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Abstract

Development of evidence-based practice requires practice-based evidence, which

can be acquired through analysis of real-world data from electronic health records

(EHRs). The EHR contains volumes of information about patients—physical measure-

ments, diagnoses, exposures, and markers of health behavior—that can be used to

create algorithms for risk stratification or to gain insight into associations between

exposures, interventions, and outcomes. But to transform real-world data into reli-

able real-world evidence, one must not only choose the correct analytical methods

but also have an understanding of the quality, detail, provenance, and organization of

the underlying source data and address the differences in these characteristics across

sites when conducting analyses that span institutions. This manuscript explores the

idiosyncrasies inherent in the capture, formatting, and standardization of EHR data

and discusses the clinical domain and informatics competencies required to transform

the raw clinical, real-world data into high-quality, fit-for-purpose analytical data sets

used to generate real-world evidence.
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1 | REAL-WORLD DATA

EHRs are a valuable resource for researchers that can be analyzed

with variety of methods, from multivariate regression to machine

learning, and may be used to support both cross-sectional and longitu-

dinal studies.1-3 But regardless of study design and method, all EHR-

based research requires recognition of data quality issues4 as well as

data curation and cleaning.5 Raw EHR data must be structured into

analytical datasets that are formatted to fit the input requirements of

an analytical function. This task is difficult given the chaotic nature of

EHR data that are collected for nonresearch purposes, namely patient

care and hospital administration.6 Some challenges include erroneous

or ambiguous recording of information, ascertainment bias, the tem-

porality, or provisional nature of some findings and shifting context

that can change the meaning of a given data point.

Decisions about data included in the EHR are rarely, if ever, neutral.

Facts about patients are almost exclusively recorded when they are in

contact with the healthcare system, and the nature of what is recorded

Received: 30 July 2021 Revised: 10 September 2021 Accepted: 21 September 2021

DOI: 10.1002/lrh2.10293

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Learning Health Systems published by Wiley Periodicals LLC on behalf of University of Michigan.

Learn Health Sys. 2022;6:e10293. wileyonlinelibrary.com/journal/lrh2 1 of 9

https://doi.org/10.1002/lrh2.10293

https://orcid.org/0000-0002-9340-7189
https://orcid.org/0000-0003-4101-1622
https://orcid.org/0000-0002-9532-2998
https://orcid.org/0000-0001-5586-9940
mailto:mgw4001@med.cornell.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/lrh2
https://doi.org/10.1002/lrh2.10293


is highly dependent on who cares for the patient, the intended use of

the information, and why they are seeking care in the first place.7 If a

patient goes to the emergency room for a broken arm, the fact that

they have insomnia is unlikely to be recorded. If they go to a neurolo-

gist, recording of this diagnosis is much more likely to be noted. Rather

than causing these conditions, a primary care visit is simply an opportu-

nity to ascertain their existence. Ascertainment bias can be difficult to

detect and may have profound consequences to downstream analyses.

The transformation of raw data into analytical data sets requires

multiple decisions, and it is difficult to know a priori which decisions

will impact an analysis. Making these decisions should be a collabora-

tive process, one that combines the data scientist's understanding of

underlying data as well as the clinician's domain expertise. However,

these decisions are often delegated to the data scientist alone.8 When

clinical expertise is sought, the expert may make decisions based on

their knowledge that is clinically correct, but nevertheless are inappro-

priate for the analysis because they are not informed by the actual

content of the data. The data scientist may make decisions that are

technically reasonable but insensitive to clinical realities.

The following sections describe issues that the data scientist and

the domain expert must recognize to produce high-quality research.

The sections are organized by data types that are commonly used in

analytical datasets—diagnoses, measurements, and medications—and

describes common issues that arise in using real-world EHR data for

research. The examples provided below will have varying relevance to

a specific research application of EHR data, depending on study

design and the input requirements of the analytical methods. But we

hope that they convey a sense of the complexity of EHR data and

emphasize the importance of data literacy and the need for collabora-

tion between clinical domain experts and data scientists in EHR

research.

2 | DIAGNOSES

Analytical data sets frequently require information on the presence or

absence of diagnoses. To populate such fields, data scientists often

look for assertions of a particular diagnosis, using data like Interna-

tional Classification of Diseases (ICD) codes, problem lists, or text

mentions in notes. However, information in these data sources can be

misleading. Errors may be introduced through simple typos or mis-

communications. But even accurately recorded information can be

misleading due to the nature of diagnosis itself. Rather than a state-

ment of fact that can be expressed as a yes/no value, a diagnosis is a

statement of probability that can fluctuate over time. For some dis-

eases, there is disagreement even among experts about the correct

clinical criteria that should be used to establish a diagnosis.9 Because

the EHR captures data throughout the diagnostic process, a patient's

record may accumulate evidence for a diagnosis that is ultimately

ruled out.

Diagnoses can be extracted from clinical notes using natural lan-

guage processing.10-12 Unstructured text contains detailed

information about patients that may be essential to accurately ascer-

tain a disease phenotype, but structured data like International Classi-

fication of Diseases (ICD) codes are often used as an alternative.

Compared with unstructured text, ICD codes are easy to manipulate

and a ubiquitous component of EHR systems. However, data scien-

tists should be aware of potential biases. Despite concerted efforts to

standardize ICD coding across health systems, financial incentives and

clinician styles can also distort coding practices.13 Moreover, ICDs are

subject to semantic drift, whereby the meaning of a code changes

over time.14 The transition from ICD-9 to ICD-10 in 2015 led to a

heightened awareness of this problem, and several studies demon-

strated changes in frequencies of some diagnoses during that

period.15,16 But semantic drift can happen for more subtle reasons,

including minor revisions to the ICD coding structure or changes in

local EHR tools used to translate unstructured-text to ICDs.17

Figure 1 provides a case in point whereby the introduction of a new

ICD code disrupted the apparent frequency of sepsis. These data

anomalies can complicate the interpretation of codes over time or

across institutions.

To deal with the inherent ambiguity of diagnoses in the EHR,

supporting information can be used to improve accuracy. Researchers

can use information redundancy to refine a phenotype. For example,

for phenotypes based on diagnostic codes, requiring more than one

code on different dates can improve accuracy.18 Supporting evidence

from orthogonal data sources may also be useful. For example, a dia-

betes mellitus phenotype may be improved by incorporating objective

laboratory parameters such as an elevated hemoglobin A1c. Clinical

interventions can be used to refine a phenotype. For example, a case

F IGURE 1 Semantic shift in International Classification of

Diseases (ICD) code causes shift in prevalence. The National Center
for Health Statistics (NCHS) and the Centers for Medicare and
Medicaid Services (CMS) periodically adds new code and updates
guidance on the use of existing ICD-CM codes, which can radically
shift coding practices at an institution. Below is an example in the
change of prevalence of codes relating to shock in a 200-bed hospital
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for hypothyroidism might be defined as having both diagnostic code

evidence and a prescription for levothyroxine.

The above strategies are not foolproof. For example, a patient with

type 2 diabetes may have normal laboratory values because their dis-

ease is controlled with medication (eg, if blood glucose levels are well-

controlled in a patient with diabetes the hemoglobin A1c may be nor-

mal).19,20 Requiring the presence of treatment as a marker for disease

can limit the cohort to treated patients. Furthermore, with off-label

usage, the data scientist needs to be careful about assuming the appear-

ance of a medication means the patient has the expected condition.

Finally, the markers within the EHR that are used to increase certainty

may also correlate with disease severity. This conflation of certainty

with severity does not invalidate the phenotype but should be recog-

nized in the interpretation of analyses that apply the phenotype.

For these reasons and others, even a carefully designed pheno-

type algorithm will inevitably generate false positives and negatives.

Adjustments to phenotypes designed to improve the positive predic-

tive value such as requiring multiple instances of a diagnosis or a

supporting laboratory value often are made at the expense of reduc-

ing the negative predictive value, or vice versa. Figure 2 examines the

overlap of different sources of evidence for a diagnosis at different

sites, illustrating that they do not always agree. The degree of differ-

ence in overlap of phenotype components may vary from site to site

suggesting that the accuracy of the phenotype may vary across

institutions.

3 | LABORATORY RESULTS

Analytic data sets often require laboratory results. EHRs typically

store this information in structured fields, so retrieving the data is rel-

atively trivial. In contrast to the uncertainty often attached to diagno-

ses, laboratory measurements give the impression of relative

objectivity and computability. However, laboratory results have their

own idiosyncrasies.

3.1 | Repeat measures

Patients often have multiple measurements for a laboratory result.

But analytical datasets often require a single value per person, as is

the case where a measurement is used as a covariate in a multivariate

regression. This leads to a common conundrum of using measurement

variables: What is the best way to summarize multiple data points into

a single value? Should the median value be used? The maximum? The

earliest or most recently measured? How should the timing and

cadence of laboratory values be addressed in the decision? The

answer to this question has downstream consequences. A study of

EHR laboratory results shows that the way the values are summarized

affects the ability to replicate known genetic associations. For most

laboratory results, the median value had the best performance, but

some for laboratory results the maximum or the first performed the

best.21 Related issues exist with longitudinal analyses of multiple mea-

surements where the focus is on change in laboratory parameters

over time. While changes of a certain magnitude between two individ-

ual values may be easy to define, it is more difficult to assess a

sustained change from baseline. As is the case for many

EHR-phenotyping conundrums, the question of how to best work

with repeated measurements does not have a simple answer, but

rather depends on the specific laboratory result and intended use of

the values.

3.2 | Context

Laboratory values can be misleading when they are interpreted without

an understanding of their context. Some laboratory results, such as a

comprehensive metabolic panel or blood count, are ordered routinely,

while other tests are ordered in response to patient complaints or to fol-

low up a previously abnormal result. Therefore, the presence of some

laboratory results in a patient's record may increase the likelihood that

they have a particular disease, even if the test result is normal. For

F IGURE 2 Venn diagrams of overlap of suggestive diagnoses, medications, and laboratory results for type 2 diabetes at two different
institutions. The different ratios of overlap of data elements for the diabetes computable phenotype suggest algorithm behavior is different
between the two sites. These site-level differences in the proportions of patients with different markers of disease may be accompanied by
differences in other characteristics that may impact the performance of predictive algorithms developed at one site and applied at another
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example, a patient with multiple test results for phenylalanine levels is

more likely to have phenylketonuria, even if all the results are in normal

range.

Laboratory results are ordered in a variety of clinical settings,

including during ambulatory clinic visits, in emergency department

visits, and inpatient stays. Laboratory results that are ordered in the

inpatient and emergency setting often have different average values

compared with those ordered in outpatient clinics. Figure 3 shows

systematic differences in laboratory results from the inpatient and

outpatient context. Not surprisingly, inpatients are more likely to have

elevated laboratory results that indicate acute and serious conditions

(eg, troponin) and inflammation (c-reactive protein) compared with

those in the outpatient setting. Thus, a liver enzyme measurement in

the inpatient setting may not accurately reflect a patient's baseline

levels.

3.3 | Secular trends

Changing clinical guidelines and practice styles may alter the use of

tests in certain clinical scenarios. Since clinical guidelines change over

time, data scientists need to be mindful of the analytical dangers of

pooling together laboratory results that span long periods. Trends in

the ordering of specific lab results can be observed in longitudinal

datasets. For example, Figure 4 shows a precipitous increase of vita-

min D testing (Panel A) in the mid-2000s—a trend that has been

observed in other datasets22—in the context of an increasing interest

in the health benefits of vitamin D among researchers and clinicians.23

In comparison, LDL-C testing has remained fairly stable over the past

twenty years (Panel B), though both tests showed a sharp decrease at

the onset of the severe acute respiratory syndrome coronavirus 2 pan-

demic. While the precise reasons for these trends are not always easy

to ascertain, data scientists should be aware that such trends are com-

mon in longitudinal datasets and thoughtful about the ways they can

impact the meaning of the measurements.

3.4 | Laboratory result names

Finding a particular laboratory result in EHR data can be surprisingly dif-

ficult, as laboratory tests have a tremendous degree of variety. Not only

are there many different analytes measured in clinical laboratory tests,

but the results may be conducted on different types of specimens (eg,

whole blood, cerebral spinal fluid) or using different methods. The vast

variety of laboratory tests is reflected in the Logical Observation Identi-

fiers Names and Codes (LOINC)24—a coding system commonly used for

labeling lab measurements—which includes over 96 000 terms to mea-

surements, observations, and document types (2.70).

While the granularity of LOINC terms is necessary to precisely

label laboratory results, it can cause confusion for those looking to

retrieve values for a particular result. For instance, if a dataset calls for

a pH measurement, data scientists must choose from a long list of

potentially relevant results, a selection of which are shown in

Figure 5. The codes in blue clearly indicate venous blood. The codes

in red clearly indicate arterial blood. However, for the codes in purple,

it is not clear if the specimen source is arterial or venous. If laboratory

results are labeled with these nonspecific codes, proper assessment of

their true origin and clinical significance may be difficult.

LOINC terms can be used to label results unambiguously, but the

large number of codes for individual tests can cause problems for

interoperability. The use of LOINC codes is not uniform or consis-

tently documented across sites or within sites over time, and different

institutions may use different codes to label what is, for most pur-

poses, the same laboratory result. If that happens, a query designed at

one institution might fail to retrieve all relevant laboratory results a

different institution. If the query is part of a larger, complex pheno-

type, the missing data may go unnoticed.

4 | VITAL SIGNS

Vital signs (temperature, heart rate, blood pressure, respiratory rate,

height, weight) are typically collected at ambulatory encounters, which

can be regularly scheduled or sporadic—sometimes prompted by specific

patient concerns, and other times because the patient presented for a

routine checkup. Inpatient vital signs are typically, but not necessarily,

ordered on a schedule related to severity of illness—one a day, once a

shift, or many more times per day. Vital signs are sometimes obtained by

manual methods, and sometimes measured through automated devices

with a much greater frequency, including continuous telemetry.

Some of the challenges associated with using vital signs are similar

to those of laboratory results, including issues of multiple measure-

ments, context dependent interpretation, incorrect data transcription,

and terminology mapping. But vital signs distinguish themselves in

terms of the density of the data readout. Some vital signs, like respira-

tory rate and temperature, can be measured on a near continuous basis

during a hospital stay. Vital sign values, particularly with automated

measures, can frequently be associated with a great deal of noise, so

summary measures that represent the maximum or minimum values

may be affected by sporadic, erroneously high or low values. Given the
F IGURE 3 Differences in mean values of common laboratory
results measured in the inpatient vs outpatient setting
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potential for large numbers of vital signs to be available in the source

data, operational decisions are sometimes made to reduce the volume

of data stored in data warehouses and recorded in EHRs. The methods

by which the source data are filtered can differ to include only the

highest, lowest, and median value for a given time interval. Some vital

signs like heart rate and blood pressure are typically measured with rea-

sonable precision while others, notably respiratory rates, are often esti-

mated, resulting in unexpected uniformity in many recorded values.25

5 | MEDICATIONS

As with measurements, a prescription order for a medication in the clinical

record may have the appearance of an unambiguous, objective fact that

the provider intended for the patient to take the medication and the

patient was administered the treatment or filled the prescription and

adhered to the regimen. However, there is still a great deal of uncertainty

associated with the medication, especially regarding whether the prescrip-

tion was filled and the duration over which a medication was taken. It is

well known that patients do not always fill prescriptions they are given or

take the medications they are dispensed.26 Methods have been devel-

oped to infer adherence based on fill and refill patterns and patterns of

prescriptions written.27 Research on refill adherence measurements have

50980-2 pH of Mixed venous blood adjusted to patient's actual temperature 

39486-6 pH of Venous blood adjusted to patient's actual temperature 

2745-8 pH of Capillary blood 

49701-6 pH of Blood adjusted to patient's actual temperature 

2753-2 pH of Serum or Plasma 

33254-4 pH of Arterial blood adjusted to patient's actual temperature 

2744-1 pH of Arterial blood 

F IGURE 5 A selection of LOINC terms used to specify laboratory
results of pH

F IGURE 4 Trends in laboratory
test ordering over time. Panel A
shows the percentage of individuals
with a vitamin D measurement
among all patients with at least one
laboratory measurement in that year.
Panel B shows the same for
low-density lipoprotein (LDL)
cholesterol
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shown that estimates are highly sensitive to slight changes in defini-

tions.28 Therefore, not all similar-appearing patterns in medication orders

reflect a similar degree of exposure to a drug.

Medications may be discontinued because of side effects, ineffec-

tiveness, cost, or a resolution of the problem they treat.29 Not all dis-

continuations represent the intention to stop a medication, as prior

iterations of prescriptions need to be discontinued when a renewal is

written. The dose of a medication may change when the medication is

renewed. Sometimes additional medications are added to the regimen

with the intention of maintaining the earlier medication, though other

times, the original medication is meant to be stopped. Clinicians

should indicate these intended changes though actively continuing or

discontinuing older medications, but this may not always happen.

Clinicians are supposed to reconcile the patient's medication list

at clinic visits, removing medications that the patient is no longer tak-

ing, and adding in new medications. But this process is not always

straightforward. Medications may not be removed in a timely manner,

making it difficult to infer end dates based on the timing of when they

are removed. Some providers are uncomfortable documenting the dis-

continuation of a medication stopped by the patient since it can imply

an endorsement of the medication discontinuation. This scenario is

more likely if the stopped medication is related to a clinical domain

outside the current provider's area of expertise. The impact of this

behavior is that a medication can appear to still be active among medi-

cation orders when the patient is no longer actively taking the drug.

Analysis of dispensing data may better reflect medications the patient

is actually taking, but the availability of dispensing data may be incom-

plete depending on where the medication was filled and the payment

model. With an increasing number of medications available over the

counter that previously required a prescription, the range of medica-

tions having a dispensed record is changing. For these reasons, gener-

ating a list of current medications based on apparently active

prescriptions and known dispensing in EHR data is prone to some

degree of error.

Once the data scientist has evidence (eg, via refill patterns) that a

patient was on a medication, the next issue is how to represent the

presence of that medication in the analytical data set. While standards

like RxNorm allow encoding of medication information at a very gran-

ular level including the ingredient, dose, and form, one can also group

medications into those having the same core ingredient or even group

related drugs under the same drug class.30 Combination products

pose additional challenges. The data scientist and clinical expert need

to collaborate to ensure a balance between creating features that

group many drugs too-coarsely into a single category vs applying a

very granular coding that distinguishes all medication variations but

produces too many features to be well-analyzed.

6 | COMPUTABLE PHENOTYPES AND
PHENOTYPING STRATEGIES

Researchers may take different approaches to EHR phenotyping,

depending on the requirements of the project. A disease phenotype

can often be ascertained rapidly using ICD billing codes along, defin-

ing cases as individual who have one or perhaps multiple disease

codes. This process can be scaled to generate a phenome-wide

snapshot of the patient population, which can be used in a variety

of methods that necessitate the capture of hundreds or thousands

of different disease labels.31 Some projects require higher quality

phenotypes than can be generate using ICD codes alone. In this

case, researchers may develop computable phenotypes that com-

bine various datatypes (eg, diagnosis codes, text mentions, medica-

tions) to increase the specificity and/or sensitivity of the

phenotype.32,33

Ideally, a computable phenotype should be designed with input

from both data scientists and clinical experts and within the context

of a specific study. A clinical domain expert understands the diag-

nostic, laboratory, and pharmacological markers for a disease and

the specific characteristics that distinguish similar conditions. The

data scientist understands how these concepts are represented in

the data and whether idiosyncratic data capture or formats need to

be considered. The data scientist needs to iterate with the domain

expert on the impact of including criteria that may increase the pre-

cision of the diagnosis where the presence of characteristics corre-

lates highly with the presence of disease, at the cost of missing

some patients who have the disease (high positive predictive value,

but low sensitivity), and the sensitivity of characteristics where

fewer patients are missed but not all patients with the characteris-

tics really have the disease (high sensitivity, but low positive predic-

tive value).

Having an evaluation process for a computable phenotype is criti-

cal. Because of the different perspectives between and among data

scientists and clinicians, it is common to have disagreement about the

best way to define a computable phenotype. One way to settle these

disagreements is to test assumptions against real data. The evaluation

process for a computable phenotype usually requires a gold standard

of expert reviewed charts. Surrogate markers like genetics may also

be used when available to assess phenotype quality.34,35

7 | RESEARCH NETWORKS AND COMMON
DATA MODELS

Several existing real-world data networks have standardized data

across institutions to support clinical research, comparative safety,

comparative effectiveness, disease surveillance, and related research,

including the Vaccine Safety Datalink, the Health Care Systems

Research Network, FDA Sentinel, and PCORnet. Work from these

networks demonstrate the feasibility of standardizing data across time

and institutions and provide excellent guidance on how to harmonize

data, detect problems, and generate quality measurements.36 Studies

conducted in these networks demonstrates that EHR data can enable

reliable and clinically meaningful research.

Progress has been made in developing standards that facilitate

cross-institutional analyses. The Observational Medical Outcomes

Partnership (OMOP) is a common data model (CDM) that allows
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institutions to convert their own EHR data, which are often stored in

bespoke data structures, into a standardized format, and has been

used successfully in multi-institutional EHR studies.37 National initia-

tives like the eMerge program have developed standards for comput-

able phenotypes that can be applied across institutions, an example of

which is shown in Figure 6.38

With these initiatives, the informatics community has grown

more adept at harmonizing EHR data. The National COVID Cohort

Collaborative (N3C) is a good example of an initiative that used

past innovations and knowledge to quickly build a broadly accessi-

ble cohort of over 5 million patients from disparate health sys-

tems.39 But while CDMs and phenotypes standards greatly

increase the efficiency of cross-institutional research, data scien-

tists using these tools should still be mindful of the caveats

described above while analyzing and interpreting results. Pheno-

types designed for CDMs may be guaranteed to execute smoothly,

but the quality of the phenotypes will vary based on the complexi-

ties of EHR data.40

8 | CONCLUSION

Developing high-quality clinical evidence from real-world clinical data

requires that data scientists and clinicians collaborate, communicate,

and iterate on both the development of the analytical data set and the

conduct of the analysis. Data scientists in the clinical domain do not

need formal clinical education, but to participate deeply in the

research process as true collaborators, they require special training

into the idiosyncrasies of clinical data and the impact on the interpret-

ability of results.19 Clinicians should be involved in the process of

optimizing clinical phenotypes and need to work with data scientists

to support data-driven decisions about appropriate granularity and

timing of definitional components. Biostatisticians and epidemiologists

also provide important insights into study design and addressing miss-

ing or noisy data.41,42

To support reproducibility of findings, more work is needed to

develop reporting standards for the results of EHR analyses. An analy-

sis of EHR data performed under one set of assumptions, even if well-

F IGURE 6 Flow chart for identifying type 2 diabetes in PheKB. Developing a computable phenotype for diabetes is illustrative of many of the
issues highlighted in this article. Diabetes can be either type 1 or type 2. While type 1 diabetics always require insulin, type 2 diabetics sometimes
require insulin. Some patients, especially those who receive insulin, may have accumulated evidence for the diagnosis of both type 1 and type
2 diabetes over time, so identifying the type of diabetes a patient has from diagnosis codes may be challenging. PheKB provides an algorithm for
type 2 diabetes that excludes patients who have ever had a diagnosis of type 1 diabetes. That decision likely increases the positive predictive
value of the phenotype but lowers the sensitivity. The flow diagram implies that the diagnosis of type 2 diabetes requires the combination of a
type 2 diagnosis plus an abnormal laboratory test result or a type 2 diagnosis plus a suggestive medication or two diagnoses of type 2 diabetes.
While this is a single definition, it allows for multiple paths for a diagnosis that could be differentially present at different sites. This definition is
one of many that could be developed based on the specific data source and use case
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informed by expert opinion, may be spuriously correct or incorrect.

Worse still, the investigative team may have performed an analysis

under multiple assumptions and only reported the version that sup-

ports their hypothesis. Therefore, the traditional style of reporting

results of analyses of real-world data in a manner similar to random-

ized controlled trials (RCTs), with a single point estimate and confi-

dence interval for the association between an exposure and outcome,

is suboptimal. This approach has led to conflicting literature43-46

where it is difficult to understand the underlying cause of the differ-

ent results and the implications for generalizability.47 Sensitivity ana-

lyses should be conducted under different assumptions including

handling of missing data, and different definitions of exposure and

outcome, with explicit definitions of key variables, and the results of

these analyses should be reported. In this way, the robustness of the

findings will be more apparent, or if different results arise under dif-

ferent assumptions, these differences can be described sooner and

contribute to a more balanced interpretation of the findings.

The practice of repurposing clinical data for research has

attracted criticism when conducted without recognition of the idio-

syncrasies of clinical practice that impact the recording and interpreta-

tion of data. However, there are many examples of well-conducted

EHR-based studies that report important and reproducible findings.

EHR-based research has earned a place in the research ecosystem. To

be successful, researchers must always be mindful of the complexities

of EHR data, many of which are described in this article, and remain

vigilant for unexpected challenges that could comprise the science.
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