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Abstract Although it has been believed that the evolution of cortical folds was a milestone,

allowing for an increase in the number of neurons in the cerebral cortex, the mechanisms

underlying the formation of cortical folds are largely unknown. Here we show regional differences

in the expression of fibroblast growth factor receptors (FGFRs) in the developing cerebral cortex of

ferrets even before cortical folds are formed. By taking the advantage of our in utero

electroporation technique for ferrets, we found that cortical folding was impaired in the ferret

cerebral cortex when FGF signaling was inhibited. We also found that FGF signaling was crucial for

producing Pax6-positive neural progenitors in the outer subventricular zone (OSVZ) of the

developing cerebral cortex. Furthermore, we found that upper layers of the cerebral cortex were

preferentially reduced by inhibiting FGF signaling. Our results shed light on the mechanisms of

cortical folding in gyrencephalic mammalian brains.

DOI: https://doi.org/10.7554/eLife.29285.001

Introduction
Folds of the cerebral cortex, which are called the gyri and the sulci, are one of the most prominent

features of the mammalian brain. Humans, monkeys and ferrets have gyrencephalic brains (i.e. brains

with folded cerebral cortices), whereas the brains of rodents are often lissencephalic (i.e. lacking cor-

tical folds). It has been believed that the creation of cortical folds during evolution was a milestone,

allowing for an increase in the number of neurons in the cerebral cortex (Lewitus et al., 2013;

Sun and Hevner, 2014). Malformations of cortical folds in human patients are associated with severe

intellectual disabilities, epilepsy and diseases such as lissencephaly, polymicrogyria, schizophrenia

and autism (Ross and Walsh, 2001). Therefore, the molecular and cellular mechanisms underlying

the formation and malformation of cortical folds during development have been of great interest;

however, they are still largely unknown.

One attractive hypothesis for the mechanism of cortical folding is that an increase in the numbers

of neural progenitors is responsible for cortical folding (Kriegstein et al., 2006; Molnár et al.,

2006; Rakic, 1995; Fietz and Huttner, 2011; Rakic, 2009; Lui et al., 2011; Poluch and Juliano,

2015; Sun and Hevner, 2014; Borrell and Götz, 2014; Dehay et al., 2015). The developing cere-

bral cortex contains two germinal layers containing neural progenitors: the ventricular zone (VZ) and

the subventricular zone (SVZ). The VZ comprises radial glial cells (RG cells, also known as apical pro-

genitors/ventricular RG cells/apical RG cells), which undergo multiple rounds of cell divisions and

generate SVZ progenitors. The SVZ is further subdivided into the outer SVZ (OSVZ) and the inner

SVZ (ISVZ), and contains two types of neural progenitors: intermediate progenitor cells (IP cells, also

known as basal progenitors) and outer radial glial cells (oRG cells, also known as OSVZ RG cells/

basal RG cells/intermediate RG cells/translocating RG cells). Because a prominent thick SVZ was

found in gyrencephalic animals, it has been hypothesized that thickening of the SVZ leads to
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acquiring cortical folds during development and evolution (Martı́nez-Cerdeño et al., 2006;

Fietz et al., 2010; Hansen et al., 2010; Reillo and Borrell, 2012). However, the hypotheses about

the mechanisms of cortical folding had been difficult to test experimentally in vivo, mainly because

rapid and efficient genetic manipulation techniques that can be applied to gyrencephalic mammalian

brains were poorly available.

To overcome this difficulty, we recently developed a genetic manipulation technique for gyrence-

phalic carnivore ferrets using in utero electroporation (IUE) (Kawasaki et al., 2012, 2013). By taking

the advantage of our IUE technique for ferrets, we successfully demonstrated that the transcription

factor Tbr2 was required for producing SVZ progenitors and that SVZ progenitors were indeed cru-

cial for cortical folding during development (Toda et al., 2016). These results uncovered cell-autono-

mous molecular mechanisms of cortical folding. The next important question was what the upstream

mechanisms regulating SVZ production and cortical folding were. Recently, we succeeded in produc-

ing a ferret model of polymicrogyria (Masuda et al., 2015). When fibroblast growth factor (FGF) was

overexpressed into the ferret cerebral cortex using our IUE technique, a number of undulating folds

appeared, suggesting that excess FGF is sufficient for producing additional cortical folds

(Masuda et al., 2015). This finding further raised the possibility that endogenous FGF signaling is

crucial for cortical folding during development. Here we uncovered that cortical folding was

impaired in the ferret cortex when FGF signaling was inhibited. We further found that Pax6-positive

oRG cells and upper layers of the cerebral cortex were selectively reduced by inhibiting FGF signal-

ing. Our results shed light on the mechanisms of cortical folding in gyrencephalic mammalian brains.

Results

FGF signaling mediates the formation of cortical folds
We first examined which FGF receptors (FGFRs) are expressed in the developing cerebral cortex of

ferrets at postnatal day 0 (P0), when cortical folds are about to be formed. Reverse transcription-

PCR (RT-PCR) demonstrated that FGFR1, FGFR2 and FGFR3 were expressed in the ferret cerebral

cortex (Figure 1A). To examine the role of FGF signaling in cortical folding, we inhibited FGF signal-

ing in the developing ferret cortex. Because multiple FGFRs are expressed in the cortex, we intro-

duced a soluble extracellular domain of FGFR3 (sFGFR3), which acts in a dominant-negative manner,

into the ferret cerebral cortex using our IUE technique to suppress all FGFR activity (Figure 1B). It

should be noted that sFGFR3, which consists of the extracellular domain of FGFR3 without the trans-

membrane domain, is released from transfected cells and binds to endogenous FGFs (Fukuchi-

Shimogori and Grove, 2001). It was therefore supposed that sFGFR3 suppresses FGF signaling not

only in transfected cells but also in neighboring non-transfected cells non-cell-autonomously, pre-

sumably resulting in stronger phenotypes. To test this, we introduced sFGFR3 into the ferret cere-

bral cortex using IUE and performed in situ hybridization for Sprouty2, whose expression is known

to be up-regulated by FGFR activation (Tsang and Dawid, 2004). Sprouty2 signals were abundantly

distributed in the OSVZ and the VZ of the control ferret cortex (Figure 1—figure supplement 1). In

contrast, Sprouty2 signals in non-transfected cells, which did not show GFP signals in their somata,

were markedly suppressed by sFGFR3 electroporation in the OSVZ (Figure 1—figure supplement

1). These results suggest that sFGFR3 indeed suppresses FGF signaling non-cell-autonomously.

We introduced sFGFR3 into the ferret cortex using IUE at embryonic day 33 (E33) and examined

cortical folds at P16. Interestingly, we found that cortical folding was impaired in sFGFR3-transfected

areas (Figure 1B). Consistently, coronal sections showed that cortical folding was inhibited in the

sFGFR3-transfected side of the cortex compared with the contralateral side of the cortex and the

EGFP-transfected control cortex (Figure 1C,D). To quantify the effects of sFGFR3 on cortical folding,

we utilized the local gyrus size (GS) ratio (Figure 1—figure supplement 2), the local sulcus depth

(SD) ratio (Figure 1—figure supplement 3) and the local gyrification index (GI) ratio (Figure 1—fig-

ure supplement 4). Consistent with our observation, the local GS ratio, the local SD ratio and the

local GI ratio were significantly reduced by sFGFR3 (local GS ratio: control, 0.75 ± 0.05; sFGFR3,

0.25 ± 0.05; p=0.003; Student’s t-test) (local SD ratio: control, 0.88 ± 0.03; sFGFR3, 0.47 ± 0.10;

p=0.019; Student’s t-test) (local GI ratio: control, 0.95 ± 0.04; sFGFR3, 0.72 ± 0.05; p=0.025; Stu-

dent’s t-test) (Figure 1E–G, Supplementary file 1). These results clearly indicate that FGF signaling

is crucial for cortical folding. It should be noted that cortical folding in peripheral regions of the
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Figure 1. FGF signaling is required for cortical folding. (A) Expression of FGFRs in the developing ferret cortex. RT-PCR was performed using the

cerebral cortex of the ferret at P0. RT+ and RT- indicate samples with and without reverse transcriptase, respectively. (B) Lateral views of the transfected

brains. pCAG-EGFP plus either pCAG-sFGFR3 or pCAG control vector was electroporated at E33, and the brains were dissected at P16. Note that

sFGFR3 suppressed the formation of the gyrus (arrow), which was present in the control brain (arrowhead). A, anterior; D, dorsal. Scale bar = 5 mm. (C)

Coronal sections of the brain stained with anti-GFP antibody and Hoechst 33342 (magenta). The formation of cortical folds was suppressed in the GFP-

positive area when sFGFR3 was electroporated (sFGFR3, EP, arrow). Arrowheads indicate cortical folds in the control cortex and in the non-

electroporated side of the cortex (non-EP). Scale bars = 5 mm (upper panel) and 1 mm (lower panel). (D) Serial coronal sections of the brain stained

with anti-GFP antibody and Hoechst 33342 (magenta). The formation of cortical folds was widely suppressed in the GFP-positive areas when sFGFR3

was transfected (arrows). Arrowheads indicate cortical folds in the control cortex. A, anterior; P, posterior. Scale bar = 5 mm. (E–G) Quantification of the

local GS ratio (E), the local SD ratio (F) and the local GI ratio (G). The local GS ratio, the local SD ratio and the local GI ratio were significantly smaller in

sFGFR3-transfected samples. n = 3 animals for each condition. Bars present mean ± SEM. *p<0.05, **p<0.01, Student’s t-test.

DOI: https://doi.org/10.7554/eLife.29285.002

The following figure supplements are available for figure 1:

Figure supplement 1. sFGFR3 suppressed FGF signaling in the OSVZ in a non-cell-autonomous manner.

DOI: https://doi.org/10.7554/eLife.29285.003

Figure supplement 2. The definition of the local gyrus size (GS) ratio.

DOI: https://doi.org/10.7554/eLife.29285.004

Figure supplement 3. The definition of the local sulcus depth (SD) ratio.

DOI: https://doi.org/10.7554/eLife.29285.005

Figure supplement 4. The definition of the local gyrification index (GI) ratio.

DOI: https://doi.org/10.7554/eLife.29285.006
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GFP-positive area did not seem to be affected in the sFGFR3-transfected cortex. It seemed likely

that the expression level of sFGFR3 was not sufficient to inhibit FGF signaling strongly in peripheral

regions of the GFP-positive area. We also noticed that the local GS ratio and the local SD ratio were

slightly smaller than 1 in the GFP-transfected control cortex (local GS ratio, p=0.009; local SD ratio,

p=0.02; local GI ratio, p=0.19; one sample t-test), raising the possibility that cortical folding can be

affected by electroporation itself. It would be important to be careful when interpreting experimen-

tal results using IUE. In addition, it is worth noting that because GFP-positive areas were wide

enough to include both the gyrus and sulcus regions, it seemed possible that sFGFR3 affected both

the formation of the gyrus and that of the sulcus.

Regional differences in FGFR expression in the ferret cerebral cortex
during development
We examined the detailed expression patterns of FGFR1, FGFR2 and FGFR3 in coronal sections of

the ferret cerebral cortex during development. In situ hybridization showed that FGFR2 and FGFR3

mRNAs were predominantly expressed in the germinal zones such as the VZ at E32, and the VZ and

the SVZ at E36 and E40 (Figure 2—figure supplement 1A–C). FGFR1 was also expressed in the VZ,

but its signals were weaker than those of FGFR2 and FGFR3 (Figure 2—figure supplement 1A–C).

Interestingly, the expression of FGFR2 and that of FGFR3 in the OSVZ were not uniform throughout

the cortex at E36 and E40. Some areas contained abundant FGFR signals in the OSVZ, whereas

other areas had fewer FGFR signals (Figure 2—figure supplement 1B,C). These results led to the

hypothesis that the regional differences in FGFR expression in the OSVZ mediate cortical folding.

We quantified FGFR signal intensities along the tangential axis in the OSVZ at E40 (Figure 2—figure

supplement 1D–G). FGFR signals indeed showed regional differences in the OSVZ (Figure 2—fig-

ure supplement 1D–G).

Previously, lateral to medial gradients in cell proliferation were reported in the rodent cerebral

cortex (Bayer and Altman, 1991). Similarly, it was also reported that Fgfr expression showed

medio-lateral gradients in the VZ of the rodent cerebral cortex during early corticogenesis, although

it became uniform afterward (Hasegawa et al., 2004; Hébert et al., 2003). It therefore seemed pos-

sible that the regional differences in FGFR signals found in the ferret cortex reflected the medio-lat-

eral gradients found in mice. Another possibility was that the regional differences in FGFR

expression in ferrets corresponded to the positions of gyri and sulci. To address these possibilities,

we next performed in situ hybridization for FGFR2 and FGFR3 at P6, when the gyrus was beginning

to be formed. We found that FGFR2 and FGFR3 were abundantly expressed in the region where the

gyrus would be formed, but less abundant where the sulcus would be formed (Figure 2—figure sup-

plement 2). These results suggest that the regional difference in FGFR expression in the OSVZ cor-

responds to the positions of the gyrus and the sulcus. Our findings were consistent with a previous

work showing uneven distribution patterns of FGFR2 and FGFR3 in the ferret cortex (de Juan

Romero et al., 2015). In contrast, there were no similar regional differences in Fgfr expression in the

lissencephalic cerebral cortex of developing mice at E15, which corresponds to E40 in ferrets (Fig-

ure 2—figure supplement 3) (Bansal et al., 2003). The regional differences in FGFR expression in

the OSVZ during development therefore seemed to be an important feature of the gyrencephalic

cortex of mammals.

Previous studies uncovered regional differences in the distribution of SVZ progenitors in the

developing ferret cerebral cortex (Toda et al., 2016; de Juan Romero et al., 2015) and reported

that the regional differences of SVZ progenitors were correlated with the positions of gyri

(Toda et al., 2016; Reillo et al., 2011; Nowakowski et al., 2016; Smart et al., 2002). It seemed

possible that the regional differences of FGFRs correspond to those of SVZ progenitors. We there-

fore examined the expression pattern of Pax6, which is expressed in RG cells and oRG cells, and

found that FGFRs and Pax6 showed similar regional differences in the OSVZ (Figure 2—figure sup-

plement 1B,C). These findings are consistent with the idea that FGF signaling in the OSVZ underlies

cortical folding of the ferret cerebral cortex.

Identities of FGFR-positive cells in the OSVZ
To determine the cellular identities of FGFR-positive cells in the OSVZ at a single-cell level, we per-

formed triple staining with in situ hybridization for FGFRs and immunostaining for Pax6 and Tbr2.
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We found that FGFR2-positive cells and FGFR3-positive cells in the OSVZ were mostly positive for

Pax6 (Figure 2A, arrows) but negative for Tbr2 (Figure 2B, arrowheads and 2C) (FGFR2: Pax6+/

Tbr2- cells, 91.4 ± 6.2%; Pax6+/Tbr2+ cells, 3.8 ± 3.1%; Pax6-/Tbr2+ cells, 0.0%; Pax6-/Tbr2- cells,

4.9 ± 4.4%) (FGFR3: Pax6+/Tbr2- cells, 76.7 ± 5.7%; Pax6+/Tbr2+ cells, 12.4 ± 5.7%; Pax6-/Tbr2

+ cells, 0.0%; Pax6-/Tbr2- cells, 10.8 ± 10.5%). Similar results were obtained for FGFR1 (Pax6+/Tbr2-

cells, 78.7 ± 10.0%; Pax6+/Tbr2+ cells, 5.8 ± 5.4%; Pax6-/Tbr2+ cells, 0.0%; Pax6-/Tbr2- cells, 15.4 ±

6.5%) (Figure 2A, arrows; 2B, arrowheads and 2C), although FGFR1-positive cells were fewer.

Because it was previously reported that astrocytes also expressed Pax6 in the mouse cerebral cortex

(Sakurai and Osumi, 2008), we next examined whether Pax6-positive cells in the OSVZ included

astrocytes. We found that Pax6-positive cells in the OSVZ did not express GFAP (Figure 2—figure

supplement 4). These results suggest that FGFR-positive cells in the OSVZ are mostly Pax6-positive/

Tbr2-negative oRG cells rather than Tbr2-positive IP cells or astrocytes.

FGF signaling is indispensable for oRG production
Because FGFRs are expressed in oRG cells, we next examined the role of FGF signaling in the pro-

duction of oRG cells by expressing sFGFR3. We found that sFGFR3 markedly reduced Pax6-positive

cells in the OSVZ underneath EGFP-positive transfected areas at P6 (Figure 3B–D). Our quantifica-

tion showed that Pax6-positive cells in the OSVZ were significantly decreased by sFGFR3 (OSVZ:

Control, 9.40 ± 2.25; sFGFR3, 2.54 ± 0.77; p=0.008; Student’s t-test), while those in the VZ and the

ISVZ were not (VZ: Control, 8.70 ± 2.30; sFGFR3, 11.12 ± 1.71; p=0.15; Student’s t-test) (ISVZ: Con-

trol, 17.9 ± 7.1; sFGFR3, 13.4 ± 4.7; p=0.25; Student’s t-test) (Figure 3E, Supplementary file 1).

Interestingly, Tbr2-positive cells were also reduced by sFGFR3 in the OSVZ selectively (VZ: Control,

1.96 ± 0.80; sFGFR3, 2.02 ± 0.29; p=0.46; Student’s t-test) (ISVZ: Control, 8.79 ± 3.54; sFGFR3,

6.74 ± 2.41; p=0.27; Student’s t-test) (OSVZ: Control, 6.37 ± 2.08; sFGFR3, 2.26 ± 0.32; p=0.025;

Student’s t-test) (Figure 3F,G, Supplementary file 1), although FGFR was rarely expressed in Tbr2-

positive cells (Figure 2). We further examined the detailed identities of the affected cells in the

OSVZ using double immunostaining for Pax6 and Tbr2. We found that both Pax6-positve/Tbr2-nega-

tive oRG cells and Pax6-positive/Tbr2-positive IP cells were significantly decreased by sFGFR3 in the

OSVZ (Pax6-positive/Tbr2-negative cells: Control, 2.38 ± 0.41 per 1000 mm2; sFGFR3, 1.61 ± 0.26

per 1000 mm2; p=0.044; Student’s t-test) (Pax6-positive/Tbr2-positive cells: Control, 1.49 ± 0.69 per

1000 mm2; sFGFR3, 0.35 ± 0.13 per 1000 mm2; p=0.041; Student’s t-test) (Figure 3—figure supple-

ment 1, Supplementary file 1). These results suggest that FGF signaling is essential for producing

OSVZ progenitors. Because a previous study showed that oRG cells in OSVZ have the ability to pro-

duce IP cells (Hansen et al., 2010), it seemed plausible that reduction of Pax6-positive/Tbr2-nega-

tive oRG cells resulted in that of Tbr2-positive cells.

We next tested whether cell proliferation in the OSVZ was affected by sFGFR3. As expected, we

found that Ki-67-positive cells in the OSVZ, but not in the VZ and the ISVZ, were significantly

reduced by sFGFR3 (VZ: Control, 3.22 ± 0.38 per 1000 mm2; sFGFR3, 3.07 ± 0.38 per 1000 mm2;

p=0.36; Student’s t-test) (ISVZ: Control, 2.15 ± 0.55 per 1000 mm2; sFGFR3, 2.19 ± 1.07 per 1000

mm2; p=0.48; Student’s t-test) (OSVZ: Control, 1.75 ± 0.08 per 1000 mm2; sFGFR3, 0.76 ± 0.28 per

1000 mm2; p=0.004; Student’s t-test) (Figure 3—figure supplement 2A,B, Supplementary file 1).

Consistent results were obtained using anti-phospho-histone H3 (pHH3) (VZ: Control, 0.28 ± 0.02

per 1000 mm2; sFGFR3, 0.29 ± 0.07 per 1000 mm2; p=0.39; Student’s t-test) (ISVZ: Control,

0.28 ± 0.08 per 1000 mm2; sFGFR3, 0.23 ± 0.06 per 1000 mm2; p=0.26; Student’s t-test) (OSVZ: Con-

trol, 0.091 ± 0.041 per 1000 mm2; sFGFR3, 0.024 ± 0.008 per 1000 mm2; p=0.043; Student’s t-test)

and anti-phosphorylated vimentin (pVim) (VZ: Control, 0.57 ± 0.33 per 1000 mm2; sFGFR3,

0.69 ± 0.07 per 1000 mm2; p=0.33; Student’s t-test) (ISVZ: Control, 0.20 ± 0.10 per 1000 mm2;

sFGFR3, 0.34 ± 0.15 per 1000 mm2; p=0.16; Student’s t-test) (OSVZ: Control, 0.096 ± 0.032 per 1000

mm2; sFGFR3, 0.038 ± 0.020 per 1000 mm2; p=0.049; Student’s t-test) antibodies (Figure 3—figure

supplement 2C–F, Supplementary file 1). These results indicate that the number of proliferating

cells in the OSVZ was reduced by sFGFR3.

We then examined which cell types had their proliferation affected by sFGFR3 in the OSVZ. We

performed triple immunostaining for Pax6, Tbr2 and pHH3, and found that the percentage of Pax6-

positive/Tbr2-negative cells co-expressing pHH3 in the OSVZ was significantly reduced by sFGFR3

(Control, 2.57 ± 0.91%; sFGFR3, 0.67% ± 0.34%; p=0.025; Student’s t-test), while that of Pax6/Tbr2-

double positive cells co-expressing pHH3 was not (Control, 1.28 ± 0.60%; sFGFR3, 0.89% ± 1.25%;
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Figure 2. The expression of Pax6 and Tbr2 in FGFR-positive cells in the OSVZ. Sections of the developing ferret cortex at P6 were subjected to

immunohistochemistry for Pax6 or Tbr2 and in situ hybridization for FGFR1, FGFR2 or FGFR3. (A and B) Higher magnification images of the OSVZ are

shown. Note that FGFR-positive cells were mostly positive for Pax6 (arrows), but negative for Tbr2 (arrowheads). Scale bars = 50 mm. (C) Quantification

of the percentages of FGFR-positive cells which were also positive for Pax6 and Tbr2. n = 3 animals for each condition. For details, see

Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.29285.007

The following figure supplements are available for figure 2:

Figure supplement 1. Regional differences in the abundance of FGFR expression in the developing cerebral cortex of ferrets.

DOI: https://doi.org/10.7554/eLife.29285.008

Figure supplement 2. Regional differences in the abundance of FGFR expression in the postnatal ferret cerebral cortex.

DOI: https://doi.org/10.7554/eLife.29285.009

Figure 2 continued on next page
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p=0.36; Student’s t-test) (Figure 4, Supplementary file 1). Thus, our findings indicate that prolifera-

tion of Pax6-positive/Tbr2-negative oRG cells in the OSVZ is regulated by FGF signaling. This is con-

sistent with our data that FGFRs are expressed in Pax6-positive/Tbr2-negative cells, but not in Tbr2-

positive cells in the OSVZ (Figure 2). In addition, we also examined apoptosis using anti-cleaved cas-

pase-3 antibody, but did not find significant effects of sFGFR3 on the number of cleaved caspase-3-

positive cells (VZ: Control, 0.27 ± 0.07 per 1000 mm2; sFGFR3, 0.42 ± 0.23 per 1000 mm2; p=0.23;

Student’s t-test) (ISVZ: Control, 0.22 ± 0.06 per 1000 mm2; sFGFR3, 0.30 ± 0.06 per 1000 mm2;

p=0.13; Student’s t-test) (OSVZ: Control, 0.019 ± 0.005 per 1000 mm2; sFGFR3, 0.013 ± 0.010 per

1000 mm2; p=0.25; Student’s t-test) (Figure 3—figure supplement 2G,H, Supplementary file 1),

suggesting that FGF signaling is irrelevant to apoptosis.

Upper layers are predominantly affected by FGF signaling
We examined whether the layer structure of the cortex was affected by sFGFR3 expression. Immuno-

histochemistry for FoxP2 and Ctip2, which are expressed in layers 5 and 6 (Figure 5A,B), demon-

strated normal layer structure in the cerebral cortex electroporated with sFGFR3. Consistently, in

situ hybridization for Rorb and Cux1, which are expressed in layer 4 and layers 2–4, respectively,

showed the layer structure of the cerebral cortex was not affected by expressing sFGFR3

(Figure 5C,D). The locations of GFP-positive cells were not affected by sFGFR3; GFP-positive cells

were distributed in layers 4 and 5 in both control and sFGFR3-transfected cortex (Figure 5—figure

supplement 1). In addition, the locations of GFP-positive migrating cells and layer formation of the

cerebral cortex during development seemed to be unaffected by sFGFR3 (Figure 5—figure supple-

ment 2).

Finally, we quantified the thickness of cortical layers. Because it has been hypothesized that evo-

lutional expansion of upper layers in gyrencephalic mammals resulted from an increase in the num-

ber of oRG cells (Borrell and Götz, 2014; Lui et al., 2011; Lukaszewicz et al., 2005;

Nowakowski et al., 2016), it seemed plausible that the reduction of Pax6-positive/Tbr2-negative

oRG cells by sFGFR3 led to preferential reduction of upper layers. Consistently, we found that the

thickness of layer 2/3 was significantly reduced by sFGFR3 (Control, 0.97 ± 0.06; sFGFR3,

0.77 ± 0.06; p=0.017; Student’s t-test) (Figure 5E, Supplementary file 1). In contrast, the thick-

nesses of layer 4, layer 5 and layer 6 were not affected by sFGFR3 (Layer 4: Control, 0.99 ± 0.05;

sFGFR3, 0.96 ± 0.06; p=0.34; Student’s t-test) (Layer 5: Control, 0.95 ± 0.03; sFGFR3, 1.12 ± 0.13;

p=0.078; Student’s t-test) (Layer 6: Control, 1.08 ± 0.13; sFGFR3, 1.00 ± 0.08; p=0.26; Student’s t-

test) (Figure 5F–H, Supplementary file 1). It is worth noting that GFP-positive transfected neurons

were distributed in layers 4 and 5, but there were almost no GFP-positive cells in layer 2/3 (Fig-

ure 5—figure supplement 1), supporting our results that sFGFR3 exhibits a non-cell-autonomous

effect. These findings suggest that FGF signaling affects the ratio between upper and lower layers

of the cerebral cortex, and that the increased upper/lower ratio results in cortical folding. The most

conceivable scenario would be that FGF increases OSVZ progenitors and preferentially increases

upper layer neurons, generating the protrusion of cortical folds (Figure 5I).

Discussion
Although the mechanisms underlying the formation of cortical folds have been of great interest,

they had remained largely unknown. Here we have shown that regional differences in FGFR expres-

sion exist in the ferret cerebral cortex even before cortical folds are formed. Using our IUE tech-

nique, we uncovered that FGF signaling is required for cortical folding and the proliferation of OSVZ

progenitors. Furthermore, FGF signaling preferentially affects the thickness of upper layers. We pre-

viously demonstrated that FGF overexpression was sufficient to increase cortical folds and OSVZ

progenitors (Masuda et al., 2015). Furthermore, FGF overexpression preferentially increased the

Figure 2 continued

Figure supplement 3. The expression of Fgfr1, Fgfr2 and Fgfr3 in the developing mouse cerebral cortex.

DOI: https://doi.org/10.7554/eLife.29285.010

Figure supplement 4. Pax6-positive cells in the OSVZ did not express GFAP in the developing cerebral cortex of ferret neonates.

DOI: https://doi.org/10.7554/eLife.29285.011
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Figure 3. The roles of FGF signaling in neural progenitors of the developing ferret cortex. pCAG-EGFP plus either pCAG-sFGFR3 or pCAG control

vector was electroporated at E33, and the brains were dissected at P6. (A) Dorsal views of the transfected brains. A, anterior; P, posterior. (B) Coronal

sections stained with anti-Pax6 antibody and Hoechst 33342. Transfected regions were identified with GFP fluorescence. (C) Magnified images within

the boxes of (B). Note that Pax6-positive cells were markedly decreased in the OSVZ underneath the sFGFR3-transfected region (square bracket). (D)

Figure 3 continued on next page
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Figure 3 continued

Pax6-positive cells in the VZ, the ISVZ and the OSVZ of the transfected brain. (E) Quantification of the numbers of Pax6-positive cells per 10-mm-wide

strips of the VZ, ISVZ and OSVZ. Pax6-positive cells were significantly reduced by sFGFR3 in the OSVZ selectively. n = 3 animals for each condition. Bars

represent mean ± SD. (F) Tbr2-positive cells in the VZ, the ISVZ and the OSVZ of the transfected brain. (G) Quantification of Tbr2-positive cells. Tbr2-

positive cells were significantly reduced by sFGFR3 in the OSVZ selectively. n = 3 animals for each condition. Bars present mean ± SD. *p<0.05,

**p<0.01, Student’s t-test. Scale bars = 5 mm (A), 2 mm (B), 500 mm (C) and 100 mm (D and F).

DOI: https://doi.org/10.7554/eLife.29285.012

The following figure supplements are available for figure 3:

Figure supplement 1. sFGFR reduced Pax6-positive/Tbr2-negative oRG cells and Pax6-positive/Tbr2-positive IP cells in the OSVZ.

DOI: https://doi.org/10.7554/eLife.29285.013

Figure supplement 2. FGF signaling is required for cell proliferation in the OSVZ of the developing ferret cortex.

DOI: https://doi.org/10.7554/eLife.29285.014

Figure 4. FGF signaling is required for cell proliferation of Pax6-positive, Tbr2-negative oRG cells. pCAG-EGFP plus either pCAG-sFGFR3 or pCAG

control vector were electroporated at E33, and the brains were dissected at P6. (A) Coronal sections were triple-stained with anti-Pax6, anti-Tbr2 and

anti-phospho-histone H3 (pHH3) antibodies. The VZ, the ISVZ and the OSVZ are shown. Scale bars = 100 mm. (B) The percentage of Tbr2-negative/

Pax6-positive cells co-expressing pHH3. (C) The percentage of Tbr2-positive/Pax6-positive cells co-expressing pHH3. n = 3 animals for each condition.

Bars present mean ± SD. *p<0.05, Student’s t-test.

DOI: https://doi.org/10.7554/eLife.29285.015
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Figure 5. Upper layers are predominantly affected by inhibiting FGF signaling. pCAG-EGFP plus either pCAG-sFGFR3 or pCAG control vector was

electroporated at E33, and the brains were dissected at P16. Coronal sections were subjected to Hoechst 33342 staining plus either

immunohistochemistry or in situ hybridization. (A) FoxP2 immunohistochemistry. (B) Ctip2 immunohistochemistry. (C) Rorb in situ hybridization (white).

(D) Cux1 in situ hybridization (white). The images within the boxes in the upper panels were magnified and are shown in the lower panels. Note that

Figure 5 continued on next page
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thickness of layer 2/3 (Masuda et al., 2015). Taken together, our findings indicate that FGF signaling

is crucial for cortical folding in gyrencephalic mammals and is a pivotal upstream regulator of the

production of OSVZ progenitors. FGF signaling is the first signaling pathway found to regulate corti-

cal folding.

Involvement of SVZ progenitors in cortical folding
Our results showed that sFGFR3 inhibited both cortical folding and the production of SVZ progeni-

tors. Our previous study showed that activation of FGF signaling resulted in both additional cortical

folds and increased SVZ progenitors (Masuda et al., 2015). These correlations between cortical fold-

ing and SVZ progenitors raised the possibility that SVZ progenitors are responsible for generating

cortical folds. Consistently, previous pioneering studies using monkeys reported that even before

cortical folds are formed during development, SVZ progenitors are abundant in the cortical regions

where the gyri will be formed (Smart et al., 2002). Recently, we directly tested this possibility and

uncovered that the formation of cortical folds was inhibited when SVZ progenitors were reduced by

expressing dominant-negative Tbr2 transcription factor (DN-Tbr2) (Toda et al., 2016). Thus, these

results suggest that SVZ progenitors are indeed crucial for cortical folding during development.

It has been hypothesized that the ratio between upper layers and lower layers of the cerebral cor-

tex is crucial for cortical folding (Richman et al., 1975; Kriegstein et al., 2006). A preferential

increase in upper layers relative to lower layers is supposed to produce the protrusion (i.e. the gyrus)

of the cortex. Consistent with this hypothesis, current and previous our findings demonstrated that

sFGFR3 and DN-Tbr2 preferentially reduced upper layers where cortical folding was impaired

(Toda et al., 2016). Furthermore, when FGF signaling was enhanced, upper layers were predomi-

nantly increased and additional gyri were formed (Masuda et al., 2015).

Besides the ratio between upper layers and lower layers mentioned above, several hypotheses

have been proposed to explain the mechanisms of cortical folding (Lewitus et al., 2013; Sun and

Hevner, 2014). It was previously proposed that radial fibers provided by oRG cells are involved in

gyrification (Reillo et al., 2011). In prospective gyral regions, oRG cells provide oblique radial fibers

for conical neuronal migration, which could contribute to the expansion of the cortical surface.

Because our results showed that the numbers of oRG cells were reduced by sFGFR3, reduction of

oRG fibers could also be involved in the effect of sFGFR3. Another hypothesis is that the tension of

nerve fibers plays a key role in gyrification (Van Essen, 1997). This also seemed possible because

axonal trajectories could also be affected by sFGFR3. Future investigations would be necessary in

order to gain a complete understanding of the mechanisms underlying cortical folding.

The roles of FGF signaling in cortical folding and the production of SVZ
progenitors
Our findings demonstrated that the protrusion of the gyrus was reduced by sFGFR3, whereas the

pattern of the gyrus was preserved. These results suggest that FGF signaling is involved in making

the protrusion of the gyri rather than regulating the positions of the gyri. Consistently, the overall

gyral patterns seemed to be unaffected by FGF8, although small additional gyri appeared

(Masuda et al., 2015). On the other hand, the role of FGF signaling in determining the number of

Figure 5 continued

sFGFR3 did not affect the layer structure of the cerebral cortex while cortical folding was inhibited (sFGFR3, EP, arrows). Scale bars = 1 mm. (E–H)

Quantification of the thicknesses of layer 2/3 (E), layer 4 (F), layer 5 (G) and layer 6 (H). The ratios of the thickness of the electroporated side relative to

that of the non-electroporated side are shown. Note that the thickness ratio of layer 2/3 was significantly reduced by sFGFR3, while those of layer 4,

layer 5 and layer 6 were not. n = 3 animals for each condition. Bars present mean ± SD. *p<0.05; ns, not significant; Student’s t-test. (I) A model of the

mechanisms underlying the formation of cortical folds in the gyrencephalic brain.

DOI: https://doi.org/10.7554/eLife.29285.016

The following figure supplements are available for figure 5:

Figure supplement 1. Distribution of GFP-positive cells in the sFGFR3-transfected cerebral cortex.

DOI: https://doi.org/10.7554/eLife.29285.017

Figure supplement 2. Layer structures of the cerebral cortex and laminar positions of GFP-positive cells in the sFGFR3-transfected brains during

development.

DOI: https://doi.org/10.7554/eLife.29285.018
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the gyri is unclear. sFGFR3 did not seem to affect the number of the gyri, though FGF8 increased it,

leading to polymicrogyria (Masuda et al., 2015). Because a previous study reported that an increase

in the number of neurons resulted in additional folding (Nonaka-Kinoshita et al., 2013), the increase

in neurons induced by FGF8 seemed to be sufficient for producing additional gyri.

Our findings indicate that FGF signaling regulates cortical folding and the proliferation of OSVZ

progenitors. In contrast to OSVZ progenitors, the proliferation of RG cells in the VZ was not affected

by inhibition of FGF signaling, even though FGFR is expressed in the VZ. Previous studies have dem-

onstrated that several ligands (e.g. growth factors and morphogens) other than FGF, such as BMP7,

promoted the proliferation of RG cells (Segklia et al., 2012). Therefore, it seemed plausible that

FGFs and other growth factors act redundantly to promote the proliferation of RG cells in the VZ. It

should be noted that although our findings indicate that FGF signaling regulates the proliferation of

OSVZ progenitors, it remains possible that FGF also regulates the differentiation of RG cells into

SVZ progenitors because FGFRs are also expressed in RG cells. Future investigations would be nec-

essary for addressing these points.

Although our findings clearly uncovered a crucial role of FGF signaling in cortical folding, cur-

rently it is unknown which types of FGFR and FGF are responsible for cortical folding. Our in situ

hybridization showed that FGFR1, 2 and 3 were expressed in the developing ferret cortex. Because

similar downstream signaling pathways are activated by FGFR1, 2 and 3 (Iwata and Hevner, 2009),

it seems likely that they work redundantly. Similarly, because several FGFs are expressed in the

developing mouse cortex (Allen Brain Atlas), they may work cooperatively.

Advantages of ferrets for examining the mechanisms of cortical folding
Although several hypotheses about the mechanisms of cortical folding have been proposed

(Kelava et al., 2013; Fernández et al., 2016), it had been difficult to test these hypotheses directly

through experiments. This was mainly because efficient genetic manipulation techniques that can be

used for gyrencephalic mammals were missing. Taking advantage of our IUE technique for ferrets,

here we uncovered the crucial role of FGF signaling in cortical folding. Using the same technique,

we previously reported that SVZ progenitors were indispensable for cortical folding (Toda et al.,

2016), and produced polymicrogyria model ferrets (Masuda et al., 2015). Ferrets are clearly an

important option for investigating the mechanisms of cortical folding.

Ferrets have several important advantages. First, anatomical and electrophysiological information

about the ferret brain is available because the ferret brain has been widely used for anatomical and

electrophysiological research. The structures of cortical gyri and sulci are well described (Smart and

McSherry, 1986b). Second, the processes of the formation of cortical gyri during development have

been reported (Smart and McSherry, 1986b; Smart and McSherry, 1986a; Neal et al., 2007). For

example, when ferret babies are born, their brains are lissencephalic, and cortical folds are formed

after birth. Therefore, the mechanisms of cortical folding can be analyzed using neonatal ferrets

rather than embryos. Third, usually more than six ferret babies are born from one pregnant mother.

This large number of babies per pregnant mother facilitates examination under various experimental

conditions and the ability to obtain a sufficient number of experimental samples. Finally, because

our IUE technique is now available, genetically manipulated ferret brains can be obtained within a

few weeks. Uncovering the molecular mechanisms underlying the formation of gyrencephalic brains

using ferrets would help lead to our ultimate goal of understanding the human brain and its

diseases.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

antibody anti-Tbr2 (rabbit polyclonal) Abcam Cat# ab23345;
RRID: AB_778267

N/A

antibody anti-Pax6 (mouse monoclonal) Abcam Cat# ab78545;
RRID: AB_1566562

N/A

Continued on next page

Matsumoto et al. eLife 2017;6:e29285. DOI: https://doi.org/10.7554/eLife.29285 12 of 20

Research article Neuroscience

https://scicrunch.org/resolver/AB_778267
https://scicrunch.org/resolver/AB_1566562
https://doi.org/10.7554/eLife.29285


Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

antibody anti-Pax6 (rabbit polyclonal) Covance Cat# PRB-278P;
RRID: AB_291612

N/A

antibody anti-Ki-67 (rabbit polyclonal) Leica Cat# NCL-Ki67p;
RRID: AB_442102

N/A

antibody anti-phospho-histone H3
(mouse monoclonal)

Millipore Cat# 05–806;
RRID: AB_310016

N/A

antibody anti-phosphorylated
vimentin (mouse monoclonal)

Medical and Biological
Laboratories, Japan

Cat# D076-3;
RRID: AB_592963

N/A

antibody anti-cleaved caspase 3
(rabbit monoclonal)

BD Pharmingen Cat# 559565;
RRID: AB_397274

N/A

antibody anti-Ctip2 (rat monoclonal) Abcam Cat# ab18465;
RRID: AB_2064130

N/A

antibody anti-FOXP2
(rabbit polyclonal)

Atlas antibodies Cat# HPA000382;
RRID: AB_1078908

N/A

antibody anti-GFAP
(mouse monoclonal)

Sigma-Aldrich Cat# G3893;
RRID: AB_477010

N/A

antibody anti-GFP (rat monoclonal) Nacalai tesque, Japan Cat# 440426;
RRID: AB_2313652

N/A

antibody anti-GFP (rabbit polyclonal) Medical and Biological
Laboratories, Japan

Cat# 598;
RRID: AB_591819

N/A

antibody biotin-conjugated
anti-phospho-histone H3

Millipore Cat# 16–189;
RRID: AB_310794

N/A

antibody alkaline phosphatase-
conjugated anti-digoxigenin

Roche, Indianapolis, IN Cat# 11093274910;
RRID: AB_514497

N/A

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR1 forward1 (primer) this paper N/A GGAGCTGGAAGTGCCTCCTCTTCTG

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR1 reverse1 (primer) this paper N/A TGATGCGGGTACGGTTGCTT

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR1 forward2 (primer) this paper N/A CAGGGGAGGAGGTGGAGGTG

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR1 reverse2
(primer)

this paper N/A CGGCACCGCATGCAATTTCTTTTCCATC

sequence-based reagent
(Mustela putorius furo)

Ferret Sprouty2 forward
(primer)

this paper N/A ATCGCAGGAAGACGAGAATCCAAGG

sequence-based reagent
(Mustela putorius furo)

Ferret Sprouty2 reverse
(primer)

this paper N/A CTGGGTGGGACAGTGGGAACTTTGC

sequence-based reagent
(Mus musculus)

Mouse Fgfr1 forward (primer) this paper N/A CTGCATGGTTGACCGTTCTGGAAGC

sequence-based reagent
(Mus musculus)

Mouse Fgfr1 reverse (primer) this paper N/A TGTAGATCCGGTCAAACAACGCCTC

sequence-based reagent
(Mus musculus)

Mouse Fgfr2 forward (primer) this paper N/A GGAAGGAGTTTAAGCAGGAGCATCG

sequence-based reagent
(Mus musculus)

Mouse Fgfr2 reverse (primer) this paper N/A CGATTCCCACTGCTTCAGCCATGAC

sequence-based reagent
(Mus musculus)

Mouse Fgfr3 forward (primer) this paper N/A GAAAGTGTGGTACCCTCCGATCGTG

sequence-based reagent
(Mus musculus)

Mouse Fgfr3 reverse (primer) this paper N/A GTCCAAAGCAGCCTTCTCCAAGAGG

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR2 forward (primer) this paper N/A AGAGATAAGCTGACGCTGGGCAAACC

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR2 reverse (primer) this paper N/A GAGGAAGGCAGGGTTCGTAAGGC

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR3 forward (primer) this paper N/A GAGGCTAAATTACGGGTACCTGA

sequence-based reagent
(Mustela putorius furo)

Ferret FGFR3 reverse (primer) this paper N/A GAGAACAAAGACCACCCTGAAC

recombinant DNA reagent pCAG-sFGFR3 (plasmid) PMID: 11567107 N/A N/A

recombinant DNA reagent pCAG-EGFP (plasmid) PMID: 20181605 N/A N/A

recombinant DNA reagent pCAG control (plasmid) PMID: 26482531 N/A N/A

recombinant DNA reagent
(Mustela putorius furo)

pCRII-ferret FGFR1_1 (plasmid) this paper N/A vector: pCRII; cDNA fragment:
ferret FGFR1.

recombinant DNA reagent
(Mustela putorius furo)

pCRII-ferret FGFR1_2 (plasmid) this paper N/A vector: pCRII; cDNA fragment:
ferret FGFR1.

recombinant DNA reagent
(Mustela putorius furo)

pCRII-ferret FGFR2 (plasmid) PMID: 26482531 N/A vector: pCRII; cDNA fragment:
ferret FGFR2.

recombinant DNA reagent
(Mustela putorius furo)

pCRII-ferret FGFR3 (plasmid) PMID: 26482531 N/A vector: pCRII; cDNA fragment:
ferret FGFR3.

recombinant DNA reagent
(Mustela putorius furo)

pCRII-ferret Sprouty2 (plasmid) this paper N/A vector: pCRII; cDNA fragment:
ferret Sprouty2.

recombinant DNA reagent
(Mus musculus)

pCRII-mouse Fgfr1 (plasmid) this paper N/A vector: pCRII; cDNA fragment:
mouse Fgfr1.

recombinant DNA reagent
(Mus musculus)

pCRII-mouse Fgfr2 (plasmid) this paper N/A vector: pCRII; cDNA fragment:
mouse Fgfr2.

recombinant DNA reagent
(Mus musculus)

pCRII-mouse Fgfr3 (plasmid) this paper N/A vector: pCRII;cDNA fragment:
mouse Fgfr3.

recombinant DNA reagent
(Mustela putorius furo)

pCRII-Ferret Cux1 (plasmid) PMID: 20575059 N/A N/A

recombinant DNA reagent
(Mustela putorius furo)

pCRII-Ferret Rorb (plasmid) PMID: 20575059 N/A N/A

software, algorithm FIJI http://fiji.sc RRID:SCR_002285 N/A

Animals
Normally pigmented, sable ferrets (Mustela putorius furo) were purchased from Marshall Farms

(North Rose, NY). Ferrets were maintained as described previously (Kawasaki et al., 2004; Iwai and

Kawasaki, 2009; Iwai et al., 2013). ICR mice were purchased from SLC (Hamamatsu, Japan) and

were reared on a normal 12 hr light/dark schedule. The day of conception and that of birth were

counted as embryonic day 0 (E0) and postnatal day 0 (P0), respectively. All procedures were

approved by the Animal Care Committee of Kanazawa University. Experiments were repeated at

least three times and gave consistent results.

In utero electroporation (IUE) procedure for ferrets
The IUE procedure to express transgenes in the ferret brain was described previously

(Kawasaki et al., 2012, 2013). Briefly, pregnant ferrets at E33 were anesthetized, and their body

temperature was monitored and maintained using a heating pad. The uterine horns were exposed

and kept wet by adding drops of PBS intermittently. The location of embryos was visualized with

transmitted light delivered through an optical fiber cable. The pigmented iris was visible, and this

enabled us to assume the location of the lateral ventricle. Approximately 2–5 ml of DNA solution was

injected into the lateral ventricle at the indicated ages using a pulled glass micropipette. Each

embryo within the uterus was placed between tweezer-type electrodes with a diameter of 5 mm

(CUY650-P5; NEPA Gene, Japan). Square electric pulses (50–100 V, 50 ms) were passed 5 times at 1

s intervals using an electroporator (ECM830, BTX, Holliston, MA). The wall and skin of the abdominal

cavity were sutured, and the embryos were allowed to develop normally.
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Plasmids
pCAG-EGFP was described previously (Sehara et al., 2010). pCAG-sFGFR3 was made in accordance

with a previous report (Fukuchi-Shimogori and Grove, 2001). Briefly, the extracellular domain of

human FGFR3c was amplified using the following primers and was subcloned into pCAG plasmid

vector, yielding pCAG-sFGFR3. Forward, CCATGGGCGCCCCTGCC; reverse, GGAGCCCAGGCC

TTTCTT. Plasmids were purified using the Endofree Plasmid Maxi Kit (Qiagen, Valencia, CA). For co-

transfection, a mixture of pCAG-EGFP plus either pCAG-sFGFR3 or pCAG control plasmid was

used. Prior to IUE procedures, plasmid DNA was diluted to 2.5–6.0 mg/ml in PBS, and Fast Green

solution was added to a final concentration of 0.5% to monitor the injection.

Preparation of sections
Preparation of sections was performed as described previously with slight modifications (Toda et al.,

2013; Kawasaki et al., 2000). Briefly, ferrets or mice were deeply anesthetized with pentobarbital

and transcardially perfused with 4% paraformaldehyde (PFA), and the brains were dissected. Then,

the brains were cryoprotected by three-days immersion in 30% sucrose and embedded in OCT com-

pound. Sections of 18 or 50 mm thickness were prepared using a cryostat.

Microscopy
Epifluorescence microscopy and confocal microscopy were performed with a BIOREVO BZ-9000

(Keyence, Japan) and a FLUOVIEW FV10i (Olympus, Japan), respectively.

Immunohistochemistry
Immunohistochemistry was performed as described previously with slight modifications (Toda et al.,

2013; Kawasaki et al., 2000). Coronal sections were permeabilized with 0.3% Triton X-100/PBS and

incubated overnight with primary antibodies, which included anti-Tbr2 (Abcam, UK, RRID: AB_

778267), anti-Pax6 (Covance, Princeton, NJ, RRID: AB_291612), anti-Ki-67 (Leica, Germany, RRID:

AB_442102), anti-phospho-histone H3 (Millipore, Billerica, MA, RRID: AB_310016), anti-phosphory-

lated vimentin (Medical and Biological Laboratories, Japan, RRID: AB_592963), anti-cleaved caspase

3 (BD Pharmingen, San Diego, CA, RRID: AB_397274), anti-Ctip2 (Abcam, UK, RRID: AB_2064130),

anti-FOXP2 (Atlas antibodies, Sweden, RRID: AB_1078908), anti-GFAP (Sigma-Aldrich, St. Louis,

MO, RRID: AB_477010) and anti-GFP antibodies (Nacalai tesque, Japan, RRID: AB_2313652; Medical

and Biological Laboratories, Japan, RRID: AB_591819). After incubation with secondary antibodies

and Hoechst 33342, the sections were washed and mounted.

For triple immunostaining, after double immunostaining was performed as described above, the

sections were incubated with biotin-conjugated anti-phospho-histone H3 antibody

(Millipore, Billerica, MA, RRID: AB_310794) and subsequently with fluorescent-dye conjugated

streptavidin.

In situ hybridization
In situ hybridization was performed as described previously (Matsumoto et al., 2017). Sections pre-

pared from fresh-frozen or fixed tissues were treated with 4% PFA for 10 min, 1 mg/ml proteinase K

for 10 min and 0.25% acetic anhydride for 10 min. After prehybridization, the sections were incu-

bated overnight at 58 ˚C with digoxigenin-labeled RNA probes diluted in hybridization buffer (50%

formamide, 5x SSC, 5x Denhardt’s solution, 0.3 mg/ml yeast RNA, 0.1 mg/ml herring sperm DNA,

and 1 mM DTT). The sections were then incubated with alkaline phosphatase-conjugated anti-digoxi-

genin antibody (Roche, Indianapolis, IN, RRID: AB_514497) and Hoechst 33342, and were visualized

using NBT/BCIP as substrates.

For combination of in situ hybridization and immunostaining, after hybridization was performed,

the sections were incubated with anti-Pax6 (Abcam, UK, RRID: AB_1566562), anti-Tbr2, anti-GFP

(Medical and Biological Laboratories, Japan, RRID: AB_591819) and alkaline phosphatase-conju-

gated anti-digoxigenin antibodies. After being incubated with secondary antibodies, in situ signals

were visualized with NBT/BCIP. Probes used here were as follows. Ferret FGFR2 and FGFR3 probes

were described previously (Masuda et al., 2015). Two ferret FGFR1 cDNA fragments were amplified

by RT-PCR and inserted into the pCRII vector. The sequences of primers used to amplify ferret

FGFR1 cDNA fragments were as follows: forward1, GGAGCTGGAAGTGCCTCCTCTTCTG; reverse1,
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TGATGCGGGTACGGTTGCTT; forward2, CAGGGGAGGAGGTGGAGGTG; reverse2

CGGCACCGCATGCAATTTCTTTTCCATC. A mixture of two probes made from these two FGFR1

cDNA fragments were used as the FGFR1 probe. Ferret Sprouty2, mouse Fgfr1, mouse Fgfr2 and

mouse Fgfr3 cDNA fragments were amplified using RT-PCR and inserted into the pCRII vector. The

sequences of primers used to amplify ferret Sprouty2, mouse Fgfr1, mouse Fgfr2 and mouse Fgfr3

cDNA fragments were as follows: ferret Sprouty2, forward ATCGCAGGAAGACGAGAATCCAAGG,

reverse CTGGGTGGGACAGTGGGAACTTTGC; mouse Fgfr1, forward CTGCATGGTTGACCGTTC

TGGAAGC, reverse TGTAGATCCGGTCAAACAACGCCTC; mouse Fgfr2, forward GGAAGGAG

TTTAAGCAGGAGCATCG, reverse CGATTCCCACTGCTTCAGCCATGAC; mouse Fgfr3, forward

GAAAGTGTGGTACCCTCCGATCGTG, reverse GTCCAAAGCAGCCTTCTCCAAGAGG. The ferret

Cux1 and Rorb probes were described previously (Matsumoto et al., 2017; Rowell et al., 2010;

Shinmyo et al., 2017).

RT-PCR
RT-PCR was performed as described previously with modification (Kawasaki et al., 2002). Total

RNA was isolated from the P0 ferret cerebral cortex using the RNeasy Mini Kit (Qiagen, Valencia,

CA). Reverse transcription was performed using oligo(dT)12–18 (Thermo Fisher Scientific, Waltham,

MA) and Superscript III (Thermo Fisher Scientific, Waltham, MA). Samples without Superscript III

were also made as negative controls. PCR reaction was performed using the following primers:

FGFR1-forward, GGAGCTGGAAGTGCCTCCTCTTCTG; FGFR1-reverse, CGGCACCGCATGCAA

TTTCTTTTCCATC; FGFR2-forward, AGAGATAAGCTGACGCTGGGCAAACC; FGFR2-reverse, GAG-

GAAGGCAGGGTTCGTAAGGC; FGFR3-forward, GAGGCTAAATTACGGGTACCTGA; FGFR3-

reverse, GAGAACAAAGACCACCCTGAAC. PCR products made using these primers were con-

firmed by DNA sequencing.

Cell counting
Coronal sections were stained with anti-Pax6, anti-Tbr2, anti-Ki-67, anti-pHH3, anti-pVim and anti-

cleaved caspase 3 antibodies and Hoechst 33342. After background signals were removed using the

‘threshold’ tool of ImageJ software (Default or MaxEntropy option), the numbers of immunopositive

cells in GFP-positive areas were manually counted using the ‘cell counter’ tool and were divided by

the total area of the ROI to calculate cell densities. To calculate the numbers of Pax6-positive and

Tbr2-positive cells, coronal sections containing the striatum were used. The densities of Pax6-posi-

tive and Tbr2-positive cells in each germinal layer in dorsolateral regions of the cerebral cortex were

multiplied by its thickness. One region per each animal was used. The thickness of each germinal

layer was measured as follows using three sections for each animal: the area of each germinal layer

was divided by its tangential length. The cell-dense layer next to the VZ was identified as the ISVZ

and the cell-sparse layer between the ISVZ and the IZ was identified as the OSVZ. In addition, the

border between the ISVZ and the OSVZ was also identified by the presence of GFP-positive fibers

(Kawasaki et al., 2013).

Calculation of the local GS ratio, the local SD ratio and the local GI ratio
Serial coronal sections containing the suprasylvian gyrus (SSG) were prepared from electroporated

brains. One section per every 100 mm was selected. The selected three serial sections containing the

SSG for each brain were stained with Hoechst 33342, and images of whole sections were acquired

using a BZ-9000 microscope (Keyence, Japan). The averages of the local GS, local SD and local GI

ratios were calculated using the three sections for each animal.

To calculate the local GS ratio, the area surrounded by the brain surface (Figure 1—figure sup-

plement 2, green line) and the red line connecting the bottom of the suprasylvian sulcus (SSS) and

that of the lateral sulcus (LS) was measured (local GS value) (Figure 1—figure supplement 2). To

minimize the variation of the local GS values depending on the positions of coronal sections in the

brain, the local GS value on the electroporated side and that on the contralateral non-electroporated

side of the cerebral cortex in the same brain sections were measured, and the former was divided

by the latter (local GS ratio). The local GS ratio would be 1 if the size of SSG was the same between

the electroporated side and the other side (i.e. non-electroporated side), and would be smaller than

1 if cortical folding was suppressed by genetic manipulation.
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To calculate the local SD ratio, a line connecting the top of the SSG and the top of the middle

ectosylvian gyrus (MEG) was drawn (Figure 1—figure supplement 3, red line). Then a green line

connecting the bottom of the suprasylvian sulcus (SSS) and the red line was drawn, so that the green

line was perpendicular to the red line (Figure 1—figure supplement 3). The length of the green line

was used as the local SD value. To minimize the variation of the local SD values depending on the

positions of coronal sections in the brain, the local SD value on the electroporated side and that on

the contralateral non-electroporated side of the cerebral cortex in the same brain sections were

measured, and the former was divided by the latter (local SD ratio). The local SD ratio would be 1 if

the depth of the SSS was the same between the electroporated side and the other side (i.e. non-

electroporated side), and would be smaller than 1 if the depth of the SSS was reduced by genetic

manipulation.

To calculate the local GI ratio, a line connecting the top of the SSG and that of the MEG was

drawn (Figure 1—figure supplement 4, red line). The length of the complete contour between the

top of the SSG and that of the MEG (Figure 1—figure supplement 4, green line) was then divided

by that of the red line (local GI value). To minimize the variation of the local GI values depending on

the positions of coronal sections in the brain, the local GI value on the electroporated side and that

on the contralateral non-electroporated side of the cerebral cortex in the same brain sections were

measured, and the former was divided by the latter (local GI ratio). The local GI ratio would be 1 if

cortical folding was the same between the electroporated side and the other side (i.e. non-electro-

porated side), and would be smaller than 1 if the cortical folding was suppressed by genetic

manipulation.

Quantification of cortical thickness
Coronal sections containing the SSG were used for quantification. The sections were subjected to

Hoechst 33342 staining plus either in situ hybridization for Rorb or immunohistochemistry for Ctip2,

and images of whole sections were acquired using a BZ-9000 microscope. To calculate the thickness

of each cortical layer in the SSG, the thicknesses of layer 2/3 and layer 4 in the SSG, which were

identified using Hoechst and Rorb signals, and those of layer 5 and layer 6 in the SSG, which were

identified using Hoechst and Ctip2 signals, were measured, and were subsequently divided by the

tangential lengths of these areas. To minimize the variation of the thickness value depending on the

positions of coronal sections in the brain, the thickness value on the electroporated side and that on

the contralateral non-electroporated side of the cerebral cortex in the same brain sections were

measured, and the former was divided by the latter (thickness ratio). The thickness ratio would be 1

if the thickness was the same between the electroporated side and the other side (i.e. non-electro-

porated side), and would be smaller than 1 if the thickness was reduced by genetic manipulation.

Quantification of the distribution of FGFR signaling
Coronal sections prepared at E40 were subjected to in situ hybridization for FGFR2 and FGFR3 and

Hoechst 33342 staining, and images of whole sections were acquired using a BZ-9000 microscope

(Keyence, Japan). The borders of the OSVZ were determined using Hoechst images. After back-

ground signals were subtracted, total FGFR signal intensities per area were measured. The entire

OSVZ regions were selected and straightened using the ‘Straighten’ function of ImageJ. Signal

intensities along the tangential axis were then measured using the ‘Plot Profile’ of ImageJ.
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