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Abstract

ally progresses to cirrhosis. However, LF and early-stage cirrhosis
Background: Liver fibrosis (LF) continues to develop and eventu
(ESC) can be reversed in some cases, while advanced cirrhosis is almost impossible to cure. Advances in quantitative imaging
techniques have made it possible to replace the gold standard biopsy method with non-invasive imaging, such as radiomics.
Therefore, the purpose of this study is to develop a radiomics model to identify LF and ESC.
Methods: Patients with LF (n= 108) and ESC (n= 116) were enrolled in this study. As a control, patients with healthy livers were
involved in the study (n= 145). Diffusion-weighted imaging (DWI) data sets with three b-values (0, 400, and 800 s/mm2) of enrolled
cases were collected in this study. Then, radiomics features were extracted from manually delineated volumes of interest. Two
modeling strategies were performed after univariate analysis and feature selection. Finally, an optimal model was determined by the
receiver operating characteristic area under the curve (AUC).
Results: The optimal models were built in plan 1. For model 1 in plan 1, the AUCs of the training and validation cohorts were 0.973
(95% confidence interval [CI] 0.946–1.000) and 0.948 (95% CI 0.903–0.993), respectively. For model 2 in plan 1, the AUCs of the
training and validation cohorts were 0.944, 95% CI 0.905 to 0.983, and 0.968, 95% CI 0.940 to 0.996, respectively.
Conclusions: Radiomics analysis of DWI images allows for accurate identification of LF and ESC, and the non-invasive biomarkers
extracted from the functional DWI images can serve as a better alternative to biopsy.
Keywords: Diffusion-weighted imaging; Liver fibrosis; Early-stage cirrhosis; Radiomics; Machine learning

Introduction important role in the diagnosis and identification of
disease.[3] Thus, if clinical and imaging data are more
Hepatic cirrhosis is the main cause of some serious public
health problems and has a high prevalence worldwide and
poor long-term clinical outcomes in China.[1] In many
patients, cirrhosis is caused by the progression of liver
fibrosis (LF); however, LF (METAVIR fibrosis stage: F1–
F3) and early-stage cirrhosis (ESC) (METAVIR fibrosis
stage: F4) can be reversed in some cases, while advanced
cirrhosis is almost impossible to cure. Therefore, it is
necessary to identify LF and ESC. Although liver biopsy
has been considered the gold standard method for
diagnosing and staging LF and ESC, it is invasive and
cannot probe fibrosis and cirrhosis of the whole liver.
Moreover, this method may be associated with high
sampling variability and low patient tolerance.[2] Medical
imaging, a non-invasive and repeatable technique, plays an
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accurate and sensitive, they are necessary.

Magnetic resonance imaging (MRI), which is different
from computed tomography, ultrasound, and other
anatomical imaging methods, is mainly focused on
functional imaging and is widely used in many diseases.[4,5]

Especially for diffusion-weighted imaging (DWI), a
commonly used functional imaging sequence, it is effective
in the detection and staging of liver metastatic tumors[6]

and in the evaluation of LF and cirrhosis.[7,8]

Radiomics, also known as texture analysis or quantitative
imaging analysis in early published work, is a new
application using established techniques to extract
amounts of quantitative imaging features from medical
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images followed by data mining for clinical use.[9-12]

Biomarkers developed by radiomics potentially improve
of volumes of interest (VOI), extraction of radiomics
features, modeling, and performance evaluation. For the
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decision support in diagnosis and prognosis.[13-15] For
instance, entropy-related features have been developed for
distinguishing benign and malignant cervical tissues[16]; a
similar conclusion was drawn by Corino et al,[17] who
proved the feasibility of grading soft tissue sarcomas using
DWI-based radiomics features. Some studies have demon-
strated that there are strong correlations between textural
features and liver disease.[18,19] In these studies mentioned
above, something in common is that all the texture
analyses were performed on DWI images.

As advanced hepatic fibrosis, cirrhosis is a slow and
gradual process. The liver continues to function in the early
stage of cirrhosis, whereas the liver will begin to fail as
cirrhosis becomes worse.[20,21] Therefore, it is essential to
diagnose ESC as early as possible to deliver timely
treatment. In this study, we aimed to develop a radiomics
model to identify LF and ESC that could be potentially
used in quantitative clinical diagnosis of LF and ESC.

Methods
Ethical approval

Ethical approval (No. 2019070031) was obtained from
the Institutional Review Board of Shandong Cancer
Hospital and Institute for this retrospective study, and
the need for informed consent was waived.

Study design
The overall workflow of this study consists of five steps,
including the collection of patients and images, definition
Figure 1: Workflow of the modeling strategy of this study. ESC: Early-stage cirrhosis; LF: Li
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modeling strategy, a brief description is given in Figure 1.

Patients and DWI images
This study included 369 cases at Shandong Cancer Hospital
and InstitutebetweenJanuary2014and June2019, including
108 patients with LF, 116 patients with ESC, and 145
patients with healthy livers (patients with othermalignancies
but have healthy livers). The description of LF and ESC is
shown in Supplementary file 1, http://links.lww.com/CM9/
A340. The inclusion criteria were as follows: (1) normal liver
morphology; (2) pathological proved LF and ESC; (3) clear
stage of LF and ESC; (4) without space-occupying lesions.
While the exclusion criteria were as follows: (1) without
DWI scans; (2) abnormal livermorphology or a lot of ascites;
(3) insufficient image quality, such as artifacts.

All MR images were acquired with a Philips 3.0 Tesla MR
scanner (Philips Medical System, Netherlands) and eight-
channel abdominal phased array coils. DWI images were
acquired with the following parameters: time of repeatation
(TR)= 10,000ms, time of echo (TE)= 66.1ms, slice
thickness= 7mm, matrix size= 256� 256, in-plane reso-
lution= 1.56� 1.56mm2 and b-values= 0, 20, 50, 100,
200, 400, 800, 1000, and 1200 s/mm2. Based on our
previous research, which focused on the impact of b-values
on DWI images,[22] similar radiomics features can be
extractedwithin groupb= 0,20, 50,100, 200 s/mm2, group
50, 100, 200, and400 s/mm2, andgroupb= 800, 1000, and
1200 s/mm2. Thus, we selected three b-value images that
provided non-redundant information, including b= 0 s/
mm2, b= 400 s/mm2, and 800 s/mm2. Additionally, high-
resolution T1-weighted sequence images were obtained
ver fibrosis.
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with the parameters as follows: TR= 3.7ms, TE= 1.7ms,
slice thickness= 5.2mm, matrix size= 512� 512, in-plane

To calculate the radiomics features accurately and
effectively and to further enhance the inter- and intra-
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resolution= 1.56� 1.56mm2.

Volume of interest (VOI)
The VOI, defined as the region of LF and ESC, was
delineated by two experienced abdominal radiologists in
MIMmaestro software (version 6.8.2, MIM Software Inc.,
Cleveland, OH 44122, USA). First, rigid registration was
used to align T1WI images to b= 0 s/mm2 DWI images.
Then, using the anatomical information of T1WI as a
reference, avoiding the inferior vena cava, portal vein and
portal area, three cylindrical VOIs of diameter 20 mm and
height 14 mm (thickness of two slices) were defined by one
radiologist in the parenchyma of liver segments II/III, V/VI,
andVII of b= 0 s/mm2DWI images, respectively.After that,
all theVOIswere verifiedby another radiologist. Finally, the
VOIs in b= 0 s/mm2 were mapped to the other nine b-value
DWI images. The examples ofVOIs are depicted in Figure 2.

Feature extraction
Radiomic features were automatically extracted from each
VOI of all DWI scans using SlicerRadomics Extension in
3D Slicer (stable released version 4.8.1, www.slicer.org),
open-source, easy to use medical image analysis soft-
ware.[23] In total, we extracted 93 DWI imaging features,
which are divided into six categories: (1) 18 first-order
intensity histogram-based features and 75 textural fea-
tures, including (2) 24 gray-level cooccurrence matrix
(GLCM)-based features, (3) 16 gray-level run-length
matrix (GLRLM)-based features, (4) 16 gray-level size-
zone matrix-based features, (5) five neighboring gray-tone
difference matrix (NGTDM)-based features, and (6)
14 gray-level dependence matrix (GLDM)-based features.
Figure 2: Examples of volume of interest in this study. (A) healthy liver, (B) liver fibrosis, (C) earl
and 800 s/mm2, respectively. Green, yellow, and red contours are liver segments II/III, V/VI,
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patient reproducibility of feature values, the medical
imaging data require discretization of the intensity
values.[24] In this study, we adopted a suggestion that
was made by Zwanenburg et al[25] to rescale the DWI
voxel intensity values into fixed-count 100 bins within
VOIs before calculating the GLCM, GLRLM, GLSZM,
NGTDM, and GLDM features.

Model construction
In this study, the classification model was constructed by
following two plans, and each plan contains two models,
as shown in Figure 1. For plan 1, model 1 was constructed
first to classify healthy and abnormal liver; subsequently,
model 2 was built on the basis of the model 1 to identify LF
or ESC from abnormal liver. For plan 2, models 1 and 2
were built concurrently to identify the healthy liver and LF
and healthy liver and ESC, respectively.

In the process of model construction, two-step feature
selection was conducted. First, univariate analysis was
used to retain features for model training that were
informative and predictive. Second, the feature selection
algorithm named RELIEFF, an adaptation of relief feature
selection method, was used to avoid model overfitting; the
rule of thumb is that the number of predictors should be
1/10 to 1/3 of the sample size in each model of the training
cohort.[26] The details of RELIEFF can be found in
Supplementary File 1, http://links.lww.com/CM9/A340.

Finally, a support vector machine (SVM) algorithm with a
radial basis function kernel was employed to build the
classification model. In the training process, 1000 times
ten-fold cross-validation was used to avoid overfitting and
y-stage cirrhosis. Columns from left to right are diffusion-weighted images with b= 0, 400,
and VII, respectively.
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to ensure the model with optimal performance can be
obtained. After training, a validation cohort was employed

For model 1 in plan 1, the SVM model for differentiating
healthy and abnormal liver, yielded an accuracy of 91.5%

Table 1: The sample size of the training and validation cohorts of models in each plan (n).

Plan 1 Plan 2

Model 1 Model 2 Model 1 Model 2

Groups Training Validation Training Validation Training Validation Training Validation

Healthy 110 35 N/A N/A 100 45 100 45
LF 74 31 68 40 70 38 N/A N/A
ESC 82 34 76 40 N/A N/A 70 46

LF: Liver fibrosis; ESC: Early stage cirrhosis; N/A: Not applicable.
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to test the performance. In this study, the training and
validation cohorts were divided randomly. The sample size
of the training and validation cohorts in each model is
listed in Table 1.
Statistical analysis
For univariate analysis, features with P values< 0.1 were
considered to be associated with the response variable.[27]

In this study, univariate analysis and model performance
assessment were implemented in R software (version 3.3.1,
www.r-project.org) with the “stats” package and the
“pROC” package, respectively. The RELIEFF algorithm
was implemented inMatlab software (version R2018a, The
MathWorks Inc.,Natick,MA01760, USA)with the feature
selection library (version 6.2.1) toolbox. Machine learning
modeling was performed in Matlab with in-house code.

Results
Univariate analysis and RELIEFF feature selection

For initial univariate analysis, 75 and 63 of 279 features
showed potential predictive power on corresponding
response variables, that is, healthy versus abnormal in
plan 1 model 1 and LF vs. ESC in plan 1 model 2.
Meanwhile, 62 and 59 of 279 features showed predictive
power on corresponding variables, that is, healthy versus
LF in plan 2 model 1 and healthy versus ESC in plan 2
model 2. Subsequently, the RELIEFF algorithm was used
to sort the predictive features selected by single-factor
analysis. RELIEFF feature selection was implemented to
select three top-ranking features in terms of its weight in
each feature category. The results of RELIEFF feature
selection are shown in Supplementary File 1, http://links.
lww.com/CM9/A340. In the training process of each
model, there are 18 features as input variables for the SVM
model. The P values of univariate analysis and RELIEFF
weights of plans 1 and 2 are shown in Supplementary File 1,
http://links.lww.com/CM9/A340.

Performance of constructed models
656
The SVMmodel incorporates three top-ranking features of
each feature category, in total 18 features as input, with
1000 times ten-fold cross-validation. Plan 1 contains two
series models, while plan 2 contains two parallel models.

2

(95% confidence interval [CI], 89.3%–93.7%) and a
receiver operating characteristic (ROC) area under the
curve (AUC) of 0.973 (95% CI, 0.946–1.000) in the
training cohort and an accuracy of 89.1% (95% CI,
86.4%–91.8%) and an AUC of 0.948 (95% CI, 0.903–
0.993) in the validation cohort. For model 2 in plan 1, the
SVM model for identifying LF and ESC, yielded an
accuracy of 88.9% (95% CI, 87.3%–90.5%) and an AUC
of 0.944 (95%CI, 0.905–0.983) in the training cohort and
an accuracy of 92.6% (95% CI, 90.4%–94.8%) and an
AUC of 0.968 (95% CI, 0.940–0.996) in the validation
cohort. The ROC curves of models 1 and 2 in plan 1 are
illustrated in Figure 3A and 3B, respectively. For model 1
in plan 2, the SVM model for differentiating healthy liver
and LF, yielded an accuracy of 82.5% (95% CI, 79.3%–
85.7%) and an AUC of 0.882 (95% CI, 0.845–0.919) in
the training cohort and an accuracy of 82.1% (95% CI,
77.6%–86.6%) and an AUC of 0.857 (95% CI, 0.808–
0.906) in the validation cohort. For model 2 in plan 2, the
SVM model for identifying healthy liver and ESC, yielded
an accuracy of 74.3% (95% CI, 70.2%–78.4%) and an
AUC of 0.843 (95% CI, 0.793–0.899) in the training
cohort and an accuracy of 79.3% (95% CI, 77.8%–
80.8%) and an AUC of 0.863 (95% CI, 0.804–0.922) in
the validation cohort. The ROC curves of models 1 and 2
in plan 2 are plotted in Figure 3C and 3D, respectively.

Optimal plan for identifying LF and ESC
The optimal plan for differentiating LF and ESC was
determined by a robust validation. For plan 1, the robust
validation is the same as the validation procedure of model
2. The excellent AUC values (0.968, 95%CI, 0.940–0.996)
of the validation cohort indicated that good agreement
existed between predicted class and ground-truth. For plan
2, the ESC as validation cases input into model 1 yielded
false predicted LF. The AUC of this false predicted LF was
0.774 (95%CI, 0.720–0.828). Similar to the falseprediction
ofmodel 1, theAUCof false predicted ESCwas 0.698 (95%
CI, 0.635–0.761). The ROC curve of the robust validation
of plan2 is illustrated inFigure 3E.Thebias results indicated
that plan2wasnot suitable for clinical use.Therefore, plan1
was optimal for identifying LF and ESC.

Discussion
For patients with hepatic cirrhosis, it usually occurs
following previous liver disease, such as LF, andmay result
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in hepatocellular carcinoma.[28] Liver fibrosis continues to
develop and eventually progress to cirrhosis. However, LF

studied. In this study, the proposed DWI-based radiomics
classification model for identifying LF shows remarkable

Figure 3: The performances of models developed in this study. (A and B) The ROC curves of models 1 and 2 in plan 1, respectively. (C and D) The ROC curves of models 1 and 2 in plan 2,
respectively. (E) The ROC curve of the robust validation of plan 2. For robust validation of plan 2, false predictions occurred, including false predicted LF and ESC, when ESC and LF as robust
test cohorts were input models 1 and 2 of plan 2, respectively. AUC: Area under the curve; ESC: Early-stage cirrhosis; LF: Liver fibrosis; ROC: Receiver operating characteristic.
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657
and ESC can be reversed in some cases, while advanced
cirrhosis is almost impossible to cure. With the rise of
quantitative imaging analysis in precision medicine,
magnetic resonance DWI radiomics has been widely

2

AUC in plan 1, a series strategy. The results demonstrated
that DWI is useful for predicting the LF or ESC of patients
with liver disease and thus have the power to aid in the
determination of subsequent treatment strategies.

http://www.cmj.org


Previous studies have tried to investigate the stage of LF
using computerized texture analyses based on iron oxide

and less influenced by other factors. However, there is a
lack of cirrhosis and fibrosis information in the training

1. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of
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658
and gadolinium chelate-enhancedMRI,[29,30] T2-weighted
images,[31] and gadoxetic acid-enhanced MRI.[32,33] To
our best knowledge, DWI radiomics studies for staging LF
have been rarely reported. A radiomics model based on
gadoxetic acid-enhanced MRI was recently developed for
staging fibrosis (AUC� 0.910, accuracy� 82.1%).[32] The
AUCs and accuracies are significantly lower than our plan
1 based on DWI radiomics for diagnosis of LF and ESC.
Another paper published a model incorporating deep
neural network with gadoxetic acid-enhanced MRI to
stage LF (AUC � 0.850)[34]; the training process was
implemented by extracting and analyzing features from
small cropped images of the liver that are not adequate to
reflect all characteristics of LF, which may be why the
performance of state-of-the-art deep learning is lower than
the radiomics model of reference[32] and ours, although a
further comparison is needed to compare these results
head-to-head.

Three predecessor works and independent validations have
been performed to ensure the robustness of constructed
models. First, since the multiple b-values were used in DWI
images, the impact of b-value on radiomics features needs to
be explored thoroughly to build a robust model. Research
conducted by Becker et al[35] reported that several features
were correlated tob-values inmultiple organs.Ourprevious
studies have also proved that the similar radiomics features
can be extracted within nearby b-value DWI images in
patients with cirrhosis[22] and hepatocellular carcinoma.[36]

Thus, we selected three 400-equally spaced b-value (b= 0 s/
mm2, b= 400, and 800 s/mm2) images that provide non-
redundant, multi-dimensional information. Second, to
guarantee the reproducibility and robustness of feature
extraction, we tried to discretize the voxel intensity with
DWI VOIs. According to the experience of Tixier et al[37]

and the guidelines of the Imaging Biomarker Standardiza-
tion Initiative team,[25] a fixed number of bins ranging from
30 to 130 was adopted in this study, which can achieve a
good reproducibility and performance. Meanwhile, this
also allows for differing ranges of intensity within VOIs,
while still keeping the texture features informative and
comparable between VOIs or patients. However, the
robustness of the model training process also needs to be
considered. In the training process of a classification model,
high-dimensional features are prone to overfitting, which
may lead to optimistic results. To avoid the problem,
univariate analysis andRELIEFF feature selectionwere used
to remove theunreliable irrelevant features and to reduce the
dimension of predictors. Finally, each model was validated
in an independent validation cohort. The results of the
training cohort in plan1 showed excellent performance, and
similar resultswere observed in the validation cohort, which
suggests that our strategy can reliably minimize overfitting
problems.

To determine the optimal plan, robust validation has been
implemented. As a series plan, all cases were involved in
the training phase of plan 1. For this reason, the distinctive
features between healthy and abnormal liver and homo-
geneous features between LF and ESC were considered in
the feature selection phase. Thus, the results were robust

2

phase of models 1 and 2 in plan 2, respectively.Meanwhile,
in the advanced stage of fibrosis, cirrhosis also has
pathological characteristics similar to LF. Medical images
are the macroscopic manifestation of the microscopic
pathology, and the radiomics features are the quantitative
descriptions of themedical images. Therefore, the radiomics
features show similarities between fibrosis and cirrhosis,
andour feature selection results have proven it. Formodels 1
and 2 in plan 2, four features were the same after feature
selection, including 0_GLDM_DE, 400_GLDM_DE,
800_GLCM_Idn, and 0_GLSZM_SAE, which may be the
reason why the false LF and false ESC occurred.

A limitation is that because this study was retrospective
and preliminary, the ADC maps were unavailable when
DWI images were acquired. We believe that the results will
benefit greatly from the radiomics research of ADC maps.
This work will be improved when we have prospectively
collected large cirrhosis patient cohorts with DWI and
ADC. Another limitation is that some clinical features are
unavailable, such as hepatic biological parameters. The use
of multiple parameters to build a holistic model to predict
LF and ESC is a future research work and must be
meaningful to improve the diagnosis of patients with
hepatic disease.

In conclusion, radiomics analysis of DWI images allows for
accurate identification of LF and ESC, and the non-
invasive biomarkers extracted from functional DWI
images might serve as a better alternative to biopsy.
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