracts were identified through MEDLINE and Embase and additional studies were found
from hand-searching references, with 276 studies included in this review.

3. Pathological Features
3.1. Overview

In this study, pathological features have been divided into the TNM stage, molecular
biomarkers, and histological features. TNM staging classification include tumour stage,
nodal stage, and distant metastasis. TNM is the most important pathological classification
in all international CRC guidelines [1,2,6–10].

Molecular biomarkers, include KRAS, BRAF, MSI, and CDX2. Alongside Consensus
Molecular Subtypes (CMS), a gene transcriptome-based classification system defining four
disease entities of CRC (CMS 1–4) and capturing CRC heterogeneity at the genetic level [11],
studies have shown that the combination of molecular biomarkers with CMS has the po-
tential to predict response to both chemotherapy and immunotherapy in CRC [11–13].
Furthermore, KRAS mutations, BRAF V600E mutations, MSI, and the CpG island methyla-
tor phenotype (CIMP) status [12,14] are closely correlated with CMS. The above molecular
biomarkers have been reviewed in this study but as CMS is a genetic rather than pathologi-
cal classification, CMS was beyond the scope of this study.

Histological features include tumour size, tumour budding, tumour infiltrating lym-
phocytes (TIL), lymph node yield (LNY), lymph node ratio (LNR), apical lymph node (ALN)
status, perineural invasion (PNI), circumferential resection margin (CRM), lymphovascular
invasion, and tumour grade.

3.2. TNM Stage

Following the diagnosis of CRC, clinical and pathological staging is essential to
determine the local and distant extent of disease, which in turn provides a framework
for determining prognosis and therapy. The AJCC-UICC tumour node metastasis (TNM)
staging system (8th edition, 2017) remains the gold standard for the prognostication
of newly diagnosed CRC. Originally developed to predict prognosis in 1968, the TNM
staging system has since expanded in scope to guide management, which is reflected in
numerous international guidelines [15]. The TNM system classification provides strong
prognostication for patients with early (stage I) and late (stage IV) disease. For patients
with stage II and III disease however, there is more heterogeneity in their prognosis and
outcomes [2].

3.2.1. Tumour (T) Staging

Tumour staging in CRC has been shown to independently and negatively influence
survival [16–24]. In multiple population-based studies, a higher T stage is associated with
worse 5-year overall survival (OS) (T3 87.5%, T4 71.5%) [20,22,23,25], declining to 46% in
T4b tumours [26]. A higher T stage is also correlated with poorer disease-free survival
(DFS) [27,28] and relapse [20–22,24]. Tsikitis et al. demonstrated a three-fold increased risk
of recurrence in T4 tumours compared with T3 tumours [29]. Higher T stage is associated
with increased incidence of nodal metastasis, distant metastasis, and diagnosis in the
emergent setting [20,24,30].
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3.2.2. Nodal (N) Staging

Regional lymph node involvement is considered the second strongest predictor of
outcome in CRC, after distant metastatic spread [20,21,25,31,32]. Regional lymph node in-
volvement is associated with the T stage and histological grade of the primary tumour [33].
Five-year OS in node positive patients ranges from 30–60%, compared to 70–90% in node
negative disease [34,35]. Recurrence rates in node positive CRC patients are around
30–35% [36,37], with the majority of recurrences occurring in the first three years following
surgical resection [37]. A higher count of involved lymph nodes and reduced lymph node
yield (<12) is associated with a worse prognosis [6,38–40].

The AJCC-UICC TNM classification stratifies nodal involvement according to the
number of involved lymph nodes [6]. While there is emerging evidence on the increasing
role of lymph node harvest [39,41], apical lymph node [42,43] and lymph node ratio [44,45],
they are not currently included in current nodal staging [6]. Nodal involvement is an indi-
cation for adjuvant therapy to reduce the risk of distant metastasis [1,10,46,47]. Adjuvant
chemotherapy decreases the absolute risk of death by 10–20% and risk of recurrence by
40% in node positive disease [1,37].

3.2.3. Metastasis (M) Staging

The presence of distant metastasis at diagnosis (stage IV) remains the strongest predic-
tor of prognosis and outcome [6]. A total of 35 to 50% of patients present with distant metas-
tasis at diagnosis, and this confers a 5-year OS of less than 10% [6,48]. Chemotherapy is used
mainly with palliative intent, and increases median survival from 5 to 18 months [49,50].
The most common site of distant spread is the liver due to the portal venous drainage of
the intestinal tract, followed by lungs, bone, and other sites [51–53]. Distal rectal tumours
may initially metastasize to the lungs as the inferior rectal veins drain directly into the
inferior vena cava rather than the portal venous system [51–53].

Core Tip: TNM classification is the most commonly used system for prognostication
and to guide adjuvant therapy.

3.3. Molecular Biomarkers
3.3.1. BRAF

BRAF is a proto-oncogene that encodes the B-RAF protein kinase, a vital component
of the mitogen-activated protein kinase (MAPK) pathway [54]. The MAPK pathway in turn
plays an essential role in cellular proliferation, differentiation, survival, and apoptosis [55].
BRAF mutation (BRAF-mt) occurs in approximately 11% of all CRC, and plays a key role
in tumorigenesis [54,56]. While there are around 30 different BRAF mutations, the V600E
mutation is most common, accounting for 90% of all BRAF mutations in CRC [57]. The
importance of the BRAF status on prognostication of colorectal cancer remains controver-
sial [14,58,59], though current evidence leans towards poor prognostication [54,56,60–64].
Patients with BRAF-mt CRC tend to be female and older in age at diagnosis. There is an
association with poor differentiation, mucinous histology, and proximal location in the
colon [55,56,65]. Its utility in prognostication varies according to stage, [56,66,67] and may
be affected by the MSI status [60–63].

The evidence for BRAF mt as a poor prognostic indicator is strongest in metastatic
colorectal cancer (mCRC), with worse OS and resistance to EGFR inhibitors [66,68–71].
A pooled analysis of the CAIRO [72], CAIRO2 [73], COIN [74], and FOCUS [75] stud-
ies by Venderbosch et al. in 2014 highlighted worse OS in BRAF-mt mCRC (HR: 1.91;
95% CI 1.66–2.15) and worse progression free survival (PFS) [66]. This is reflected in multi-
ple other studies [65,68,76]. In stage I CRC, there is little evidence that BRAF-mt influences
survival [67].
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The most significant area of contention lies in stage II and III CRC. Large population
studies show mixed evidence but suggest that BRAF is associated with worse progno-
sis [14,77]. MSI status may influence the utility of BRAF in prognostication. There is
conflicting evidence on the relationship between BRAF, MSI, and prognosis [61,63,64]. A
2017 retrospective analysis of the results from the PETACC8 [78] and N0147 [79] trials by
Taieb et al. showed BRAF-mt was associated with a significantly shorter time to recurrence
(TTR), shorter survival after relapse (SAR), and worse overall survival (OS) in microsatellite
stable (MSS) patients (but not MSI patients) with stage III disease [63]. In contrast, a 2016
study by Cuba et al. showed BRAF-mt to be an independent poor prognostic factor in stage
II and III MSI disease with regards to CSS but not OS [64]. Further studies suggest BRAF-mt
is an independent risk factor for poor prognosis, unaffected by MSI status [80–82]. In a 2017
retrospective study, Li et al. examined the effect of BRAF-mt on stage II CRC patients who
were not treated with chemotherapy, and showed BRAF-mt to be an independent risk factor
for poor prognosis, but interestingly did not find the MSI status to influence prognosis. In
this cohort of stage II CRC patients, the authors found that combining the BRAF mutation
status with KRAS and PIK3CA mutational status increased the sensitivity in predicting
PFS and OS compared to the BRAF mutation alone (ROC AUC 0.65 p < 0.002 vs. ROC AUC
0.54 p = 0.392) [81]. Thus, the accuracy of prognostication may be increased when BRAF
testing is considered in combination with other biomarker tests (KRAS and PIK3CA) [81].
BRAF-mt in high MSI (MSI-H) CRC usually indicates sporadic CRC whereas patients with
MSI-H BRAF wild type (BRAF-wt) CRC should be tested for Lynch Syndrome [1,9].

Core Tip: BRAF mutation is currently listed as an additional prognostic factor in
AJCC-UICC staging guidelines [6]. Current ESMO [1], NICE (UK) [8], and Australian [83]
guidelines do not recommend routine BRAF testing in non-metastatic CRC patients, except
in MSI-H CRC to distinguish between sporadic and familial (Lynch syndrome) cases. In
metastatic CRC, there is stronger evidence for the utility of BRAF testing, and this is re-
flected in current international guidelines [7,10,46,47]. The ESMO (2014), NICE (2020), and
Australian (2017) guidelines recommend testing for BRAF mutation in metastatic colorectal
cancer for prognostication and determination of response to anti-EGFR therapies [9,46,47].
BRAF-V600E mutation indicates resistance to anti-EGFR therapy. Patients with mCRC and
BRAF-V600e-mt RAS-wt tumours may benefit from the addition of BRAF inhibitors to
their adjuvant therapy [7–9,46].

3.3.2. KRAS

KRAS is a proto-oncogene that encodes for the K-Ras protein, a vital component
of the mitogen-activated protein kinase (MAPK) pathway [84]. KRAS mutation (KRAS-
mt) occurs in approximately 40% of all CRC, with a reduced prevalence in the African
population (approximately 21%) [85]. KRAS mutations contribute to unregulated cell
growth, ultimately leading to the expansion of tumour cell growth [85,86]. KRAS mutations
allow cancer cells to grow in lower glucose concentrations than those required for the
growth of normal cells [87].

While KRAS mutations are a strong predictor of resistance to anti-EGFR therapies, [88]
their role in prognostication remains unclear, especially for stage II and III CRC [89].
KRAS-mt CRC patients tend to be female, of mucinous histology and are more likely to be
right-sided tumours [90,91]. Some evidence suggests the tendency for poor prognostication
may be affected by the MSI status [63,91]. Overall, the evidence in the non-metastatic
setting remains inconsistent [85,89,92,93].

In the metastatic setting, with KRAS-mt has been associated with a lower OS and
relapse-free survival (RFS) [92,94–96]. A pooled analysis of 1239 mCRC patients demon-
strated reduced OS (HR 1.41, p < 0.001) and PFS (HR 1.2, p = 0.03) compared to the KRAS
wild type (KRAS-wt) cohort [71]. KRAS-mt mCRC are resistant to anti-EGFR therapy, and
this likely contributes to their worse prognosis [88,92].
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In the non-metastatic setting, the evidence is less than clear. The QUASAR study
found KRAS was associated with an increased risk of recurrence [97]. The 1998 RASCAL
population-based study found that only KRAS mutations of pG12V on Codon 12 were
significantly associated with poorer OS and DFS [98]. This was verified by the RASCAL II
study in 2001 [99]. The N0147 trial in 2014 examining stage III CRC patients undergoing
FOLFOX +/− cetuximab showed that KRAS mutations in both codon 12 and 13 were
associated with a reduction in DFS [79]. While KRAS-mt CRC are more likely to be right-
sided, there have been some studies that have demonstrated that KRAS may be associated
with reduced survival in left-sided CRC (not right-sided) [100,101].

There may be an interaction between the KRAS and MSI status. Nash et al. reported
significantly higher mortality in patients with MSS KRAS-mt, with a 5-year OS of 55% in
KRAS-mt compared with 68% in KRAS-wt. However, this association was significant only
in stage I and II disease, and lost its significance in stage III and IV disease [90]. These
findings have been supported by the results of the studies by Eklof et al. and Taieb et al.,
who found reduced CSS in the KRAS-mt MSS cohort [63,102]. However, a study by de
Cuba et al. reported the opposite, suggesting that MSI-H KRAS-mt CRC patients were
associated with significantly reduced CSS [64].

There have also been studies that have reported that KRAS has no prognostic influence.
Roth et al. found no impact on OS (HR = 1.05; 95% CI: 0.85–1.28; p = 0.66) and RFS
(HR = 4.99; 95% CI: 0.65–3.91; p = 0.31), even when patients were stratified by stage or MSI
status [91]. These findings were replicated in other studies [84,97,103,104]. Overall, the true
prognostic role of KRAS mutation in CRC survival remains uncertain and is not currently
used to guide prognosis or adjuvant therapy in the non-metastatic setting.

Core Tip: KRAS mutation is currently listed as an additional prognostic factor in
AJCC-UICC staging guidelines [6], NICE [47], Australian Cancer Care [9], and ESMO [46]
guidelines on colorectal cancer. KRAS testing is important in patients with mCRC as KRAS-
mt tumours do not respond to anti-EGFR adjuvant therapy [7–9,46]. In non-metastatic
CRC, testing for KRAS is not recommended in routine workup of CRC due to a lack of
evidence in its utility for prognostication and determination of adjuvant therapy [1,9,47].

3.3.3. MSI

MSI is characterised by frameshift mutations in microsatellite regions [105]. High
MSI (MSI-H) occurs in up to 15% of all CRCs, and occurs either due to sporadic mutation
(epigenetic inactivation of hMLH1) or in the setting of hereditary nonpolyposis colorectal
cancer/Lynch Syndrome [105]. CRC patients without MSI are usually referred to as MSS.

CRC patients with MSI-H tend to be younger, diagnosed at an earlier stage, associated
with sessile serrated type, and are more likely to be right-sided [106,107]. Histological
features associated with MSI-H include mucin producing tumours, signet-ring cell differ-
entiation, medullary carcinoma, and increased tumour-infiltrating lymphocytes (TILs).

Initially not considered as a strong prognostic factor in 1999 [108], several meta-
analyses have shown that MSI is associated with better prognosis [68,109–111] and may
be important in prognostication in CRC [4], particularly early stage CRC (especially in
stage II) [109–111]. The meta-analysis by Popat et al. examined 1277 MSI-H CRC patients
of all stages, and identified a 35% reduction in risk of overall survival (HR 0.65, 95% CI
0.59–0.71) [110]. An updated meta-analysis by Guastadisegni et al. similarly demonstrated
an improved OS, DFS, and DSS in 1972 CRC patients of all stages [111]. The protective effect
of TILs in MSI-H CRCs may be protective against dissemination [112]. The prognostic in-
fluence of MSI-H in mCRC is less well understood, [60] with several studies demonstrating
worse prognosis in the metastatic setting [66,68,113].

Several studies have reported no effect of MSI in prognostication, with some studies
showing worse prognosis [114–121]. Preclinical and clinical data have shown that MSI-H
CRCs may be resistant to 5-FU therapy, especially in the metastatic setting [109].
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Core Tips: While the main role of MSI testing is to help identify patients at risk of
Lynch syndrome, [10,46] MSI-H CRCs are immunogenic and may be important in prog-
nostication [1,7,9,10,46,47,122]. MSI status may be useful in guiding adjuvant treatment in
stage II CRC [1]. Studies have reported resistance to 5-FU therapy particularly in mCRC [9].
Immunotherapy plays an important role in MSI-H mCRC. Programmed cell death recep-
tor 1 (PD-1) and/or cytotoxic T-lymphocyte associated protein 4 (CTLA-4) inhibitors are
recommended following the failure of first line cytotoxic chemotherapy [8,9,46]. Further-
more, there is now evidence in favour of anti-PD-1 monotherapy and anti-PD-1/CTLA-4
combination therapy as a first line treatment for mCRC; this is reflected in the most recent
NCCN guidelines [7]. The introduction of immunotherapy has had a substantial impact on
OS and DFS in patients with mCRC [123].

3.3.4. CDX2

CDX2 is a homeobox gene that encodes a transcription protein factor that is a major
regulator of intestinal development and differentiation [124]. It has also been hypothesized
that CDX2 has a tumour suppressor role in the adult colon [125,126]. Currently, CDX2
is used as an immunohistochemical marker of intestinal epithelium, especially in classi-
fying cancers of an unknown origin [127]. More recently, CDX2 has been identified as
an emerging prognostic biomarker in CRC where CDX2 loss has been proven to be an
independent risk factor for reduced OS and DFS [128–130]. CDX2 is absent in around
10% of CRC cancers [130], and CDX2-negative tumours are often associated with several
adverse prognostic features, such as advanced stage, vascular invasion, poor differentia-
tion, right-sided location, CIMP, and BRAF mutation [128,131]. Loss of CDX2 expression
in CRC is associated with lower OS and DFS, independent of ethnicity, MSI status, or
stage [128–130].

A recent systematic review and meta-analysis by Tomasello et al. found that CDX2
expression was associated with 50% lower risk of death compared to poor or no CDX2
expression. This finding is more pronounced in stage II and III CRC, with up to 70% risk
reduction in OS. CDX2 expression was also associated with a 52% lower risk of disease
recurrence [129].

While several studies have demonstrated an association between loss of CDX2 expres-
sion and poor prognosis, the association has been inconsistent between studies. Bruun et al.
demonstrated that CDX2 was prognostic only in stage IV and stage III BRAF-mutated CRC
patients, and not in stage I, II, and stage III BRAF-wildtype CRC patients [132]. In stage
II CRC patients, Slik et al. showed that CDX2 loss was associated with reduced DFS and
DSS only in the MSS cohort, not the MSI-H cohort [133]. Some studies failed to find any
association between CDX2 and prognosis [134,135].

Core Tip: CDX2 is not currently used in prognostication in CRC cancer. Current
NCCN, ESMO, NICE, and Australian guidelines do not identify CDX2 as a major factor
in prognostication [1,7,9,46,47]. However, recent studies, including level 1 evidence have
reported a significant association between CDX2 loss and worse prognosis. CDX2 is a
useful immunohistochemical marker of intestinal epithelium and the presence of CDX2 in
a tumour of an unknown origin increases the likelihood of a gastrointestinal origin.

3.4. Histological Features
3.4.1. Tumour Size

Tumour size in CRC refers to the maximum diameter of the tumour specimen [136].
While it is well established and incorporated into the T staging in other solid tumours,
such as those of the breast, lung, and thyroid [6], its prognostication ability in CRC remains
controversial [137–139]. The current AJCC-UICC T staging in CRC is determined by depth
of tumour invasion through the layers of bowel wall rather than tumour size [6].
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There have been studies that have reported an association between increased tumour
size and poor prognosis [137,139–145]. A larger tumour size has been associated with
other poor prognostic features, such as higher grade, T stage, nodal metastasis, and
tumour necrosis [143,146]. In a large population-based study on patients with colon cancer
(n = 300,386), Saha et al. found patients with a tumour size >6 cm had a 46% increased risk
of overall mortality compared to a tumour size of <2 cm after adjusting for grade, nodal
status, sex, and age [143]. Similarly, in another large population-based study of colon cancer
patients (n = 128,369), Feng et al. reported that a larger tumour size increased the hazard
ratio of death, reducing overall survival (OS) (HR: 1.026; 95% CI: 1.022–1.030; p < 0.05)
and cancer-specific survival (CSS) (HR:1.037; 95% CI; 1.032–1.463; p < 0.05). Possible
reasons for difference in survival based on tumour size may have difficulties in achieving
complete resection margins in larger tumours or due to the vertical invasion mechanics of
the tumours [139].

On the other hand, several studies have reported that tumour size does not maintain
independent prognosticative ability [138,147–153]. Adverse features are not limited to
larger tumours, and smaller tumours with T4b infiltration and/or lymph node metastases
may be associated with worse prognosis regardless of tumour size [154–158].

The prognosticative ability of tumour size also seems to vary according to location.
Some studies have found a direct relationship with tumour size and poorer prognosis in
rectal cancer [140,142,159] while others have not [137,138]. One study reported that tumour
size was associated with worse OS and CSS in all CRC except tumours in the rectosig-
moid junction [140]. Kornprat et al. reports differing cutoffs for optimal prognostication
of tumour size according to anatomical location, with decreasing cutoffs from right to
left [137].

Variable size cutoffs used by different studies contribute to the ongoing heterogeneity
of evidence surrounding prognostication of tumour size in CRC [160]. There is currently
no consensus cutoff value for tumour size in international guidelines. Several studies have
suggested a tumour size cutoff of <4 cm/≥4 cm to be of prognostic value. Variable reporting
and analysis in studies assessing tumour size, such as analysis of diameter as a continuous
variable [139,141], the use of receiver operating characteristic (ROC) statistics [145], and
X-tile programming [154] have resulted in a range of results.

Core Tip: While tumour size is commonly recorded by pathologists, it is not incorpo-
rated into the current AJCC-UICC TNM staging system for CRC [6]. It does not currently de-
termine management in any international guidelines [1,7,46,47,122]. Tumour size ≥ 4 cm
may be associated with worse prognosis if associated with other adverse pathological
features or incomplete surgical margins, but there is not conclusive evidence that tumour
size alone is an independent prognostic feature.

3.4.2. Tumour Budding

Tumour budding is a histological finding that represents the dissociation of malignant
cells from the invasive front of the tumour [161]. A tumour bud is defined as a cluster of one
to four tumour cells at the invasive front of CRC, and is reported using a three tier system
based on the normalised number of tumour buds [162]. Recent studies have reported
that tumour budding may be an independent prognostic biomarker in colorectal cancer
patients. Its potential to identify high risk stage II CRC patients who would benefit from
adjuvant chemotherapy has also been reported [161–164]. The evidence and prognostic
utility in tumour budding are highest in stage I and II CRC patients, where it may allow
the identification of CRC patients at risk of nodal metastasis [165–167]. Due to its novel
nature and the relatively recent establishment of an international consensus definition,
tumour budding is not widely used in clinical practice [162]. However, the utility of
tumour budding has been recognised in some recent clinical guidelines [46,47]. Tumour
budding has also been associated with other aggressive pathological features including
nodal metastasis, competent mismatch repair (MSS), venous invasion, and poor tumour
differentiation [161,166,168].
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Several studies and systematic reviews have found tumour budding to be independently
associated with disease recurrence, cancer-related death, and reduced OS [164,168–171]. A
comprehensive review by Lugli et al. in 2020 demonstrated worse prognosis in the setting
of higher stage tumour budding in multivariate analysis (5-year DSS 89–98% vs. 52–80% in
low-grade vs. high grade BD1 vs. BD2–3) [163]. Koelzer et al. demonstrated that tumour
budding is associated with poorer OS and DFS following curative resection for stage II
CRC [161]. Similar findings have been demonstrated in patients with rectal cancer and
high grade tumour budding [172].

While the value of tumour budding in CRC prognostication seems to be most apparent
in early CRC [168], the worse prognostication of tumour budding applies to all stages of
CRC. In stage III CRC, Yamadera et al. also showed a significant association between high
grade tumour budding and chemoresistance [173]. In the metastatic setting, Nagata et al.
showed a 5-year survival rate of 18.4% for BD3 compared with 40.5% for BD 1 or 2 (HR 1.51,
p < 0.009) in patients with metastatic CRC [171].

However, several studies have shown that the prognostic significance of tumour
budding was not significant on multivariate analysis [162,174]. Sy et al. questioned the
utility of tumour budding in the prognostication in CRC patients with nodal metastases,
suggesting that once the tumour has spread to lymph nodes, the degree of tumour budding
is less important for the subsequent biological behaviour of the tumour and therefore
provides little additional prognostic information in stage III and IV disease [174].

Until recently, the application of tumour budding in clinical practice was limited by
a lack of standardised assessment and reporting methodology. In 2016, the International
Tumor Budding Consensus Conference (ITBCC) reached a consensus on an international,
evidence-based standardised scoring system for tumour budding in CRC [162]. According
to the criteria, tumour budding is stratified into three categories: BD1 (low, 0–4 buds),
BD2 (intermediate, 5–9 buds), and BD3 (high, ≥10 buds). Subsequently, the literature has
validated the association between intermediate/high grade tumour budding with adverse
clinicopathological features [162] and worse RFS and OS [163,165,167].

Strong correlations between KRAS/BRAF-mt and tumour budding have been re-
ported [175]. Furthermore, patients with mCRC with tumour budding and/or KRAS-mt
respond poorly to anti-EGFR therapy [176].

Core Tip: Tumour budding was added as a potential tumour-related prognostic factor
in the Union for International Cancer Control (UICC)’s 8th edition of TNM Classification of
Malignant Tumours in 2017, a non-core component of pathologic staging of CRC [6]. The
prognostic relevance of tumour budding is reflected in the latest publications by the Union
for International Cancer Control (UICC), as well as its inclusion in the guidelines for CRC
screening, diagnosis, and treatment in Europe and Japan [1,6,177]. ESMO guidelines have
listed tumour budding as a high risk feature (along with lymphatic or venous invasion and
grade 3 differentiation) [1]. However, tumour budding is not currently included as a high
risk adverse feature in several guidelines, including NICE guidelines [8,9].

3.4.3. Tumour Location

Right-sided and left-sided CRC have different clinical and biological profiles [178].
The right colon is derived from the embryonic mid-gut, while the left-sided colon and
rectum are derived from the hind gut [179]. There may be differences in the carcinogenic
pathway for right- and left-sided CRC [11]. Patients with right-sided CRC are more likely
to be female, have a higher median age of diagnosis, are more likely to have high grade
histology, and higher tumour stage at initial presentation compared to patients with left-
sided CRC [100,178,180,181]. Patterns of metastases also appear to differ according to
location: Right-sided CRC tend to metastasize to peritoneum and a greater proportion
of left-sided CRC has a tendency to metastasize to liver and lung [179]. The evidence
for right-sided colorectal cancer as a poor prognostic factor is strongest in metastatic
CRC (mCRC), although it may also be useful in prognostication in the non-metastatic
setting [100,158,179,181–183].
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In mCRC, studies have shown that patients with right-sided tumours have worse
than those with left-sided tumours [183–186]. The primary tumour location is predictive
of prognosis and outcome in mCRC [184,187]. A multivariate analysis of a prospective
pharmacogenetic study (PROVETTA) and two randomised phase III studies (AVF2107g
& NO16966) by Loupakis et al. in 2014 examined over 2000 patients with previously
untreated mCRC [183]. Superior OS and PFS were observed in patients with left-sided
mCRC compared with right-sided mCRC across all three studies. This was independent
of the BRAF status. A systematic review by Stintzing et al. in 2017 examined 10 studies
on mCRC, concluding that prognostication of tumour-sidedness was independent of
mutational status (KRAS and BRAF) [179]. The difference in OS according to tumour
sidedeness may be explained by the difference in recurrence patterns [188]. Peritoneal
metastasis may be more difficult to control than liver or lung metastasis [189], and worse
prognostication of right-sided CRC may be explained by its tendency to metastasize to the
peritoneum [188,189].

In the non-metastatic setting, the literature also suggested worse prognosis in right-
sided CRC. A systematic review and meta-analysis of 66 studies in 2016 by Petrelli et al.
compared the OS of right-sided CRC to left-sided CRC in over 1.4 million patients in all
stages of CRC. Left-sided CRC had improved OS compared to right-sided CRC with a
pooled HR of 0.82 (p < 0.001), independent of cancer stage, study type, and race [178]. A
population study of CRC (n = 311,239) by Zheng et al. also demonstrated poorer overall
survival in right-sided CRC (right-sided OS 56.1%, left-sided OS 60.2%, HR 1.224, p < 0.001),
regardless of stage [181]. In stage III CRC, several studies have shown right-sided CRC
to be associated with significantly shorter CSS after recurrence compared to left-sided
CRC [188,190].

BRAF/KRAS mutations are more common in right-sided CRC [178,191,192]. Studies
have found poorer OS in mutant KRAS and BRAF tumours in patients with locally ad-
vanced [193] and metastatic [95] disease. Therefore, the worse prognosis in right-sided
mCRC and stage III CRC may be partially explained by the higher incidence of KRAS and
BRAF mutations [179,191].

On the other hand, right-sided CRC may have a better prognosis in early stage
disease [158,192,194,195]. This may be due to a higher incidence of immunogenic MSI-H
CRC on the right side. A large population-based study in 2017 by Wang et al. examining
33,789 stage II CRC patients showed that overall cancer specific survival was higher in
right-sided CRC compared to left-sided CRC and rectal cancer in both univariate (86.5%
vs. 83.8% and 78.7% respectively, p < 0.001) and multivariate analysis (HR 0.642 vs. 0.760,
p < 0.0001) [195]. An analysis of 899 stage II and III CRC patients by Fukata et al. showed
improved RFS in patients with stage II right-sided CRC [194]. In a population study of
53,801 CRC patients, Weiss et al. found that right-sided stage II CRC had lower mortality
than left-sided stage II CRC (HR 0.92, p = 0.001) but higher mortality in stage III disease
(HR 1.12, p < 0.001) [196]. Similar to Weiss et al., A 2019 Japanese population-based study
demonstrated that prognosis in right-sided CRC is worse than left-sided CRC for stage III
and IV colon cancer, however is superior in stage I disease [180].

There is not a clear definition of right- and left-sided colorectal cancer. Some studies
define cancers located from the rectum to the splenic flexure colon as left-sided cancers,
whereas those from the splenic flexure colon to the cecum as right-sided cancers [195,197].
By contrast, other studies have defined right-sided cancers as involving only cecum
and ascending colon [188]. Some did not include rectal cancers as part of left-sided
CRC [180,190,196,198]. Shida et al. examined 9194 stage III CRC patients and separated
them into three groups: Rectal, left-sided, and right-sided CRC (as opposed to left- versus
right-sided). They found that RFS rates were similar between right-CRC and left-sided
CRC, and that rectal cancer had worse RFS (70%, 69.3%, and 58.4%, respectively, p < 0.001).
However, OS after recurrence was worst in right-sided CRC followed by rectum, then
left-sided colon [198].
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There are differences in biomarkers including BRAF, KRAS, and MSI in right- and
left-sided CRC. MSI-high tumours are mainly seen in the right colon and carry a favourable
prognosis and stage profile [180,188]. They are also less likely to disseminate (stage III
and IV disease) [188,199,200]. Thus, improved prognosis in early stage right-sided CRC
could be explained by a higher proportion of MSI-H patients, worse prognosis in late stage
right-sided CRC by increased BRAF-mt and KRAS-mt CRC.

Core Tip: In mCRC, tumour location has a strong prognostic value. Australian and
NCCN guidelines state that while anti-EGFR therapy is recommended in left-sided CRC,
the recommendation for anti-EGFR therapy in right-sided mCRC should be individualised
on a case-by-case basis, given its lack of proven benefit [7,9]. Primary tumour location is
not a major consideration in international guidelines in non-metastatic CRC [1,8,10,122].

3.4.4. TILS

TILs is a histological finding that represents a patient’s immunogenicity which is
believed to be protective against tumour progression [136,201]. TILs mediate recruitment,
maturation, and activation of immune cells that suppress tumour growth [202]. Subtypes of
lymphocytes reported to influence CRC outcomes include subtypes of T lymphocytes (CD3,
CD4, CD8, CD45R0, and FoxP3 cells), natural killer (NK) cells, and macrophages [203].
Studies have shown that TILs are a positive prognostic factor in CRC, independent of
traditional histologic tumour grades. High density TILs are associated with prolonged OS,
CSS, and DFS [203,204]. Higher density TILs are also associated with favourable tumour
characteristics, such as lower rates of vascular invasion, lymphatic invasion, perineural
invasion, lymph node, and distant metastases [201]. TILs have been shown to have a
positive effect on prognosis/survival [205]. CD3, CD8, and FoxP3 subtypes of TILs have
been shown to have greatest benefit in terms of prognostication [203,206].

A systematic review and meta-analysis of 43 studies by Idos et al. [203] in 2020 revealed
that higher generalised TIL density was associated with an improved OS (HR = 0.65;
95% CI, 0.58–0.77), CSS (HR = 0.58; 95% CI, 0.46–0.73), and DFS (HR = 0.72; 95% CI,
0.60–0.88). Specific subsets of lymphocytes were also analysed (CD3, CD4, CD8, CD45R0,
and FoxP3 cells) within different tumour locations (tumour center, invasive margin, and
stroma). Of all the lymphocyte subsets, the authors demonstrated generalised TIL count
and CD3 subsets to have the strongest association with survival benefit. Other T-cell subsets
trended towards a favourable prognosis, however there was variability across studies and
by tumour location. CD3 and CD8 density has been reported as an independent prognostic
factor with Eriksen et al. demonstrating that higher CD3 and CD8 counts were associated
with improved RFS (HR = 1.39, p = 0.026 and HR = 1.39, p = 0.32 respectively) and OS
(HR = 1.53, p = 0.004 and HR = 1.59, p = 0.003 respectively) in stage II CRC patients
(n = 573) [207].

While TILs have been associated with favourable survival outcomes, the prognostic
effect of each TIL subtype is variable [205]. A systemic review of macrophages and FoxP3
cells showed that while they were associated with improved survival on the whole, there
is more inconsistency in the literature, with some studies citing a positive influence on
prognosis and others citing a negative influence [203,205]. Additionally, there is currently
no standardised method of evaluating TILs across studies. A standardised method of TIL
evaluation is required to improve consistency and reproducibility of TIL measurements for
future diagnostic studies [201,203].

Core Tip: The value of TILs in prognostication of CRC is based on its immunogenicity.
Novel immunological scoring systems for CRC, such as the Immunoscore looks at TILs at
the core and invasive margin of tumour. The Immunoscore is a summation of scores of the
two regions (the core of the tumour and the invasive margin) using immunohistochem-
istry to identify CD3+ and CD8+ T lymphocytes [208]. Initially conceptualised by Galon
et al. [209], recent studies have validated the Immunoscore in a large prospective cohort
of >2500 CRC patients and demonstrated its prognosticative ability to be equivalent to or
more accurate than the conventional TNM staging system [206,208,210]. Currently, TILs
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assessment is not commonly used in the clinical setting for prognostication [1,7–9,47,122].
However, recent studies have shown promise, and TILs may be a useful pathological
feature to guide adjuvant treatment including immunotherapy [203,206]. Recent updates
to international guidelines have incorporated immunoclassification alongside established
TNM staging in predicting prognosis and recurrence in CRC. The latest (5th) edition
of WHO Digestive System Tumours introduced the immune response as an essential
prognostic criteria for colorectal cancer [211], and ESMO guidelines discuss the role of
Immunoscore in determining the risk of recurrence as well using Immunoscore to tailor
adjuvant decision-making in challenging cases [1].

3.4.5. Lymph Node Yield

Lymph node yield (LNY), defined as the number of lymph nodes retrieved following
specimen dissection, [136] is a strong prognostic factor, particularly in non-metastatic
CRC [38,39,41,212–214]. Inadequate LNY may be a factor in decision-making for adjuvant
chemotherapy [1,7]. Several studies have demonstrated that a higher LNY, regardless of
status (positive or negative) is associated with improved OS, DFS, and reduced risk of
recurrence [39,41,215,216]. LNY has been established as an important prognostic factor
in stage II and III colorectal cancer [39,41,212,214] and while its utility in stage I CRC is
less clear [214], emerging evidence suggests that there is a prognostic association in stage I
CRC [38,39,213].

A systematic review by Chang et al. in 2007 concluded that increased LNY was
associated with improved survival in stage II and III CRC [39]. A retrospective study by
Foo et al. examining 659 stage I and II CRC patients showed that a lymph node yield of
≥20 was associated with improved DFS (HR 0.358, p = 0.007) and 5-year OS (78.9% vs.
68.2%, LNY ≥ 20 vs. LNY < 20 respectively, p = 0.036) [213]. Foo et al. also showed that
improved survival with higher LNY was most pronounced in the stage II cohort. Backes
et al. showed that a LNY of ≥10 was associated with a decreased risk of recurrence (HR 0.2,
p = 0.009) in T1 CRC. There is also emerging evidence that an increasing LNY is associated
with improved survival in synchronous CRC [217].

In stage III rectal cancer, neoadjuvant therapy is the current standard of care, and a
reduction in lymph node yield secondary to radiotherapy is well recognised [218]. Evi-
dence suggests that a reduced yield in this setting may not necessarily confer a poorer
prognosis [219], although several studies have demonstrated worse survival [220,221].

There is a lack of consensus on what defines an adequate LNY [212,214]. LNY has mul-
tiple influences, including surgical, patient, and laboratory factors [136]. The AJCC/UICC
require at least 12 nodes for adequate staging, based on a study demonstrating that this
was adequate to determine node positivity in 94% of specimens [222]. It is believed that
there may be diminishing returns for staging accuracy beyond 12–17 lymph nodes [40,223].
It remains uncertain as to how increased LNY improves outcomes in CRC. One theory
may be that a higher number of retrieved lymph nodes may lead to an improved detection
of node positive patients (known as the stage migration effect) [214]. However, multiple
studies have shown that despite an increase in lymph node yield over time, the proportion
of stage III CRC remains largely unchanged [223–225]. Another possibility is that increased
LNY improves the clearance of occult micrometastatic disease that would otherwise have
been undetected in routine pathological examination [226]. Another theory postulates that
LNY correlates with the patient’s immune response to cancer, with a greater abundance of
lymph nodes a sign of an effective immune response leading to improved prognosis and
survival [227].

Core Tip: LNY is currently used in multiple international guidelines for prognosti-
cation and CRC management. The AJCC/UICC staging manual and other international
guidelines recommends that a minimum of 12 lymph nodes should be identified in colorectal
cancer specimens for accurate determination of lymph node involvement for staging pur-
poses [1,6,8,9,47,136]. Reduction in LNY secondary to radiotherapy for rectal cancer is well
recognised. In this setting, decreased LNY may not be associated with worse prognosis.
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3.4.6. Lymph Node Ratio

Lymph node ratio (LNR) is defined as the ratio of the number of positive lymph nodes
to the number of lymph nodes examined histologically [228]. A higher LNR is associated
with a more advanced T stage, lymph node metastases, and distant metastases [229].
LNR may provide an indication of tumour behaviour, extent of surgical resection, and
host immune response [230]. LNR is only pertinent to stage III and IV CRC as positive
lymph node is associated with at least stage III disease [6]. The role of LNR in CRC
was initially studied by Berger et al. in 2005 [231]. LNR has been reported as a negative
independent prognostic indicator in stage III and IV CRC and is associated with reduced OS
and DFS [33,44,229,230,232–235]. A systematic review and meta-analysis by Ceelen et al.
in 2010 reported a pooled HR of 2.36 for OS and 3.71 for DFS in stage III CRC patients
with a high LNR [230]. A subsequent systematic review and meta-analysis by Pyo et al.
of 14 studies confirmed this finding. LNR has a stronger negative association in rectal
cancer than colon cancer [232]. Several studies demonstrated that LNR is superior to the
number of positive nodes (current N staging) in both stage III and IV CRC [230,232,234].
The prognostic significance of LNR may be greater when there is a lymph node yield
<12 [44,236]. Evidence for LNR as an independent prognostic factor is strongest in stage III
CRC, however evidence for stage IV CRC is also robust [33,229,233].

The cutoff for high LNR varies from 0.125 to 0.3 in different studies and is defined
differently across international guidelines [230,232]. In all 16 studies examined by Cee-
len et al., LNR was analysed as a categorical variable. Some studies constructed LNR
quartiles based on the distribution frequency, others classified LNR categories based on
maximal separation of survival curves [230]. One study adapted classification and regres-
sion trees to define optimal LNR cutoff points [235]. There is no consensus on the minimum
required number of harvested lymph nodes for proper evaluation of LNR [44,214].

Core Tip: AJCC-UICC TNM staging defines N stage by the number of affected
regional lymph nodes, not LNR [6]. While several studies have shown that LNR may
be an independent prognostic factor, LNR does not currently play a role in N staging, nor
is it used in any international CRC guidelines [1,7–10,46,47]. There is no consensus on
cutoff values for LNR for prognostic significance and the minimum required number of
harvested lymph nodes for proper evaluation of LNR.

3.4.7. Apical Lymph Nodes

Apical lymph nodes (ALN) refers to lymph nodes within the origin of the major vessel
that supplies the tumour [228]. ALN involvement occurs in 4–19% of CRC patients and
is associated with higher rates of nodal invasion, deeper tumour infiltration (T3/4), and
para-aortic nodal recurrences [43,237–239]. The role of ALN metastasis in prognostication
is controversial [237–241]. Some studies have shown it to be an independent predictor of
poorer OS and DFS [42,43,237,240]. Tsai et al. found ALN involvement to be more predic-
tive of distant metastasis post-operatively compared to regional lymph node metastasis [43].
Huh et al. [242] and Kim et al. [237] found that stage III CRC patients with ALN involve-
ment had similar survival rates compared with stage IV disease with R0 resection, and
postulated that ALN metastasis should be considered systemic rather than regional. Other
studies failed to prove an association between ALN metastasis and long-term survival and
suggested that it be considered a regional metastasis [238,239,241,243]. Wang et al. utilised
propensity score matching to reduce baseline bias between patient groups (ALN positive
versus ALN negative) and found that the ALN status was not a significant risk factor for
survival in both right- and left-sided CRC [238,239].
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There are limitations in the current literature on the prognostic ability of ALN metas-
tasis. There is currently no consensus on its definition [244], for example, in left-sided CRC,
some studies define ALN as nodes within 1 cm of the inferior mesenteric artery (IMA)
origin, [42,43,238,239] while others define the ALN as nodes from the origin of the IMA to
the takeoff of the left colic artery (LCA), which would usually exceed 1 cm [240,241,243].
Additionally, patient baseline characteristics varied between studies and the absolute
numbers of ALN-positive patients are often low [245].

Core Tip: ALN status is utilised in the Japanese and Australian classification sys-
tem for CRC [9,10]. The Japanese Society for Cancer of the Colon and Rectum (JSCCR)
guidelines for CRC defines lymph node staging by the location of the positive nodes rather
than the number of metastatic lymph nodes, in which apical lymph nodes are classified as
N3, or LND 3 to avoid confusion with the TNM staging system [10,245]. The Australian
classification system, known as the Australian clinicopathological staging (ACPS) system,
defines the presence of an involved ALN as the ACPS substage C2 [83]. Current Aus-
tralasian pathology reporting guidelines recommend the reporting of ALN status [228].
ALN positivity (classified as N3) was utilised in the 3rd and 4th AJCC TNM staging system,
however it was subsequently removed due to the complexity of dividing lymph node zones
for pathologic evaluation and mixed evidence regarding prognostic benefit [43]. The 8th
edition defines ALNs as regional lymph nodes and nodal staging is based on the number
of metastatic lymph nodes [6].

3.4.8. Perineural Invasion

Perineural invasion (PNI) refers to the neoplastic invasion of nerves by tumour cells
as a method of tumour spread [246]. Tumour cells can grow within, around, and through
any of the three nerve layers [246]. The reported incidence of perineural invasion in CRC
ranges from 9% to 30%, and occurs more frequently in a higher stage of CRC. Studies have
reported PNI in approximately 10% in stage I-II disease, up to 30% in stage III disease,
and up to 40% in stage IV disease [246–248]. There is evidence that PNI is an independent
marker of poor outcome and decreased survival [246,247,249,250]. A systematic review
and meta-analysis by Knijn el at. Examined 58 studies with 22,900 CRC patients of all
stages. PNI was associated with reduced 5-year DFS (HR 2.35, 95% CI 1.97–308), CSS
(HR 1.91, 95% CI 1.56–2.42), and OS (HR 1.85, 95% CI 1.63–2.12). In addition, the prognostic
value of PNI was found to be similar to other established prognostic factors, such as depth
of invasion, tumour grade, lymph node metastasis, and extramural invasion [247]. These
findings are further highlighted by a large Surveillance, Epidemiology, and End Results
(SEER)-based population study of 41,000 CRC patients. PNI was associated with a reduced
3-year OS and CSS (HR 1.24 and HR 1.28 respectively, p < 0.001), independent of T stage, N
stage, tumour grade, and location [251].

There are a lack of uniform reporting standards and guidelines for PNI [136]. PNI
tends to be underreported, with detection rates ranging from 9% to 42% [247,249]. Various
definitions of PNI are used across multiple studies [246]. Tumour cells surrounding
>33% of the nerve circumference is one of the more commonly-used definitions in the
literature [246].

Core Tip: Documentation of PNI status is part of standard CRC pathology report-
ing [136,228]. The AJCC-UICC 8th edition of TNM staging identifies PNI as an additional
tumour-related prognostic factor [6]. Level 1 evidence, including meta-analysis and large
database studies have demonstrated that PNI is associated with worse prognosis but there
needs to be better standardisation of PNI reporting.
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3.4.9. Circumferential Resection Margin

Circumferential resection margin (CRM) is also known as the radial margin, mesen-
teric margin, or non-peritonealised margin. It is the distance (in millimetres) between the
deepest point of tumour invasion and the surgically dissected non-peritonealised surface
of the specimen [136,228]. Low rectal tumours below the peritoneal reflection are com-
pletely surrounded by this circumferential, non-peritonealised margin while upper rectal
tumours have a non-peritonealised margin posterolaterally and a peritonealised surface
anteriorly [228]. For colonic tumours, the mesenteric attachment of the colon and cut edge
of the retroperitoneal segments form the circumferential margin [136].

Criterion used to define a positive CRM remains controversial [252–254]. The most
commonly-used definition of CRM positivity is tumour ≤1 mm from the tumour-free
margin [252]. CRM positivity occurs in 7.3% to 25% of rectal cancers and 5.3% to 20.5% of
colon cancers. It is associated with advanced stage, aggressive tumour grade, infiltrating tu-
mour border, and lymphovascular and perineural invasion [253,255]. In rectal cancer, CRM
positivity is a strong predictor of recurrence and reduced survival, independent of TNM
staging [252,256–259]. Positive CRM is associated with increased risk of local recurrence
(HR 4.67 95% CI 2.51–4.15), distal metastasis (HR 2.95), and reduced OS (HR 3.21) and DFS
(HR 3.63) [252]. The prognostic significance of CRM is stronger in patients undergoing
neo-adjuvant radiotherapy prior to surgery compared with surgery alone, likely because
tumours with limited response to radiotherapy are biologically unfavourable [256].

The significance of CRM positivity is less studied in colon cancer, however recent
evidence suggests that its poor prognostication in rectal cancer also applies to colon
cancer [253–255,260]. Amri et al. initially confirmed the prognostic significance with CRM
involvement in colon cancer in 2015, identifying it as an independent prognostic factor
linked with reduced OS (HR 3.39 p < 0.001), reduced DFS (HR 2.03 p < 0.001), and higher
rates of recurrence (HR 3.32 p < 0.001) [253]. These findings are confirmed in a large
population study by Tang et al. in 2020, which found that patients with a CRM value of
0–30 mm benefited most from chemotherapy [255]. Evidence on the optimal CRM in both
rectal and colon cancer is inconsistent. Multiple thresholds of CRM clearance have been
proposed. In rectal cancer, a CRM clearance of greater than five millimetres was proposed
by Kelly et al. in 2011, and <0.4 mm proposed by Beaufrere et al. in 2017 [261,262]. In a
large 2018 population study, Liu et al. divided CRM groups in rectal cancer patients into
0–1 mm, 1.1–2.0 mm, 2.1–5 mm, 5.1–10 mm, and >10 mm and examined survival outcomes
between the subgroups. There was a survival benefit for the CRM 5.1–10-mm group
compared to the 1.1–5-mm group, however this was not statistically significant [258]. In
colon cancer, Tang et al. found a margin >30 mm was associated with improved outcomes
among CRM-negative patients [255].

Core Tip: Documentation of CRM involvement is standard in pathological reporting
of CRC [136,228]. International guidelines recommend negative margins (>1 mm) for all
CRC patients undergoing resection, and the rate of CRM positivity is widely used as a
quality indicator in rectal cancer surgery [1,7,9,10]. A positive CRM denotes at least T3
disease with an R1 or R2 resection in the AJCC-UICC staging manual [6]. NCCN guidelines
include CRM positivity as criteria for adjuvant chemotherapy in stage II CRC [7], and
ESMO guidelines recommend its consideration for risk assessment in these patients [1].
An expanded R classification that considers minimal distance between tumour and a
resection margin has been proposed by Wittekind et al., but is currently not adopted by the
AJCC-UICC TNM staging manual [6,254].

3.4.10. Tumour Grade

Tumour grade or histological grade refers to the degree of tumour differentiation and
is an adverse prognostic factor independent of stage in CRC [263–266], with reduced DFS,
reduced DSS, and increased risk of recurrence [18,108,147,265,266]. Higher tumour grade
is also associated with an advanced stage, increased tumour invasion depth, positive nodal
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status, and lymphovascular invasion [263,267]. Stage I and II CRC patients with higher
tumour grade may have worse DSS than stage III disease with a low tumour grade [267].

The main limitations in tumour grading lie in the lack of a single, uniformly used
system and significant interobserver variability in its assessment [263,265]. There is varia-
tion on whether it should be based on the predominant pattern of differentiation or the
area of least differentiation [263,267]. Most definitions of tumour grade are based on the
percentage of gland formation; the inclusion of cytologic or other features in the estimation
of grade is variable [264]. The college of American pathologists (CAP) use a four-tiered
grading system for CRC, based solely on the degree of gland formation [136]. Grade 1
is classified as well differentiated (>95% gland formation), grade 2 moderately differen-
tiated (50–95% gland formation), grade 3 poorly differentiated (<50% gland formation),
and grade 4 undifferentiated (no gland or mucin formation) [136]. The World Health
Organisation (WHO) classification of digestive system tumours uses a two-tiered system:
Low grade (≥50% gland formation) and high grade (poorly differentiated, <50% gland
formation) [211]. In 2012, Ueno et al. proposed a novel grading system based on clusters of
≥5 cancer cells lacking a gland-like structures (termed poorly differentiated clusters), [265]
with some evidence of improved reproducibility and prognostic power [264,267].

Core Tip: Tumour grade is a part of most international guidelines on CRC as well as
in clinical practice. Histological grading is included in the histopathological reporting of
CRC in routine practice, and is classified as an additional prognostic factor in the AJCC-
UICC TNM staging manual [6,228]. Poorly differentiated tumours are more likely to be
referred for adjuvant chemotherapy in stage II CRC [4]. Multiple international guidelines
(ASCO, NCCN, ASCRS, NCI, ESMO, and NHMRC) identify poorly differentiated tumour
grade as a risk factor for recurrence in stage II CRC and suggest consideration of adjuvant
chemotherapy when present [1,7–10,122].

3.4.11. Lymphovascular Invasion

Lymphovascular invasion (LVI) refers to the involvement of small lymphatic or blood
(typically venous) vessels by tumour on histological examination [136]. LVI is considered
a key step in the development lymph node metastasis [268]. The incidence of LVI in
CRC has been reported to vary from 4.1% to 63.8%, likely due to different study popu-
lations and diagnostic techniques used [268,269]. LVI has emerged as a well-recognised
stage-independent predictor of poor prognosis in CRC [248,268–273]. Several systematic
reviews and large-scale population studies have shown that LVI-positive CRC patients
have up to a 55% decrease in OS and significantly reduced DFS (HR 1.73 CI 1.50–1.99
p < 0.01) [248,268,269,272,273]. LVI is associated with other adverse features, such as a
higher pathologic tumour stage, lymph node involvement, distant metastasis, poor differ-
entiation, larger tumour size, perineural invasion, tumour budding, and positive KRAS
status [248,268]. The poor prognostication of LVI applies to all stages of CRC [248]. Patients
with node negative disease, especially stage II, are the most likely group to benefit from
identification of LVI [248,269,272].

Core Tip: Given its prognostic significance in CRC, LVI is currently classified as an
additional prognostic factor in the AJCC-UICC TNM staging manual [6]. Pathological as-
sessment of LVI is recommended by the College of American Pathologists [136]. Currently,
there is no accepted standard for LVI in pathological reporting [248]. There is significant
interobserver variability in the diagnosis in LVI, and there is some evidence to suggest that
different modalities of staining (such as elastic stains and immunohistochemical markers)
can influence the accuracy rate [136,274]. As such, true rates of LVI are likely higher than
currently reported [274]. While invasion of extramural veins is an independent predictor
of poor outcome and increased risk of hepatic metastasis, the significance of intramural
venous invasion is less clear [275].
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4. Conclusions

A complex interaction of stage, pathological features, and biomarkers play a role in
guiding prognosis, risk stratification, and guiding neoadjuvant and adjuvant therapies.
Traditionally, the TNM stage has been the main classification system guiding prognosis,
neoadjuvant, and adjuvant therapy. However, in the recent decade, greater emphasis
on molecular biomarkers such as MSI, KRAS, BRAF, and CDX2 and histological features
such as tumour budding, TILS, CRM, PNI, LVI, apical lymph node involvement, LNY,
and LNR has allowed better characterisation of the tumour, improving the accuracy of
prognostication as well as the optimisation of neoadjuvant and adjuvant treatment. With
the move towards precision oncology, understanding the pathological as well as the genetic
features of each tumour and how it impacts treatment and survival may lead to more
specific prognostication and treatment protocols tailored to the unique pathological and
genetic characteristics of each tumour rather than prognostication and treatment being
based mainly on the TNM staging classification.
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