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A B S T R A C T   

The quality and safety of edible crops are key links inseparable from human health and nutrition. In the era of 
rapid development of artificial intelligence, using it to mine multi-source information on edible crops provides 
new opportunities for industrial development and market supervision of edible crops. This review comprehen-
sively summarized the applications of multi-source data combined with machine learning in the quality evalu-
ation of edible crops. Multi-source data can provide more comprehensive and rich information from a single data 
source, as it can integrate different data information. Supervised and unsupervised machine learning is applied to 
data analysis to achieve different requirements for the quality evaluation of edible crops. Emphasized the ad-
vantages and disadvantages of techniques and analysis methods, the problems that need to be overcome, and 
promising development directions were proposed. To monitor the market in real-time, the quality evaluation 
methods of edible crops must be innovated.   

1. Introduction 

The edible crop industry has spread worldwide, especially in devel-
oping countries, and has attracted the attention of researchers and the 
public (Su et al., 2016). A series of active ingredients contained in edible 
crops are the basis for ensuring their quality and are closely related to 
human health and nutrition (Wen et al., 2018). The world’s demand for 
edible crops has been rising, but their quality and yield are affected by 
the natural environment and social factors (Delpeuch & Leblois, 2014; 
Su et al., 2016). To maximize the benefits obtained, the edible crop in-
dustry has fallen into a crisis of trust, which has greatly consumed 
consumer confidence. Consumers tend to consume edible crops that 
have positive effects on metabolic activities. In order to increase the 
competitiveness of market consumption, it is imperative to certify and 
control the quality of edible crops (Wen et al., 2018). However, the 
evaluation indicators of edible crops are increasingly inclined to be 
multi-component, and it is difficult to achieve quality evaluation 
because only a single analysis technology cannot fully characterize its 
active components (He & Zhou, 2021). 

There are two main sources of multi-source data for edible crops: 

One uses the same data platform to analyze different biological entities; 
the other uses different data platforms to analyze the same biological 
entity (Stavropoulos et al., 2021). Multi-source data can reflect more 
comprehensive information compared to a single data source. Due to the 
complexity and diversity of the chemical components of edible crops, it 
is necessary to fully characterize them with multi-source data (Pei et al., 
2020). Data fusion is typically used as a method to deal with imperfect 
raw data. Integrating multi-source data through a data fusion strategy 
can reveal a variety of reliable and accurate feature information and 
obtain better decision-making, prediction, and classification results 
(Zhang et al., 2022). And it has significant advantages over single 
analytical technology, enabling higher precision and predictive accu-
racy. For example, active ingredients with low content can be detected 
through data fusion, and the detection range is more extensive than that 
of a single analytical technique (Li et al., 2021). Nowadays, data fusion 
has been more and more applied to civilian applications. However, 
because its data come from multiple complementary sources, it has led 
to cumbersome experiments and increased computation costs (Zhou 
et al., 2022). Only by using data mining can the target information in 
multi-source data be identified more quickly and accurately (He & Zhou, 
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2021). 
Machine learning is one of the powerful tools for data mining, which 

can extract meaningful information from a large amount of data (Sal-
cedo-Sanz et al., 2020). Machine learning imitates human recognition 
ability and provides reliable solutions to problems through computation 
(Greener et al., 2022). Because of its robust estimation and prediction 
ability, it can compensate for the lack of data fusion, and combining the 
two significantly improves the ability to process multi-source data 
(Meng et al., 2020). The multi-source data of edible crops often contain 
too much complex feature information, and the dataset is also relatively 
large, machine learning has significant advantages in dealing with such 
problems, which can effectively shorten the data analysis time (Greener 
et al., 2022). Therefore, the purpose of this review is to comprehensively 
summarize the research status of multi-source data combined with 
machine learning in edible crop quality evaluation in the past decade. It 
briefly introduced multi-source data types, machine learning, and their 
strengths and weaknesses. It has clarified the significance of using data 
fusion strategies to process multi-source data and the differences be-
tween different data fusion strategies. The applicability of different data 
combinations and models in the quality evaluation of edible crops was 
discussed in depth. Further analysis of the limitations of existing eval-
uation methods and prospects for future research directions. Fig. 1 
showed the application of multi-source data/data fusion strategy com-
bined with machine learning in edible crops. 

2. Multi-source data of edible crops 

2.1. Modern analytical technique 

Some studies, such as edible crops fraud, showed that traditional 
methods had been gradually replaced by modern analytical techniques, 
including spectroscopy, chromatography, mass spectrometry (MS), nu-
clear magnetic resonance spectroscopy (NMR), and electronic sensor 
system (Liu et al., 2022b). As one of the sources of multi-source data on 
edible crops, these five analytical techniques provide a scientific basis 
for their quality evaluation. The following sections would briefly 
introduce each of the aforementioned analytical techniques. 

2.1.1. Spectroscopic techniques 
With the pursuit of green environmental protection, spectroscopy 

has been increasingly used in the research of edible crops. Different 
spectroscopic techniques can obtain information on different functional 
groups, and combining different spectral information is helpful to 
comprehensively study the overall chemical profile of edible crops. 
Ultraviolet–visible (UV–Vis) spectroscopy, as an electronic spectroscopy 
technique, is able to absorb ultraviolet radiation to cause energy level 
transition of electrons, thereby providing the information of different 
chromophores such as carboxyl groups, double bonds, triple bonds, and 
conjugated double bonds, etc. in the wavelength range of 200–780 nm 
(Rajput et al., 2022; Włodarska et al., 2021; Zaroual et al., 2022). 

One of the most popular green chemical t techniques is infrared (IR) 
spectra, which can be divided into three sub-regions: far-infrared region, 
mid-infrared (MIR) region, and near-infrared (NIR) region. The chemi-
cal ingredients and related compounds of the analyte can be detected by 
the energy provided by the molecular bond movement (such as vibra-
tion) and the energy absorbed when the mid-infrared light irradiates the 
analyte (De Marchi et al., 2014). In order to solve the problems of low 
resolution and slow speed of MIR spectrometer, Fourier transform 
infrared (FT-IR) spectroscopy makes up for the lack of MIR spectra, and 
is widely used because of its wide detection spectral range and high 
resolution (Chen et al., 2022). Similar to the principle of MIR spectra, 
the signal of NIR spectra is closely related to molecular vibrations, 
especially with overtones and combinations of fundamental vibrations 
(Abbas et al., 2018). The absorption of electromagnetic radiation is the 
basis for the formation of the NIR spectrum, and the use of different 
measurement modes of the NIR instrument is able to capture the NIR 
radiation that interacts with the samples (Shafiee & Minaei, 2018). 
Every edible crop possesses its unique fingerprint in the NIR spectrum, 
so combining machine learning with NIR spectra is necessary for quality 
control (Oliveira et al., 2019). 

Raman spectroscopy is also an emerging molecular vibrational 
spectroscopy technique. On the basis of inelastic scattering that occurs 
between photons and molecules, there are two types of Raman scat-
tering: Stokes and the other is anti-Stokes shifts (Allakhverdiev et al., 
2022; Yang et al., 2022). Compared with vibrational spectroscopy, the 
hyperspectral imaging (HSI) technique can obtain relevant spectral 
features and provide spatial information to generate hyperspectral im-
ages of samples at different wavelengths (Peng et al., 2022). Neverthe-
less, atomic spectroscopy mainly provides information about the 
internal structure of atoms. In the analysis of edible crops, inductively 
coupled plasma mass spectrometry (ICP-MS) and inductively coupled 
plasma-optical emission spectrometric (ICP-OES) are two common 
methods used to detect elemental profiles. ICP-MS combined with ma-
chine learning is a proven strategy for identifying the geographical 
origin of grapes and wines in China (Gao et al., 2022). ICP-OES is a 
hyphenated technique that has developed rapidly in recent years and 
has been widely used in the analysis of edible crops (Khan et al., 2021). 
The traditional method needs to reserve enough knowledge and expe-
rience, which is time-consuming and labor-intensive, while Laser 
induced plasma spectroscopy (LIBS) and X-ray fluorescence analysis 
(XRF) do not require sample pretreatment, and have the advantages of 
fast and non-destructive (Quackatz et al., 2022). 

The active ingredients and nutrients in edible crops cover a wide 
range. Different spectroscopic techniques can represent different 
chemical properties, so the multi-spectral technique is usually used as a 
complementary source in many links, such as adulteration identifica-
tion, geographical origin identification, and quality control of edible 
crops, and has achieved remarkable results. Spectroscopic technique 
plays a vital role in the quality assessment of edible crops. In addition, 
terahertz spectroscopy can be used to identify the physical and chemical 
properties of edible crops. However, its application in combination with 
other techniques in edible crops is very few, which is a direction with 
excellent development space. Fig. 1. The application of multi-source data/data fusion strategy combined 

with machine learning in edible crops. 
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2.1.2. Chromatography 
Chromatography can provide data with good precision and accuracy, 

among which gas and liquid chromatography are widely used. These 
two chromatography methods use the compounds’ size and the sta-
tionary phase’s affinity to separate and detect compounds. Both Liquid 
chromatography (LC) and UV can be used as means of quantitative 
analysis, liquid chromatography-tandem mass spectrometry (LC-MS) 
has the advantages of high sensitivity, high detection selectivity, and 
high qualitative ability over UV (Abdel Razeq et al., 2021). High- 
performance liquid chromatography (HPLC) is a relatively common LC 
as a reliable method for the comprehensive evaluation of food and plant 
extracts, its fingerprints have high precision and resolution. Because of 
the increasingly stringent requirements of the experiment, the pursuit of 
a fast, sensitive, and specific method, and the concern of environmental 
impact, supercritical fluid chromatography (SFC) has more advantages 
than LC and can shorten the analysis time (Toribio et al., 2021). 

Gas chromatography (GC) outperforms LC in terms of theoretical 
plate number and cost performance (Ichihara et al., 2021). GC mainly 
uses the differences in the boiling point, polarity, and adsorption 
properties of substances to separate mixtures. It has been widely used to 
detect the separation, identification, and quantification of most edible 
crops and aroma compounds containing chemical composition, such as 
volatile compositions and lipids (Guo et al., 2022b; Yao et al., 2022). 
Solid-phase microextraction gas chromatography-mass spectrometry 
(SPME-GC–MS) is gradually replacing traditional analytical methods 
applied to the detection of aroma compositions (Arslan et al., 2022). 
Meanwhile, comprehensive two-dimensional GC–MS (2D GC–MS) is also 
an effective tool for analyzing complex volatile and semi-volatile com-
positions (Sudol et al., 2022). 

One of the key indicators to evaluate the economic value of edible 
crops is the content of active ingredients. Chromatography is a recog-
nized quantitative analysis technique, and although some emerging 
techniques can serve as substitutes, its position is still unshakable. The 
most common way to predict the content of edible crops is to use 
regression models to correlate spectral and chromatographic data. At the 
same time, chromatography also has unique advantages in identifying 
adulteration of edible crops, which are highly sensitive to compounds 
with low concentrations. 

2.1.3. Nuclear magnetic resonance spectroscopy 
The generation of NMR spectroscopy is based on the energy ex-

change between nuclei with spin quantum numbers not equal to 0, such 
as 1H, 1C, 1F, and alternating magnetic fields under the influence of two 
magnetic fields (constant magnetic field and alternating magnetic field) 
(Cao et al., 2021a). It is an indispensable quantitative analysis technique 
to obtain structural information on organic compounds. NMR combined 
with chemometrics enables the comprehensive characterization of 
complex compounds, which is beneficial for quality control and 
authenticity studies of edible crops (Monakhova et al., 2018). NMR is an 
essential tool to analyze the structure of compounds. It is mainly used for 
qualitative analysis in the research of edible crops, but it is rarely used at 
present. It is undeniable that NMR also has specific development po-
tential in the quantitative analysis of chemical mixtures. In future edible 
crop research, NMR can be widely considered for use. 

2.1.4. Mass spectrometry and its hyphenated techniques 
Mass spectrometry (MS) is hyphenated with separation techniques 

such as LC and GC to help take advantage of both atmospheric-pressure 
chemical ionization (APCI) and electrospray ionization (ESI) are usually 
used as ionization sources. GC–MS is the earliest-developed chroma-
tography-MS technique and is commonly used for the determination of 
complex compounds due to its high accuracy and sensitivity (Feizi et al., 
2021). LC-MS is regarded as an extension of GC–MS, but compared with 
GC–MS, LC-MS is more difficult to couple due to the liquid eluent in the 
ion source (Famiglini et al., 2021). MS generally plays an auxiliary role 
in the qualitative and quantitative analysis of edible crops. It is mainly 

used in conjunction with techniques with separation capabilities to 
complement each other’s strengths and weaknesses. With the emergence 
of mass spectrometry imaging, MS has a new application form in edible 
crops (Jiang et al., 2022). Nevertheless, only some studies have reported 
applying this technique to edible crops. Mass spectrometry imaging has 
high resolution and sensitivity while maintaining the integrity of sam-
ples, which can be used as a potential tool for the quality assessment of 
edible crops. 

2.1.5. Electronic sensor systems 
Traditional sensory evaluation relies on the experience of pro-

fessionals, has intense subjective color, and the evaluation results are 
easily affected by many factors. With the rapid development of the era of 
artificial intelligence, electronic sensing technique has emerged at the 
historical moment and gradually become a substitute for traditional 
analytical techniques and sensory evaluation. Three kinds of electronic 
sensor techniques are widely used in the quality evaluation of edible 
crops: Electronic nose (E-nose), electronic tongue (E-tongue), and 
computer vision. 

The design inspiration for the E-nose and E-tongue comes from the 
behavior pattern of mammalian recognition targets. The sensors of the 
E-nose and E-tongue are non-selective or semi-selective, combined in the 
array to output the response to the target. Another important part is the 
pattern recognition system, which analyzes the sensor’s perception of 
smell or taste (Huang et al., 2019). Computer vision simulates human 
visual functions and comprises lighting equipment, a camera, and a 
personal computer. Its primary purpose is to obtain the color, shape, and 
texture information of the target through the camera and lighting 
equipment. In addition, the digital attributes of the target or imaging 
scene can also be collected by computer vision. The personal computer is 
the core part, used to analyze and process the valuable information in 
the image. These three sensors are mainly used for qualitative analysis 
and are challenging to carry out accurate quantitative analysis (Chen 
et al., 2015). It is worth mentioning that a single sensor still has certain 
defects in detection and needs to be combined with other analysis 
techniques to obtain more accurate data. 

2.2. Data fusion 

2.2.1. Pre-processing 
Selecting appropriate pre-processing methods according to the types 

and characteristics of multi-source data is necessary to improve the 
model’s performance. Spectral or chromatographic analysis is affected 
by factors such as the external environment (humidity, temperature), 
measurement mode, and instrument during sample collection, which 
may easily lead to unfavorable changes such as baseline drift (Lan et al., 
2020; Mishra et al., 2020). For example, spectral data not only provides 
rich functional group information but also may introduce noise, scat-
tering effect, and other information that is not conducive to data fusion 
or modeling. The existence of redundant information highlights the need 
for pre-processing. Common pre-processing methods include baseline 
correction, standard normal variate (SNV), normalization, orthogonal 
signal correction (OSC), multiplicative scattering correction (MSC), 
derivative, and Savitzky-Golay (S-G) smoothing. Compared with a single 
pre-processing method, different complementary information can be 
obtained from the combination of multiple pre-processing methods. Pre- 
processing ensembles with response-oriented sequential alternative 
calibration (PROSAC) is also a multi-block data modeling technique, 
which is helpful for analyzing multi-block data of NIR spectrum data 
with different pre-processing methods (Mishra et al., 2022). This tech-
nique has superior performance and shows more advantages than 
sequential (SPORT) and parallel (PORTO) orthogonalized partial least 
squares regression, for example, it does not need to consider the order of 
pre-processing and data scaling after pre-processing. 

In most studies, the purpose of pre-processing multi-source data is to 
obtain the optimal pre-processing method to develop high-precision 
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models. The difficulty in selecting appropriate pre-processing methods 
to optimize the corresponding data needs to be clearly stated which pre- 
processing method should be chosen for the problems in the dataset. The 
use of trial-and-error method filtering in pre-processing methods often 
overlooks the complementary information carried by different methods, 
which could be more conducive to obtaining reliable results. The 
essence of edible crops determines the complexity of its multi-source 
data. The ensemble pre-processing method can retain complementary 
information while achieving the optimization effect. It helps to improve 
the classification and prediction results of edible crops. 

2.2.2. Feature extraction/selection 
Feature extraction/selection is crucial before modeling with multi- 

source data or performing mid-level data fusion. The massive amount 
of data generated by multi-source data and the direct fusion of high- 
dimensional feature datasets increase the complexity of analysis and 
other issues determining the superiority of feature extraction/selection 
(Buchaiah & Shakya, 2022). Feature extraction/selection can improve 
model accuracy, solve model overfitting, reduce data processing time, 
etc., by reducing dimensionality (eliminating redundant information 
and noise to retain important features). Some commonly used feature 
extraction/selection methods such as principal component analysis 
(PCA), independent component analysis (ICA), wavelet transform (WT), 
Fourier transform (FT), partial least squares-discriminant analysis (PLS- 
DA), genetic algorithm (GA), competitive adaptive reweighed sampling 
(CARS), etc. However, the development of science and technology leads 
to the continuous increase of data dimension, which makes the feature 
extraction/selection of multi-source data particularly difficult, and the 
existing feature extraction/selection methods face unprecedented chal-
lenges. Therefore, improving and developing feature extraction/selec-
tion methods are necessary. The public gradually recognized the 
convolutional neural network (CNN) composed of a large number of 
neurons in the feature extraction of multi-source data fusion (Xiao et al., 
2020). 

2.2.3. Data fusion strategies 
With the development of emerging instruments and techniques, the 

physicochemical information of edible crops can be easily obtained from 
various sources. Due to the complexity and diversity of the components 
of edible crops, it is difficult for a single data source to express their 
complex and complete chemical information. Analyzing them by a sin-
gle method is not systematic, and it is easy to introduce noise and 
interference information. Data fusion is a complex process of detecting, 
combining, correlating, and estimating multi-source data (Lin et al., 
2022). By optimizing the information obtained, more reliable inference 
can be generated than a single data source, so the quality of edible crops 
can be accurately and in real-time evaluated. There is a desirability to 
use data fusion to increase and improve the quantity and quality of in-
formation available about edible crops. In order to obtain more com-
plementary information, most multi-source data are provided by 
different instruments. In addition to the instrumental analysis tech-
nique, information obtained from different sensor techniques and 
physical and chemical analysis can be used as the source of data fusion. 
The following was a brief introduction to these three data fusion 
strategies. 

Low-level data fusion concatenates raw data with similar variance 
and quantity from different platforms to form a new data matrix with the 
number of rows equal to the number of samples and the number of 
columns equal to the number of variables. Although the operation of this 
data fusion strategy is more straightforward than the other two, it also 
has more variables and takes longer to calculate. This means that there is 
still a large amount of redundant information in the newly formed data 
matrix. Mid- and low-level data fusion are similar in that they are both 
carried out at the data level, the difference is that the former needs to 
extract features from the raw data before fusion. Moreover, mid-level 
data fusion can solve some problems existing in low-level data fusion, 

such as reducing redundant information and eliminating noise and 
interference. Mid-level data fusion compresses the amount of informa-
tion to a certain extent, which is conducive to real-time analysis. High- 
level data fusion is the independent analysis of raw data from each 
source, and then the fusion of their results to produce a final decision. 
High-level data fusion has the significant advantage that each data 
source does not interact with each other and suffers less interference (Li 
et al., 2020b). However, data fusion in this way has a high probability of 
causing information loss, so care must be taken when processing the raw 
data (Borras et al., 2015). In the current study, low- and mid-level data 
fusion is mainly used for quantitative analysis of edible crops, while 
high-level data fusion is usually used for qualitative analysis. 

3. Machine learning 

3.1. Unsupervised learning 

Unsupervised learning is a training method of machine learning for 
statistical analysis. Its main goal is to discover the inherent hidden 
properties of the dataset by calculating the commonalities between 
unlabeled samples, so as to avoid the trouble of labeling samples in 
supervised learning (Su et al., 2022). Due to the nature of unsupervised 
learning, it is often used as a powerful tool for label-expensive analysis 
or irrelevant applications (Wang & Biljecki, 2022). Although unsuper-
vised learning cannot directly perform classification and regression, it 
has significant advantages in real-time data analysis (Cao et al., 2021b). 
Unsupervised learning has become one of the important solutions to 
problems such as detection, denoising, and recognition. Next, we will 
briefly introduce several unsupervised learning algorithms. Fig. 2 
showed different unsupervised learning algorithms’ advantages, short-
comings, and development. 

3.1.1. Clustering 
Clustering is an unsupervised machine learning for data mining that 

divides datasets into different clusters based on similarity to reveal the 
inherent properties of data (Ay et al., 2023). The choice of distance 
metric is important for quantifying similarity between data and affects 
the shape and configuration of the formation of clusters (Tarnutzer & 
Weber, 2022). Due to the strong practicality of clustering, it has become 
popular in applications such as pattern recognition and multivariate 
data analysis of edible crops. Hierarchical clustering is able to provide 
different resolution results without knowing a predetermined number of 
clusters, but it has the defects of inaccuracy and high time cost. In 
response to the above problems, Varshney et al. (2022) came up with the 
Probabilistic Intuitionistic Fuzzy Hierarchical Clustering Algorithm 
(PIFHC), which used probabilistic Euclidean distance as a distance 
measure to eliminate uncertainty in the data through intuitive fuzzy 
sets. The results showed that the clustering accuracy of PIFHC is 
significantly better than that of other clustering algorithms. 

3.1.2. Dimensionality reduction 
Because of the characteristics of high-dimensional data, it is difficult 

to understand and analyze directly, and the use of all variables that 
contain high correlation leads to confusion of information (Xu & Wu, 
2022). Data dimensionality reduction is achieved by mapping high- 
dimensional data to low-dimensional feature space, which reduces 
redundant information without losing important data structures (Flexa 
et al., 2021). Dimensionality reduction is divided into two types: linear 
and nonlinear. PCA is the most classical and popular linear dimension-
ality reduction algorithm, which aims to minimize the mean square 
error to achieve the goal of dimensionality reduction (Li et al., 2022). 
PCA uses linear transformation to convert a group of multivariable into 
several comprehensive variables. The newly generated variable is the 
principal component derived from the variance–covariance matrix 
(Aidoo et al., 2021). Because the principal components are orthogonal to 
each other, and each principal component represents different 
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information, they can explain most of the original data information, 
significantly improving the efficiency of data processing. In this algo-
rithm, the reduction of dimensions promotes the visualization of hidden 
attributes and the correlation of data in PC space (Boubchir et al., 2022). 
At present, PCA is also increasingly used to explore edible crops’ 
different components and geographical origins. However, traditional 
PCA is vulnerable to noise interference and lacks robustness, Qiao et al. 

(2022) proposed robust PCA to solve the above problems. The results 
showed that the improved algorithm has advantages and effectiveness. 
PCA cannot retain the local structure of the dataset, t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) emerges as the times require. t- 
SNE, as the most popular nonlinear dimensionality reduction algorithm, 
has a strong ability to capture manifold structure in high-dimensional 
data, attracting much attention in machine learning (Maaten & 

Fig. 2. The advantages, shortcomings and developing of different unsupervised learning algorithms.  

Fig. 3. The schematic diagram of four supervised learning algorithms.  
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Hinton, 2008). The main purpose of t-SNE is to balance two conditional 
probability distributions (input data and low dimensional representa-
tion) using the gradient descent method (Flexa et al., 2021). Compared 
with other nonlinear dimensionality reduction algorithms, t-SNE is 
considered the best tool to convert high-dimensional data into 2D or 3D, 
which is conducive to visualizing edible crops’ multi-source data sets 
(Maaten & Hinton, 2008). It is sensitive to the selected super parameters 
and distance measurement. In order to make up for its shortcomings, 
Flexa et al. (2021) proposed a new t-SNE algorithm, that is, a polygonal 
coordinate system-based deterministic strategy combined with t-SNE, 
called t-Distributed deterministic Neighbor Embedding (t-DNE). The 
results of Friedman’s significance test showed that a polygonal coordi-
nate system has significant advantages in data embedding. 

3.2. Supervised learning 

Supervised learning is a branch of machine learning algorithms, and 
is the most widely used algorithm at present. It is mainly applied to two 
problems: One is the regression problem when the variables are 
continuous; the other is the classification problem when the sample data 
is a category. Supervised learning is trained by the sample data of an 
artificial marker, which requires a large sample size to achieve the ex-
pected model performance. Although this algorithm requires high 
calculation and time cost, it is undeniable that the performance of su-
pervised learning is much better than unsupervised learning (Yakimo-
vich et al., 2021). Table S1 compared different supervised learning 
algorithms’ advantages, limitations, and development. This review 
mainly introduced the following supervised learning algorithms. Fig. 3 
showed the schematic diagrams of four supervised learning algorithms. 

3.2.1. Regression 

3.2.1.1. Partial least squares regression (PLSR). PLSR is a mature 
analytical chemistry tool, that plays an important role in multivariate 
statistical analysis, so it is often used in data analysis (Metz et al., 2021). 
It combines three basic algorithms: PCA, canonical correlation analysis, 
and multivariate linear regression analysis. The purpose of PLSR is to 
minimize the variance of the prediction and maximize the covariance of 
matrices X and Y (He et al., 2015). The algorithm can extract the PCs of 
the input and output matrices at the same time, so it has a good effect in 
dealing with multicollinearity problems and noise data, especially when 
the internal variables are highly linearly correlated (Ma et al., 2022; 
Zhang et al., 2018). However, the PLSR model is susceptible to outliers, 
which reduces the model’s predictive power (Metz et al., 2021). The 
proposal of domain adaption regularization-based kernel partial least 
squares regression (DarKPLS) is beneficial to improving the adaptive 
ability of the model, which has also been confirmed in subsequent 
research (Shan et al., 2023). 

3.2.1.2. Support vector regression (SVR). SVR is developed from a sup-
port vector classifier and is widely used in nonlinear regression problems 
(Liu et al., 2020). This method is an excellent regularization algorithm 
based on kernel because it can estimate the distance between the hy-
perplane and boundary line (Rezaei et al., 2023). The advantage of SVR 
lies in its excellent handling of high-dimensional regression tasks, and its 
ability to minimize empirical risk and confidence interval to solve the 
problem of model overfitting (Shen et al., 2023). Moreover, in the case 
of a limited sample size, the global optimal solution can still be obtained 
from the existing knowledge and experience. Traditional SVR still has 
some drawbacks, which rely on relevant parameters and priori knowl-
edge, and have high computational costs during the training phase (Shen 
et al., 2023). In order to overcome the shortcomings of traditional SVR, 
Peng (2010) developed a twin SVR, which has a faster training speed 
and stronger regression ability. 

3.2.2. Classification 

3.2.2.1. PLS-DA. PLS-DA is a multivariate statistical analysis method 
that reduces dimensionality by extracting features (Ma et al., 2020). 
PLS-DA successfully divides the space into two regions by a straight line 
to classify samples. Its discriminant rule is to compare the predicted 
response values of Y to a fixed scalar threshold (usually 0.5) (Jimenez- 
Carvelo et al., 2021a). Correctly selecting the number of latent variables 
is critical to constructing a PLS-DA model because too many latent 
variables will lead to overfitting of the model, while an insufficient 
number of latent variables will lead to underfitting of the model. 
Generally, the root mean square error of cross-validation (RMSECV) 
determines the number of latent variables selected. PLS-DA has apparent 
advantages in dealing with highly collinear and noise. Therefore, PLS- 
DA is widely used in classification and adulteration identification of 
edible crops (Vieira et al., 2021). 

3.2.2.2. Support vector machine (SVM). SVM, as an effective classifica-
tion method, is mainly based on statistical theory and has attracted more 
and more attention in related fields, such as data mining and machine 
learning (Cortes & Vapnik, 1995). Recently, SVM has been widely used 
in pattern recognition and classification analysis of edible crops (Park 
et al., 2015). Essentially, the SVM model achieves the purpose of sepa-
rating the positive and negative classes by constructing the best-fitting 
hypersurface in a high-dimensional space (Lamberti, 2021). The 
important parameters of the support vector machine model are the 
penalty parameter (c) and kernel function (g). Suppose the parameter c is 
too high or too low. In that case, it will affect the model’s performance, 
so the model’s complexity is controlled by adjusting the parameter c. In 
contrast, the parameter g determines the complexity of the data distri-
bution in the high-dimensional feature space (Wu et al., 2018). These 
two parameters determine the accuracy and generalization ability of the 
model to a certain extent. Cross-validation is usually used to determine 
the best parameters of the model. The optimization algorithm of pa-
rameters adopts GA, Grid Search (GS), Particle Swarm Optimization 
(PSO), etc. (Huang et al., 2020). However, compared with the Grey Wolf 
Optimization (GWO) algorithm, the above SVM optimization algorithms 
are prone to premature convergence and local optimization, thus GWO 
has more advantages in function optimization, simple operation, and 
few parameters (Liang et al., 2022). These optimization algorithms can 
make up for the defects of SVM to a certain extent. 

3.2.2.3. Random forest (RF). RF integrates the decision tree and uses 
statistical estimation to predict and classify, while the decision tree is 
generated by selecting training samples and variable subsets through 
replacement (a bagging approach) (Liang et al., 2020). The RF model is 
constructed by a recursive partition containing hundreds of decision 
trees. The value stored in each node of the decision tree is related to the 
variables of classification information (Lovatti et al., 2019). There are 
two important parameters in random forest, one is Ntree, and the other 
is Mtry. The model’s performance is usually evaluated using Ntree, and 
the best split node is determined by the best binary split result of Mtry. 
The split stops when the training samples on all decision trees have the 
same category on their corresponding nodes (Liang et al., 2020). Due to 
the large number of decision trees in the RF model, the processing of the 
model is more complex. Therefore, it is necessary to use the out-of-bag 
error rate (OOB) to optimize the parameters, adjust the number of de-
cision trees and improve the model’s performance (Wang et al., 2020). 
Compared with other statistical analysis methods, RF is a relatively new 
pattern recognition method to solve the problem of recognition and 
prediction, which can overcome the difficulties of traditional chemo-
metrics in classifying data with many variables and few samples, and its 
risk of overfitting is lower and more robust than a single decision tree. 
However, before establishing the model of RF, some super parameters 
need to be established artificially, which increases the calculation cost 
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and even affects the accuracy of the results due to some errors in the 
selection process. Feng et al. (2021) used an improved artificial bee 
colony algorithm (IABC) combined with RF to optimize the super pa-
rameters of the model, which greatly improved the calculation 
efficiency. 

3.2.2.4. Soft independent modeling of class analogy (SIMCA). SIMCA is a 
supervised pattern recognition technique, which is not only a powerful 
tool for processing, distinguishing, and classifying complex data, but 
also one of the commonly used classification methods in chemometrics 
(Gomez-de Anda et al., 2012). In each category, SIMCA performs PCA on 
it, builds a multi-dimensional space around the calculated PCs, and then 
classifies unknown samples by the distance between samples and models 
(Duca et al., 2016). The results of SIMCA are expressed in terms of 
sensitivity and specificity, and the higher the efficiency of cross- 
validation, the better performance of the model (Firmani et al., 2020). 
Although SIMCA is very sensitive to outliers and will affect the classi-
fication results to a certain extent, the advantage of SIMCA is that the 
unknown classification object will only be assigned to the category with 
the highest possibility, and if the residual variance of the sample exceeds 
the upper limit of each class in the modeling data set, it will not be 
assigned (Khanmohammadi et al., 2013). Because SIMCA has a strong 
ability to capture spectral signal differences caused by different chemi-
cal components, it is often used to process spectral data of edible crops. 
Aiming at the shortcomings of traditional SIMCA, robust-SIMCA, and 
data driven-soft independent modeling of class analogy (DD-SIMCA) 
improve its performance from different perspectives (Adenan et al., 
2020; Rodionova et al., 2016). 

3.2.2.5. K-nearest neighbor algorithm (KNN). KNN is one of the most 
common algorithms in artificial intelligence and is widely used in data 
mining and pattern recognition (Xiong & Yao, 2021). The KNN algo-
rithm does not require training data, so it is the simplest supervised 
learning algorithm. It is based on the majority voting rule. It compares 
the Euclidean distance to determine the nearest K points in the attribute 
space and then categorizes the unknown samples into the most frequent 
category among the K points. The value of K represents the number of 
nearest neighbors to the unknown sample. The KNN algorithm has been 
used in the classification and regression prediction of edible crops. 
Choosing appropriate K values can improve accuracy, which is advan-
tageous when applied to samples with little or no experience (Guo et al., 
2022a; Kiran Naik et al., 2021). The KNN algorithm does not preprocess 
the data before classification, it takes time and space in the processing 
process, and it is difficult to select the value of K (Wang et al., 2022a). 
Even, the KNN algorithm ignores the correlation between sample fea-
tures, resulting in high computational complexity and slow classification 
speed (Ji et al., 2022). Romero-del-Castillo et al. (2022) presented a new 
method for KNN optimization, which introduced a local K value into a 
multi-label label-KNN classifier to find the optimal K value. 

3.2.2.6. CNN. CNN is considered the most popular deep learning 
structure, it is a deep feedforward neural network and a powerful feature 
extraction tool (Liu et al., 2021a). It is only sparsely connected to the 
neurons of the next layer according to the position of the neurons in the 
convolution layer, is different from ordinary neural networks, and relies 
on the convolution kernel to realize the mutual conversion of weights, 
which improves the learning time (Debus et al., 2021). 

Residual neural network (ResNet) is one of the most advanced CNN 
models, which optimizes the problem of vanishing or exploding gradient 
in deep learning models through shortcut connection. At the same time, 
the residual module is introduced to improve the problem of model 
degradation caused by the increase in the number of layers in the CNN. 
Using shortcut connection has obvious advantages, neither adding extra 
parameters nor increasing computational costs (He et al., 2016). CNN 
and ResNet can classify edible crops by identifying two-dimensional 

spectral images or hyperspectral images. The above are only 
commonly used fields at present, and this algorithm is increasingly used 
for disease and pest detection or yield prediction. 

3.2.2.7. Artificial neural network (ANN). ANN is a product of techno-
logical progress, which occupies a place with strong computing power 
and ultra-fast data processing speed. The mechanism by which the 
human brain nervous system processes complex information is the 
source of inspiration for generating ANN, where information is trans-
formed and transmitted within neurons (Ng et al., 2019). ANN is 
interconnected by neurons to form complex neural networks, so the 
number of neurons in the hidden layer is important to ensure the 
model’s accuracy and avoid overfitting (Wang et al., 2019). Benefiting 
from its powerful data processing capabilities, it can be used to solve the 
classification problem of edible crops and the regression problem. 
However, ANN relies excessively on large sample sizes and requires 
sufficient training data to maintain the stability of the model (Kholi 
et al., 2023). To improve the ANN model, Yuan et al. (2023) proposed a 
self-adjusting particle swarm optimization (APSO) algorithm to opti-
mize the weights, thresholds, and number of neurons of the ANN. 

4. Applications 

In the context of economic globalization, edible crops have become 
one of the hot objects in the world, and their quality and safety issues 
have caused public concern. There are many kinds of edible crops, 
covering a wide range. The origin, species, content of main chemical 
components, storage period, and artificial adulteration are all crucial 
factors affecting their quality. Therefore, it is urgent to find a scientific 
and effective method to evaluate the quality of edible crops. Using 
machine learning to mine chemical information to represent quality has 
become one of the most popular methods at present. There are two main 
ways: One is to directly use multi-source data in combination with 
machine learning for evaluation, and the other is to process multi-source 
data through data fusion strategy and then conduct quality authentica-
tion with machine learning. Table 1 emphasized the application of 
machine learning in the quality evaluation of edible crops. Tables S2 and 
S3 summarized the applications of the above two methods in the quality 
evaluation of edible crops in detail. 

4.1. Application of multi-source data to quality evaluation of edible crops 

4.1.1. Qualitative perspective 
Multi-source data is conducive to representing the quality of edible 

crops from different perspectives. Better quality evaluation methods can 
be obtained by comparing the results of machine learning modeling 
based on two or more single data sources. Amirvaresi et al. (2021) 
compared the ability of NIR and MIR to detect the geographical origin 
and adulteration of Iranian saffron. First of all, the PCA models of NIR 
and MIR spectra based on mean-centering and second derivative pre-
treatment were established to visually analyze the authentic saffron 
samples from different regions in Iran. Comparing the modeling results, 
it was found that the PCA based on NIR had a better ability to predict the 
distribution of saffron samples. Secondly, PLS-DA and PLSR models were 
established using NIR and MIR spectra after pretreatment to detect 
authentic saffron and adulterated samples. The qualitative analysis 
showed that the discrimination models based on NIR and MIR spectra 
had good classification performance, but the NIR showed more accurate 
and excellent identification results. Quantitative analysis also showed 
the same results, only NIR can effectively quantify the adulteration rate 
in authentic saffron samples. In conclusion, NIR spectroscopy can be 
used as a powerful tool for geographical traceability and adulteration 
detection of saffron. In a similar method, a series of machine learning 
algorithms named PCA, HCA, and PLS-DA were constructed with NIR 
and MIR spectra as input data to distinguish 33 kinds of hops for 
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Table 1 
The application of machine learning in the quality evaluation of edible crops.  

ML Intention Object Data sources Characteristics Major results Ref 

HCA A Hop pellets NIR, MIR Both are rapid, non-destructive, low-cost, 
but MIR has a higher specificity than NIR 

Based on NIR and MIR data, hop pellets 
were divided into two clusters, but the 
distribution of MIR-HCA was not as clear 
as NIR 

(Machado 
et al., 2018)  

B Black pepper UHPLC-Q- 
Orbitrap-HRMS, 
1H NMR, GC- 
HRMS 

High-throughput analysis, high sensitivity, 
and high resolution, and NMR-UHPLC-GC 
data fusion approach can reduce the 
dimensionality of 1H NMR and improve 
accuracy 

Based on UHPLC-Q-Orbitrap-HRMS HCA 
model, the clustering of samples from 
Brazil and Vietnam was close, and the 
clustering of sterilized samples and 
corresponding unsterilized samples was 
also very close 

(Rivera-Perez 
et al., 2021)  

C Rhizoma Coptidis HPLC, FT-NIR, 
FT-IR 

Spectra can not only can it be used for 
qualitative analysis, but it can also assist in 
quantitative analysis; Data fusion can 
obtain more comprehensive chemical 
information 

Based on FT-NIR, when the distance was 
23, the samples of C.omeiensis and C. 
chinensis are clustered into one class, and 
the distance was 24, which involves C. 
deltoidea samples; Based on FT-IR, 
C. deltoidea and C. teeta samples are 
clustered into one class; Based on data 
fusion, C. deltoidea, C. chinensis and C. teeta 
samples are clustered into one class when 
the distance was 12 

(Qi et al., 
2018) 

PCA A Oolong tea Gustatory 
sensors, 
olfactory 
sensors 

Sensor technology is fast and accurate, and 
can make non-specific reactions to relevant 
chemical components, but only a single 
sensor technology cannot fully characterize 
samples 

PCA was established based on taste sensor 
data and olfactory sensor data 
respectively, and the two showed similar 
results. The four types of samples showed a 
trend of separation but were not clear. 
Relatively speaking, the clustering effect of 
taste sensor data was better. The clustering 
trend of PCA models based on data fusion 
was also unsatisfactory 

(Chen et al., 
2015)  

B Palm oil HPLC-UV, 
HPLC-CAD 

Both can provide sample information in a 
non-selective manner, and the fingerprint 
can serve as a complete analytical data 

Using PCA to visualize samples of HPLC- 
CAD and HPLC-UV, two outliers were 
found in HPLC-CAD, while there were no 
outliers in HPLC-UV 

(Obisesan 
et al., 2017)  

D Saffron NIR, MIR Both are easy to operate, fast, and 
environmentally friendly, but they are 
selective, so in order to overcome their 
shortcomings, chemometrics is needed 

NIR-PCA showed two trends in the 
distribution of saffron samples, and MIR- 
PCA showed no significant distribution 
trend compared to NIR 

(Amirvaresi 
et al., 2021) 

PLSR D Olive oil NIR, MIR – NIR: R2 = 0.896, RMSEP = 7.09; 
MIR: R2 = 0.966, RMSEP = 4.04; 
LLF: R2 = 0.975, RMSEP = 3.44; 
HLF: R2 = 0.988, RMSEP = 2.86 (Best) 

(Li et al., 
2019)  

E Ziziphus jujuba NIR, MIR – NIR: R2 = 0.9312, RPD = 2.82 
MIR: R2 = 0.8951, RPD = 2.28 
LLF: R2 = 0.9475, RPD = 2.10 
MLF: R2 = 0.9621, RPD = 2.44 (Best) 

(Arslan et al., 
2019)  

E Cottonseed NIR, GC–MS NIR is high-throughput, simple and low-cost R2cal > 0.7 (Zhuang et al., 
2023) 

SVR E Yuezhou Longjing tea NIR, HPLC NIR has the advantages of non-destructive 
testing, fast testing speed, and high 
efficiency 

Sensory quality: RPD(PLSR) = 1.888,RPD 
(RF) = 2.033, RPD(SVR) = 2.485 (Best); 
Catechins: RPD(PLSR) = 1.857, 
RPD(SVR) = 2.088, RPD(RF) = 2.584 
(Best); Caffeine: RPD(PLSR) = 2.076, 
RPD(SVR) = 2.799, RPD(RF) = 2.873 
(Best) 

(Jia et al., 
2022)  

E Ginkgo biloba leaf 
extract 

NIR, HPLC Due to the characteristics of weak 
absorption peaks and wide peaks in NIR, 
obtaining reliable information requires the 
use of chemometrics 

PLSR: R2 > 0.95, RESECV < 0.30; SVR: R2 

> 0.96, RMSECV < 0.50 
(Zhang et al., 
2022b)  

E Red jujube NIR, HPLC NIR has the advantages of being fast, 
simple, and environmentally friendly 

PLSR: R2c = 0.9076, RMSEC = 25.2625, 
R2p = 0.8323, RMSEP = 29.0407; SVR: 
R2c = 0.9850, RMSEC = 11.1233, R2p =
0.9388, RMSEP = 13.0739 (Best) 

(Chen et al., 
2019) 

PLS- 
DA 

B Amomum 
tsao-ko 

FT-NIR, UV–Vis Both have the characteristics of low cost, 
speed, and convenience, but the 
information they can provide is limited 

MLF: Acc = 100% (Liu et al., 
2021b)  

B Cocoa bean shells ATR-FTIR, NIR, 
ICP-OES 

The process of collecting spectral 
information is simple and has chemical 
specificity 

MLF: Acc = 0.84 (Mandrile 
et al., 2019)  

D Vanilla NIR, MIR, 
Raman 

Vibration spectroscopy has the advantages 
of high sensitivity, ease of use, and low cost 

PLS-DA: SEN (NIR) = 0.82, SPE (NIR) =
0.72, PRE (NIR) = 0.76; Acc (Raman) =
0.9, SEN (Raman, MIR) = 1, SPE (Raman, 
MIR) = 1, EFF (Raman, MIR) = 1, PRE 
(Raman, MIR) = 1 (Best) 

(Jimenez- 
Carvelo et al., 
2021) 

(continued on next page) 
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Table 1 (continued ) 

ML Intention Object Data sources Characteristics Major results Ref 

SVM A Cocoa bean NIR, E-tongue Both have the advantages of speed and 
simplicity. 

NIR, ET: Acc = 83%-93%; 
MLF: Acc = 100% (Best) 

(Teye et al., 
2014)  

C Black tea FT-NIR, CVS  NIR: Acc (LDA) = 86.30%-89.19%, Acc 
(KNN) = 89.19%-90.41%, Acc (SVM) =
89.19%-97.26%;CVS: Acc  
(LDA) = 89.19%-91.78%, Acc (KNN) =
65.75%-89.19%, Acc (SVM) = 89.19%- 
97.26%; 
MLF: Acc (LDA) = 91.89%-98.63%, Acc 
(KNN) = 75.68%-91.89%, Acc (SVM) =
100% (Best) 

(Jin et al., 
2020)  

D Extra virgin olive oil LC-MS, GC-IMS, 
FGC-Enose 

– LC-(+/-)MS: Acc = 0.94, SEN = 0.93, SPE 
= 0.95, AUC = 0.97;LC-(+/-) 
MS + GC-IMS + FGC-Enose: Acc = 0.96, 
SEN = 0.93, SPE = 0.96, AUC = 0.98; 
GC-IMS + FGC-Enose: Acc = 0.96, SEN =
0.93, SPE = 0.97, AUC = 0.99 (Best) 

(Tata et al., 
2022) 

RF B Panax notoginseng FT-IR, NIR Spectroscopic technique has the advantages 
of simplicity, speed, and ease of use, the 
disadvantage is that a single Spectroscopic 
technique expresses limited chemical 
information 

FT-IR: Acc = 91.2%; NIR: Acc = 92.6%; 
LLF: Acc = 95.6%; MLF: Acc (RF-Vs) =
94.1%, Acc (RF-Bo) = 97.1%; HLF: Acc 
(RF-Vs) = 97.1%, Acc (RF-Bo) = 95.6% 
(Best) 

(Zhou et al., 
2020)  

B Radix Astragali LIBS, MIR LIBS has the advantages of fast, real-time, 
and no complex preprocessing, and infrared 
spectroscopy can be used to obtain 
molecular vibration information 

LIBS: SEN = 0.9411, SPE = 0.9716, Acc =
0.9624, TIME = 32.2 s; 
MIR: SEN = 0.9722, SPE = 0.9864, Acc =
0.9829, TIME = 8.4 s; 
LLF: SEN = 0.9889, SPE = 0.9948, Acc =
0.9932, TIME = 35.7 s; 
MLF: SEN = 0.9900, SPE = 0.9951, Acc =
0.9932, TIME = 6.9 s (Best) 

(Wang et al., 
2022b)  

B Eucommia 
ulmoides leaves 

FT-NIR, ATR- 
FTIR 

Spectroscopic technique can reflect the 
overall chemical profile of a sample, but it 
cannot perform quantitative analysis 

LLF: Acc (calibration) = 85.71%;MLF: Acc  
(calibration) = 81.75%, Acc (validation) 
= 88.52%;HLF: Acc  
(calibration) = 92.86%, Acc (validation) 
= 93.44% (Best) 

(Wang et al., 
2020) 

SIMCA D Uncaria tomentosa, 
Uncaria guianensis 

LC-PDA, FT-IR, 
UV 

– FT-IR: SEN = 100%, SPE = 100%; 
UV: SEN = 100%, SPE = 100%; 
UV + KOH: SEN = 100%, SPE = 100%; 
UV + AlCl3: SEN = 100%, SPE = 100%;LC 
(PPH) 
: SEN = 100%, SPE = 100% 

(Kaiser et al., 
2020)  

A Olive oil HPLC-DAD, 
HPLC-FID 

– HPLC-DAD, HPLC-FID: Acc > 94.59%; LLF: 
Acc = 100% (Best); MLF: Acc = 97.30% 

(Bajoub et al., 
2017)  

A Rhubarb NIR, MIR – NIR: Acc (PLS-DA) = 94.12%, Acc 
(SIMCA) = 82.35%, Acc (SVM) = 94.12%, 
Acc (ANN) = 100%; MIR: Acc (PLS-DA) =
82.35%, Acc (SIMCA) = 82.35%, Acc 
(SVM) = 94.12%, Acc (ANN) = 76.47%%; 
LLF: Acc (PLS-DA) = 94.12%, Acc 
(SIMCA) = 88.24%, Acc (SVM) = 94.12%, 
Acc (ANN) = 100%; MLF (Best): Acc (PLS- 
DA) = 94.12%, Acc (SIMCA) = 94.12%, 
Acc (SVM) = 100%, Acc (ANN) = 100%; 

(Sun et al., 
2017) 

KNN D Guava pulp NIR, MIR Infrared spectroscopy has the advantages of 
non-destructive, efficient, and cost-effective 
analysis, and allows for the simultaneous 
analysis of multiple types of chemical 
components 

NIR: Acc = 100%, EFF = 97.5%-99.5%; 
MIR: Acc = 98.9%-100%, EFF = 99.1%- 
100% (Best); LLF: Acc = 95.1%-100%, EFF 
= 93.3%-100%; 

(Alamar et al., 
2020)  

A Curcumae 
kwangsiensis, 
Curcumae phaeocaulis, 
Curcumae wenyujin 

HPLC, HS- 
GC–MS 

HPLC has good separation and detection 
capabilities, while HS-GC–MS mainly 
focuses on the identification and 
quantification of volatile components 
without the need for standard substances 

HPLC: Acc (LDA) = 90.91%, Acc (KNN) =
100%, Acc (BPNN) = 100%; 
HPLC, HS-GC–MS: Acc (LDA) = 100%, Acc 
(KNN) = 100%, Acc (ANN) = 100%, Acc 
(OPLS-DA) = 100% 

(Wang et al., 
2021a)  

B Herba Epimedii NIR, HPLC NIR has significant advantages in detection 
speed, accuracy, and cost 

Acc (KNN) = 90.74%, Acc (DA) = 79.63%, 
Acc (BPNN) = 87.04%, Acc (SVM) =
94.44% 

(Yang et al., 
2018) 

CNN B Gentiana rigescens FT-IR, HPLC Spectroscopic technique can obtain 
complete chemical profiles and is widely 
used in the field of quality evaluation 

Acc (synchronous 2DCOS) = 100% (Liu et al., 
2022a)  

B Wolfberries Vis-NIR-HSI, 
textural data 

Spectroscopic technique has the advantages 
of simple operation, fast speed, non- 
destructive and low-cost 

Full spectral wavelengths: Acc = 95.21%, 
mean F1 = 95.17%; 
MLF: Acc = 97.34%, mean F1 = 100% 

(Hao et al., 
2022)  

B Panax notoginseng NIR, HPLC NIR has the advantages of green, pollution- 
free, fast detection speed, and simplicity, 
but its original spectral signals are prone to 

Acc (synchronous 2DCOS) = 100% zhuomian 

(continued on next page) 
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commercial purposes (Machado et al., 2018). The research showed that 
the accuracy of NIR and MIR modeling after feature band extraction and 
standard normal variate (SNV) and combined Savitzky-Golay filter 
smoothing pretreatment was 96.6% and 94.2%, respectively, which 
proved that NIR and MIR spectroscopy could be used as a green, 
convenient and non-destructive method to identify commercial hop 
varieties. The quality of white teas mainly depends on the maturity of 
fresh leaves, Li et al. (2020a) collected the chemical fingerprint infor-
mation (NIR and HPLC) of white tea samples produced from fresh leaves 
with different maturity. The results showed that the clustering effect of 
PCA based on the concentration of 39 compounds was not satisfactory, 
while the PCA based on NIR could quickly identify white tea samples 
with different maturity, which illustrated the advantages of the NIR 
technique applied to the quality evaluation of white tea. 

4.1.2. Quantitative perspective 
The combination of data from different sources is also one of the 

popular methods in the field of edible crop quality evaluation, mainly 
used for the content prediction and analysis of chemical components. 
Cottonseed is one of the important oilseed crops, and fatty acid and 
protein are important quality evaluation indicators. Cottonseed is one of 
the important oil-bearing crops, and its important quality evaluation 
indicators are fatty acid and protein. Zhuang et al. (2023) obtained the 
phenotypic data of 17 fatty acids, oil, and proteins in shell-intact upland 
cottonseed using GC–MS and Soxhlet extraction methods, and correlated 
the content with the preprocessed NIR datasets through PLSR. The NIR 
spectral region of 950–1650 nm was selected as the model input data 
because fatty acids and proteins have strong absorption peaks in this 
range. The report demonstrated that the established method could 
accurately predict the content of 14 fatty acids, oils, and proteins. Un-
fortunately, the calibration model performance of three fatty acids still 
needs to be improved. This study laid a foundation for the quality 
evaluation of cottonseed in practical application. The linear regression 
method-PLSR was used in the above study, but in some special cases, the 
linear regression method is not applicable. The development of 
nonlinear regression methods such as ANN provides a solution to this 

problem. Xue et al. (2021) used HPLC to detect the contents of three 
active components in Lonicerae Japonicae Flos and combined with NIR, 
and implemented two types of calibration models, namely PLSR and 
ANN, to predict chlorogenic acid, isochlorogenic acid A and iso-
chlorogenic acid C in Lonicerae Japonicae Flos. The results showed that 
in the PLSR model, the best pretreatment methods of near-infrared 
spectra of chlorogenic acid, isochlorogenic acid A, and isochlorogenic 
acid C were first derivative, first derivative + straight line subtraction 
(SLS), and first derivative + vector normalization (VN), respectively. At 
the same time, the selection of spectral region greatly affects the results 
of the model. The spectral region suitable for the prediction of chloro-
genic acid was 12000–4250 cm− 1, and that of isochlorogenic acid A and 
isochlorogenic acid C was 7500–4250 cm− 1. In the ANN model, the best 
spectral pretreatment of chlorogenic acid was still the first derivative 
and the best pretreatment of isochlorogenic acid A and isochlorogenic 
acid C were SLS and VN, respectively. Comparing the results of six 
calibration models, it is found that the model suitable for the prediction 
of chlorogenic acid and isochlorogenic acid A content was PLSR, and 
ANN was the best strategy for the prediction of isochlorogenic acid C. 
Proof by facts, NIR spectroscopy is an effective technique for quality 
evaluation of Lonicerae Japonicae Flos. 

To sum up, spectral pretreatment and selection of characteristic re-
gions are very important, which lays a solid foundation for establishing a 
robust model and obtaining accurate results. More accurate inference is 
generated through information complementation between multi-source 
data than that of a single data source. However, analysis efficiency is a 
concern due to the huge amount of information. The proposed data 
fusion strategy not only simplifies the process of multi-source data 
processing and improves the efficiency of data analysis but also can 
obtain more complete and unified information, which is conducive to 
strengthening the robustness of decision-making. 

4.2. Application of data fusion strategy in edible crops 

4.2.1. Identification variety 
There are many varieties of edible crops, and their appearance and 

Table 1 (continued ) 

ML Intention Object Data sources Characteristics Major results Ref 

overlap, making available information 
limited. 

ANN E Lonicerae Japonicae 
Flos 

NIR, HPLC – Chlorogenic acid: RMSEP (PLSR) = 1.15, R 
(PLSR) = 0.9940 (Best), RMSEP (ANN) =
1.99, R (ANN) = 0.9842; Isochlorogenic 
acid A: RMSEP (PLSR) = 0.93, R (PLSR) =
0.9892 (Best), RMSEP (ANN) = 1.05, R 
(ANN) = 0.9862; Isochlorogenic acid C: 
RMSEP (PLSR) = 0.27, R (PLSR) = 0.9692, 
RMSEP (ANN) = 0.18, R (ANN) = 0.9868 
(Best) 

(Xue et al., 
2021)  

D Olive oil FT-IR, Vis-NIR, 
EEMs 

Spectroscopic technique can provide 
chemical fingerprints of samples, not 
limited to a specific component 

PLS-DA: Acc (FT-IR, Vis-NIR) = 100% 
(Best); BPNN: Acc (EEMs) = 100% (Best) 

(Meng et al., 
2023)  

C Flos Chrysanthemi NIR, HPLC- 
qTOF-MS 

NIR has the advantages of simple operation, 
fast speed, and low-cost 

R = 0.89 (Ding et al., 
2016) 

“-”: no mention; A: identification variety; B: geographical traceability; C: quality control; D: adulteration detection; E: content prediction; HCA: hierarchical cluster 
analysis; PCA: principal component analysis; PLSR: partial least squares regression; SVR: support vector regression; PLS-DA: partial least squares-discriminant analysis; 
SVM: support vector machine; RF: random forest; SIMCA: soft independent modeling of class analogy; KNN: K-nearest neighbors; CNN: convolutional neural network; 
ANN: artificial neural network NIR: near infrared; MIR: mid infrared; UHPLC-Q-Orbitrap-HRMS: ultra-high performance liquid chromatography-quadrupole-Orbitrap- 
high-resolution mass spectrometry; 1H NMR: proton nuclear magnetic resonance; GC-HRMS: gas chromatography-high-resolution mass spectrometry; HPLC: high 
performance liquid chromatography; FT-NIR: Fourier transform-near infrared spectroscopy; FT-IR: Fourier transform mid-infrared spectroscopy; HPLC-UV: high 
performance liquid chromatography-ultraviolet; HPLC-CAD: high performance liquid chromatography-charged aerosol; GC–MS: gas chromatography-mass spec-
trometry; UV–Vis: ultraviolet–visible; ATR-FTIR: attenuated total reflectance-Fourier transform mid-infrared spectroscopy; ICP-OES: inductively coupled plasma- 
optical emission spectroscopy; CVS: computer vision system; LC-MS: liquid chromatography-high resolution mass spectrometry; GC-IMS: gas chromatography-ion 
mobility spectrometry; FGC-Enose: flash gas-chromatography electronic nose; LIBS: laser induced breakdown spectroscopy; LC-PDA: liquid chromatography- photo 
diode array; HPLC-DAD: high-performance liquid chromatography-diode array detector; HPLC-FID: high-performance liquid chromatography-flame ionization de-
tector; HS-GC–MS: headspace gas chromatography-mass spectrometry; Vis-NIR-HIS: visible-near infrared-hyperspectral imaging; EEMs: excitation-emission matrix 
fluorescence spectroscopy; HPLC-qTOF-MS: high liquid chromatography-quadrupole-time of flight-mass spectrometry. 
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morphology are similar, but there are differences in chemical compo-
nents, sensory, and other aspects. Therefore, in order to protect the 
rights and interests of consumers and market order, variety identifica-
tion is an essential step. Teye et al. (2014) studied the feasibility of data 
fusion of NIR spectroscopy and electronic tongue for distinguishing five 
cocoa bean varieties. After SNV pretreatment, the spectral area of 
9500–7500 cm− 1 was selected as the modeling data for NIR, the data of 
the two sensors were combined through PCA, and the best variables 
were selected. Using a single data source and fused data as input to 
establish the SVM classification model, the results showed that the 
classification accuracy of SVM based on electronic tongue and NIR was 
92%–93% and 80%–81%, respectively, while the performance of the 
SVM model for data fusion was greatly improved, and the recognition 
accuracy was 100%. Dankowska & Kowalewski (2019) collected 
UV–Vis, synchronous fluorescence (SF), and NIR information on 
different types of tea and carried out low-level data fusion on different 
data combinations (SF + UV–Vis, NIR + UV–Vis, SF + NIR, and SF +
UV–Vis + NIR). Used PCA to realize data dimensionality reduction and 
then built Linear Discriminant Analysis (LDA), Quadratic Discriminant 
Analysis (QDA), Regularized Discriminant Analysis (RDA), and SVM 
models for the single data source and four low-level data fusion. By 
comparing and analyzing the modeling results, the classification effect 
of data fusion was significantly better than that of a single data source, 
with an error of less than 3%. The research has proved that different 
spectral information can complement each other, and improve classifi-
cation accuracy, and the developed method can effectively prevent tea 
fraud. In another study, the gustatory and olfactory sensor systems were 
combined with machine learning (PCA, LDA) to quickly identify 
different varieties of Oolong tea (Chen et al., 2015). The feature 
extraction of the data points of the Cyclic voltammetry in the gustatory 
sensors system and the average of the center of each dye point in the 
olfactory sensors system were performed. The mid-level data fusion was 
performed after the above operations were completed. The author found 
that it is difficult to accurately evaluate different kinds of Oolong tea by 
using an olfactory or gustatory sensor system alone. The use of a data 
fusion strategy can provide more comprehensive information and 
improve classification accuracy. The accuracy of the LDA model based 
on data fusion reached 100%. The results indicated that the data fusion 
strategy has a promising prospect in classifying Oolong tea varieties. 

4.2.2. Geographical traceability 
The natural environment is an important factor affecting edible 

crops’ quality, resulting in uneven product quality from different 
geographical origins. The proposal of geographical indication protection 
makes the public pay more attention to the source of products. Mandrile 
et al. (2019) identified cocoa shell samples from different geographical 
origins by fusing data from NIR, ATR-FT-IR, and inductively coupled 
plasma-optical emission spectroscopy (ICP-OES) and combining the 
PLS-DA model. Compared with the modeling results of a single data 
source, the model effect of data fusion was more satisfactory, and the 
classification accuracy was higher. In order to identify palm oil from 
different geographical sources, a data fusion strategy and PLS-DA were 
used to carry out research (Obisesan et al., 2017). Feature variables were 
extracted through interval partial least squares (iPLS) and PCA, 
respectively, to implement further low- and high-level data fusion 
strategies for two groups (HPLC-UV, HPLC-CAD) of data sources. The 
results showed that the data fusion strategy significantly improved the 
classification accuracy of a single data source, and the accuracy of iPLS 
as a feature variable extraction method was 100%. Amomum tsao-ko is 
easily affected by the geographical environment, resulting in different 
qualities of different origins. Liu et al. (2021b) used the mid-level data 
fusion strategy to integrate the information of FT-NIR and UV–Vis to 
identify the origin of Amomum tsao-ko, adopted four methods of feature 
variable extraction: PCA, VIP, sequential and orthogonalized partial- 
least squares (SO-PLS), sequential and orthogonalized covariance se-
lection (SO-CovSel). Spectral preprocessing was a combination of S-G, 

variables sorting for normalization (VSN), and first derivative. PLS-DA 
models based on four feature extraction methods were established 
respectively. The results showed that the classification ability of the 
model was excellent when so-pls was used as the feature extraction 
method of data fusion, which laid a theoretical foundation for the 
geographical traceability and even the quality and safety of Amomum 
tsao-ko. 

4.2.3. Quality control 
In addition to natural factors, the quality of edible crops is also 

affected by many factors, such as product processing, cultivation 
methods, and storage period. Therefore, it is very necessary to find a fast 
and scientific quality control method applied to the industrial chain of 
edible crops. In the existing research, data fusion combined with ma-
chine learning has been widely used as a powerful tool for quality 
control. The quality of black tea is affected by the degree of fermenta-
tion, and changes in the content of tea polyphenols will accompany it. 
For this reason, tea polyphenols content is an important indicator to 
determine the classification of different degrees of fermentation of black 
tea. FT-NIR, computer vision system, and mid-level data fusion were 
employed to detect the fermentation degree of black tea so as to achieve 
the purpose of quality control (Jin et al., 2020). Feature extraction is an 
important part of mid-level data fusion. This study implemented two 
feature extraction strategies, one was to use PCA to extract the features 
of FT-NIR and computer vision system, and the other was to extract the 
features of FT-NIR and computer vision system, respectively, through 
SPA and Pearson correlation for subsequent research. KNN, LDA, and 
SVM were used to analyze the above data sets. The results obtained by 
the SVM model of data fusion were better than that of single data source 
and other data fusion models. Among them, the best feature extraction 
method was PCA. 

4.2.4. Adulteration detection 
In order to obtain greater benefits, illegal businesses fill the gap in 

the market by adulterating. The adulterants usually do not cause 
changes in taste and chemical composition, which makes it difficult to 
identify with the naked eye. It is urgent to adopt reliable and convenient 
methods to detect adulteration in edible crops. Vibration spectroscopy is 
widely used in adulterating olive oil due to its non-destructive, low-cost, 
and fast advantages. Li et al. (2019) applied three data fusion strategies 
to integrate NIR and MIR and combined them with the PLSR model to 
quantify adulterants in olive oil. Taking RESEP as the model perfor-
mance evaluation index, it can be concluded that the prediction accu-
racy of low-level (3.44) and high-level data fusion (2.86) is higher than 
that of NIR (7.09), MIR (4.04), and mid-level data fusion (6.09), 
respectively. It is worth pondering that SPA, as a feature extraction 
method for intermediate data fusion, did not improve the model’s per-
formance, which showed the importance of selecting appropriate 
feature extraction for fusion results. Tata et al. (2022) used completely 
different techniques from the above research to detect the adulteration 
of olive oil. Performed low and mid-level data fusion for the four data 
sets of LC – (+/− ) MS, gas-chromatography ion mobility spectrometry 
(GC-IMS), and flash gas-chromatography electronic nose (FGC-E-nose), 
and then analyzed the fused data using PLS-DA-SVM. Low-level data 
fusion based on GC-IMS and FGC-E-nose has the highest classification 
accuracy (0.96) and may provide a new way to detect olive oil adul-
teration. The results of both studies demonstrated that a data fusion 
strategy combined with machine learning has a bright future in adul-
teration detection. 

4.2.5. Content prediction 
Chemical composition is the key index to measure the quality of 

edible crops. Accurate evaluation of chemical composition content is 
one of the ways to improve the quality of edible crops. The correlation 
between spectroscopy and chemical component content is one of the 
most popular content prediction methods at present. MIR and NIR data 
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fusion was proposed to predict the polyphenol content in Chinese dates 
(Arslan et al., 2019). Pre-processed NIR and MIR with SNV and de- 
trending, and used Si-PLS to extract their characteristic variables to 
establish the PLS model of two fusion strategies (NIR-MIR fusion, GA- 
fusion). GA-fusion-PLS model has the best prediction ability, with an 
RPD of 2.44. Polyphenol and catechin undergo different degrees of 
oxidation with the change in the processing degree of black tea. Wang 
et al. (2021b) collected the data of NIR and computer vision of black tea 
in different processing steps on the spot, and used low- and mid-level 
data fusion strategies to jointly analyze them. It is worth noting that 
in order to improve the performance of the calibration model, the 
following two operations were carried out before modeling: (1) Pearson 
correlation analysis and CARS were used as the feature variable 
extraction methods of computer vision and NIR respectively; (2) Select 
S-G smoothing as the pre-processing method of NIR. Comparing the 
results of PLS models based on a single data source and two data fusion 
strategies, it was concluded that mid-level data fusion could make up for 
the deficiency of single data and improve the prediction accuracy of the 
model. Unfortunately, low-level data fusion cannot overcome the low 
prediction accuracy of single data. In general, the combination of 
spectroscopy and imaging systems can be used as an effective content 
prediction method. 

5. Challenges and prospects 

The combination of multi-source data and machine learning has been 
widely used in edible crops, and many studies have proven that they are 
powerful quality evaluation tools with promising application prospects. 
However, it has to be acknowledged that there are still many undis-
covered development opportunities for this method that are worth 
further exploration. Multi-source data, machine learning, and applica-
tions are the most important components of this review, and their 
challenges and future prospects will be discussed in this section.  

(1) Multi-source data. Every step, from data acquisition to multi- 
source data processing, is crucial. Spectroscopy, chromatog-
raphy, and new sensor systems are the leading techniques for 
obtaining multi-source data. First of all, these instruments and 
equipment are suitable for analysis in specific locations, which 
could be more conducive to real-time detection on the market. 
The quality evaluation of edible crops requires more convenient 
analytical instruments, and the emergence of a portable NIR 
spectrometer is a good start. However, it is regrettable that its 
accuracy cannot meet the desktop standard, and infrared detec-
tion has special requirements for illumination, moisture, etc., 
which limits its application in the market. The development of 
portable instruments is a prerequisite for further market use 
while improving the accuracy of instrument testing is a problem 
that must be addressed in development. Sensor systems are non- 
destructive and intelligent. Currently, sensor systems have been 
used as a substitute for traditional analytical techniques, and they 
are a class of techniques with great development space. They 
exhibit excellent performance in qualitative analysis, and accu-
rate quantitative analysis is still a problem that needs to be 
tackled by such techniques. Quantitative analysis of edible crops 
relies on chromatographic techniques, but their use runs counter 
to the concept of green environmental protection. The develop-
ment of environmentally friendly reagents is particularly impor-
tant. Secondly, the type of data combination is also a way to 
improve the accuracy of results. For example, the results obtained 
by combining different data sources are inconsistent (Dankowska 
& Kowalewski, 2019). Wang et al. (2023) also found that 
combining Raman and NIR spectroscopy can improve prediction 
accuracy. Therefore, selecting suitable complementary sources as 
data combinations can obtain more complete information and 
improve the accuracy and stability of data analysis. However, the 

large amount of information in multi-source data makes data 
processing difficult, and the fusion strategy is an effective means 
of data processing. Many studies have shown that fusion strate-
gies improve the performance of classification or regression 
models by integrating multi-sources of information to obtain 
more comprehensive information. High-level data fusion appli-
cations in this area are not as good as expected, and only a few 
have met the requirements. However, high-level data fusion still 
has great potential in the application of multi-source data for 
edible crops, so it is necessary to further explore it in order to 
improve accuracy and robustness. Last but not least, both multi- 
source data and data fusion have factors such as redundant data 
or noise that affect the model’s performance, pre-processing and 
feature extraction are the most critical steps in data processing 
accordingly. Notably, each pre-processing method solves 
different problems, and selecting appropriate pre-processing 
based on the attributes of the data can achieve the goal of opti-
mization. Similarly, selecting feature extraction methods should 
also be based on multiple perspectives. Currently, there are no 
reasonable solutions to the determination of pre-processing 
combinations and multi-dimensional data feature extraction, 
and further in-depth research is needed to address these issues.  

(2) Machine learning and applications. Although unsupervised 
learning algorithms can reduce time costs, their accuracy, and 
robustness are not as good as supervised learning methods. Su-
pervised learning methods are limited to a certain extent by 
manual tagging, which requires a greater amount of manual 
tagging when applied to more complex systems. Both are subject 
to factors such as sample size or hyperparameters. With the 
development of artificial intelligence, neural networks such as 
ANN, CNN, and ResNet are gradually applied to the research of 
edible crops due to their powerful performance. They require 
large amounts of data to support their training process. Most 
existing research is based on small sample sizes, which poses a 
significant challenge to neural networks. Hence, selecting ma-
chine learning based on the sample size and the problem to be 
solved is conducive to obtaining better decision results. It is 
necessary to optimize unsupervised further and supervised 
learning algorithms or develop a more powerful machine 
learning algorithm to address the complex and volatile re-
quirements of the field of edible crop research. In the investigated 
papers, the application of machine learning combined with multi- 
source data or data fusion strategies in edible crops mainly fo-
cuses on: Quality control, content prediction, and geographical 
identification. It can be seen that this method also has a certain 
potential in other research fields of edible crops and needs further 
investigation. 

6. Conclusions 

The research on edible crops has been a hot topic in food and agri-
culture. Although the existing research has made some progress in the 
quality evaluation of edible crops, it is difficult to characterize the 
quality with a single analytical technique fully. An accurate, fast, reli-
able, and robust quality evaluation method is urgently needed. Machine 
learning is a gift of rapid development in the era of science and tech-
nology. Using it to process and analyze multi-source data has great po-
tential in the application of edible crops. This review summarized the 
recent application of machine learning combined with multi-source data 
in edible crops. In addition, the limitations and future application 
prospects of the method were also discussed. Multi-source data is not a 
supplement to a single data source. It can absorb different data infor-
mation characteristics, obtaining more accurate and reliable results than 
a single data source. Data fusion is a commonly used strategy for pro-
cessing multi-source data, which can extract valuable and accurate 
target information from complementary data. Low- and mid-level data 

Y. Zhang and Y. Wang                                                                                                                                                                                                                        



Food Chemistry: X 19 (2023) 100860

13

fusion is favored in classification and regression applications, especially 
mid-level data fusion, which has unique advantages in filtering noisy 
data and reducing data dimensionality. Moreover, machine learning is a 
very critical part of the process of edible crop quality evaluation, and 
selective use based on data attributes and purposes can achieve ideal 
results. Data pre-processing and feature extraction are also one of the 
focuses and difficulties of attention. The above four parts (multi-source 
data, data fusion, machine learning, pre-processing, and feature 
extraction) all require further research to break through bottlenecks. 
This review can provide constructive suggestions for the quality evalu-
ation methods of edible crops so as to improve the applicability of 
market monitoring. 
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Fixed-centered K-means algorithm. Expert Systems With Applications, 211, Article 
118656. https://doi.org/10.1016/j.eswa.2022.118656 

Bajoub, A., Medina-Rodriguez, S., Gomez-Romero, M., Ajal el, A., Bagur-Gonzalez, M. G., 
Fernandez-Gutierrez, A., et al. (2017). Assessing the varietal origin of extra-virgin 
olive oil using liquid chromatography fingerprints of phenolic compound, data 
fusion and chemometrics. Food Chemistry, 215, 245–255. https://doi.org/10.1016/j. 
foodchem.2016.07.140 

Borras, E., Ferre, J., Boque, R., Mestres, M., Acena, L., & Busto, O. (2015). Data fusion 
methodologies for food and beverage authentication and quality assessment - A 
review. Analytica Chimica Acta, 891, 1–14. https://doi.org/10.1016/j. 
aca.2015.04.042 

Boubchir, M., Boubchir, R., & Aourag, H. (2022). The Principal Component Analysis as a 
tool for predicting the mechanical properties of Perovskites and Inverse Perovskites. 
Chemical Physics Letters, 798, Article 139615. https://doi.org/10.1016/j. 
cplett.2022.139615 

Buchaiah, S., & Shakya, P. (2022). Bearing fault diagnosis and prognosis using data 
fusion based feature extraction and feature selection. Measurement, 188, Article 
110506. https://doi.org/10.1016/j.measurement.2021.110506 

Cao, R. G., Liu, X. R., Liu, Y. Q., Zhai, X. Q., Cao, T. Y., Wang, A. L., et al. (2021a). 
Applications of nuclear magnetic resonance spectroscopy to the evaluation of 
complex food constituents. Food Chemistry, 342, Article 128258. https://doi.org/ 
10.1016/j.foodchem.2020.128258 

Cao, Z. Y., Li, X. R., Feng, Y. M., Chen, S. H., Xia, C. Q., & Zhao, L. (2021b). ContrastNet: 
Unsupervised feature learning by autoencoder and prototypical contrastive learning 
for hyperspectral imagery classification. Neurocomputing, 460, 71–83. https://doi. 
org/10.1016/j.neucom.2021.07.015 

Chen, C., Li, H. Y., Lv, X. Y., Tang, J., Chen, C., & Zheng, X. X. (2019). Application of near 
infrared spectroscopy combined with SVR algorithm in rapid detection of cAMP 
content in red jujube. Optik, 194, Article 163063. https://doi.org/10.1016/j. 
ijleo.2019.163063 

Chen, Q. S., Sun, C. C., Ouyang, Q., Wang, Y. X., Liu, A. P., Li, H. H., et al. (2015). 
Classification of different varieties of Oolong tea using novel artificial sensing tools 
and data fusion. LWT-Food Science and Technology, 60(2), 781–787. https://doi.org/ 
10.1016/j.lwt.2014.10.017 

Chen, Z. X., Zeng, J. F., He, M. H., Zhu, X. S., & Shi, Y. W. (2022). Portable ppb-level 
carbon dioxide sensor based on flexible hollow waveguide cell and mid-infrared 
spectroscopy. Sensors and Actuators B-Chemical, 359, Article 131553. https://doi. 
org/10.1016/j.snb.2022.131553 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 
273–297. https://doi.org/10.1007/BF00994018 

Dankowska, A., & Kowalewski, W. (2019). Tea types classification with data fusion of 
UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis. 
Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 211, 195–202. 
https://doi.org/10.1016/j.saa.2018.11.063 

De Marchi, M., Toffanin, V., Cassandro, M., & Penasa, M. (2014). Invited review: Mid- 
infrared spectroscopy as phenotyping tool for milk traits. Journal of Dairy Science, 97 
(3), 1171–1186. https://doi.org/10.3168/jds.2013-6799 

Debus, B., Parastar, H., Harrington, P., & Kirsanov, D. (2021). Deep learning in analytical 
chemistry. TrAC-Trends in Analytical Chemistry, 145, Article 116459. https://doi.org/ 
10.1016/j.trac.2021.116459 

Delpeuch, C., & Leblois, A. (2014). The elusive quest for supply response to cash-crop 
market reforms in sub-Saharan Africa: The case of cotton. World Development, 64, 
521–537. https://doi.org/10.1016/j.worlddev.2014.06.007 

Ding, G. Y., Li, B. Q., Han, Y. Q., Liu, A. N., Zhang, J. R., Peng, J. M., et al. (2016). A rapid 
integrated bioactivity evaluation system based on near-infrared spectroscopy for 
quality control of Flos Chrysanthemi. Journal of Pharmaceutical and Biomedical 
Analysis, 131, 391–399. https://doi.org/10.1016/j.jpba.2016.09.008 

Duca, D., Mancini, M., Rossini, G., Mengarelli, C., Foppa Pedretti, E., Toscano, G., et al. 
(2016). Soft Independent Modelling of Class Analogy applied to infrared 
spectroscopy for rapid discrimination between hardwood and softwood. Energy, 117, 
251–258. https://doi.org/10.1016/j.energy.2016.10.092 

Famiglini, G., Palma, P., Termopoli, V., & Cappiello, A. (2021). The history of electron 
ionization in LC-MS, from the early days to modern technologies: A review. Analytica 
Chimica Acta, 1167, Article 338350. https://doi.org/10.1016/j.aca.2021.338350 

Feizi, N., Hashemi-Nasab, F. S., Golpelichi, F., Saburouh, N., & Parastar, H. (2021). 
Recent trends in application of chemometric methods for GC-MS and GC×GC-MS- 
based metabolomic studies. TrAC-Trends in Analytical Chemistry, 138, Article 
116239. https://doi.org/10.1016/j.trac.2021.116239 

Feng, T. G., Wang, C. R., Zhang, J., Wang, B., & Jin, Y. F. (2021). An improved artificial 
bee colony-random forest (IABC-RF) model for predicting the tunnel deformation 
due to an adjacent foundation pit excavation. Underground Space, 7(4), 514–527. 
https://doi.org/10.1016/j.undsp.2021.11.004 

Firmani, P., La Piscopia, G., Bucci, R., Marini, F., & Biancolillo, A. (2020). Authentication 
of P.G.I. Gragnano pasta by near infrared (NIR) spectroscopy and chemometrics. 
Microchemical Journal, 152, Article 104339. https://doi.org/10.1016/j. 
microc.2019.104339 

Flexa, C., Gomes, W., Moreira, I., Alves, R., & Sales, C. (2021). Polygonal Coordinate 
System: Visualizing high-dimensional data using geometric DR, and a deterministic 
version of t-SNE. Expert Systems with Applications, 175, Article 114741. https://doi. 
org/10.1016/j.eswa.2021.114741 

Gao, F. F., Hao, X. Y., Zeng, G. H., Guan, L. X., Wu, H., Zhang, L., et al. (2022). 
Identification of the geographical origin of Ecolly (Vitis vinifera L.) grapes and wines 
from different Chinese regions by ICP-MS coupled with chemometrics. Journal of 

Y. Zhang and Y. Wang                                                                                                                                                                                                                        

https://doi.org/10.1016/j.fochx.2023.100860
https://doi.org/10.1016/j.fochx.2023.100860
https://doi.org/10.1016/j.foodchem.2017.11.007
https://doi.org/10.1016/j.jchromb.2021.122804
https://doi.org/10.1016/j.jchromb.2021.122804
https://doi.org/10.1016/j.forc.2019.100197
http://refhub.elsevier.com/S2590-1575(23)00303-6/h0020
http://refhub.elsevier.com/S2590-1575(23)00303-6/h0020
http://refhub.elsevier.com/S2590-1575(23)00303-6/h0020
http://refhub.elsevier.com/S2590-1575(23)00303-6/h0020
https://doi.org/10.1007/s12161-020-01755-x
https://doi.org/10.1007/s12161-020-01755-x
https://doi.org/10.3390/cells11030386
https://doi.org/10.3390/cells11030386
https://doi.org/10.1016/j.foodchem.2020.128647
https://doi.org/10.1016/j.foodchem.2021.130783
https://doi.org/10.1016/j.foodchem.2021.130783
https://doi.org/10.1002/pca.2818
https://doi.org/10.1002/pca.2818
https://doi.org/10.1016/j.eswa.2022.118656
https://doi.org/10.1016/j.foodchem.2016.07.140
https://doi.org/10.1016/j.foodchem.2016.07.140
https://doi.org/10.1016/j.aca.2015.04.042
https://doi.org/10.1016/j.aca.2015.04.042
https://doi.org/10.1016/j.cplett.2022.139615
https://doi.org/10.1016/j.cplett.2022.139615
https://doi.org/10.1016/j.measurement.2021.110506
https://doi.org/10.1016/j.foodchem.2020.128258
https://doi.org/10.1016/j.foodchem.2020.128258
https://doi.org/10.1016/j.neucom.2021.07.015
https://doi.org/10.1016/j.neucom.2021.07.015
https://doi.org/10.1016/j.ijleo.2019.163063
https://doi.org/10.1016/j.ijleo.2019.163063
https://doi.org/10.1016/j.lwt.2014.10.017
https://doi.org/10.1016/j.lwt.2014.10.017
https://doi.org/10.1016/j.snb.2022.131553
https://doi.org/10.1016/j.snb.2022.131553
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.saa.2018.11.063
https://doi.org/10.3168/jds.2013-6799
https://doi.org/10.1016/j.trac.2021.116459
https://doi.org/10.1016/j.trac.2021.116459
https://doi.org/10.1016/j.worlddev.2014.06.007
https://doi.org/10.1016/j.jpba.2016.09.008
https://doi.org/10.1016/j.energy.2016.10.092
https://doi.org/10.1016/j.aca.2021.338350
https://doi.org/10.1016/j.trac.2021.116239
https://doi.org/10.1016/j.undsp.2021.11.004
https://doi.org/10.1016/j.microc.2019.104339
https://doi.org/10.1016/j.microc.2019.104339
https://doi.org/10.1016/j.eswa.2021.114741
https://doi.org/10.1016/j.eswa.2021.114741


Food Chemistry: X 19 (2023) 100860

14

Food Composition and Analysis, 105, Article 104248. https://doi.org/10.1016/j. 
jfca.2021.104248 

Gomez-de Anda, F., Gallardo-Velazquez, T., Osorio-Revilla, G., Dorantes-Alvarez, L., 
Calderon-Dominguez, G., Nogueda-Torres, B., et al. (2012). Feasibility study for the 
detection of Trichinella spiralis in a murine model using mid-Fourier transform 
infrared spectroscopy (MID-FTIR) with attenuated total reflectance (ATR) and soft 
independent modelling of class analogies (SIMCA). Veterinary Parasitology, 190(3–4), 
496–503. https://doi.org/10.1016/j.vetpar.2012.07.004 

Greener, J. G., Kandathil, S. M., Moffat, L., & Jones, D. T. (2022). A guide to machine 
learning for biologists. Nature Reviews Molecular Cell Biology, 23(1), 40–55. https:// 
doi.org/10.1038/s41580-021-00407-0 

Guo, K. M., Yan, H., Huang, D. W., & Yan, X. J. (2022a). Active learning-based KNN- 
Monte Carlo simulation on the probabilistic fracture assessment of cracked 
structures. International Journal of Fatigue, 154, Article 106533. https://doi.org/ 
10.1016/j.ijfatigue.2021.106533 

Guo, Q. Y., Adelina, N. M., Hu, J. T., Zhang, L. G., & Zhao, Y. H. (2022b). Comparative 
analysis of volatile profiles in four pine-mushrooms using HS-SPME/GC-MS and E- 
nose. Food Control, 134. https://doi.org/10.1016/j.foodcont.2021.108711 

Hao, J., Dong, F. J., Li, Y. L., Wang, S. L., Cui, J. R., Zhang, Z. F., et al. (2022). 
Investigation of the data fusion of spectral and textural data from hyperspectral 
imaging for the near geographical origin discrimination of wolfberries using 2D-CNN 
algorithms. Infrared Physics & Technology, 125, Article 104286. https://doi.org/ 
10.1016/j.infrared.2022.104286 

He, K. M., Zhang, X. Y., Ren, S. Q., & Sun, J. (2016). Deep residual learning for image 
recognition. Paper presented at the. Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition. 

He, M., & Zhou, Y. (2021). How to identify “Material basis-Quality markers” more 
accurately in Chinese herbal medicines from modern chromatography-mass 
spectrometry data-sets: Opportunities and challenges of chemometric tools. Chinese 
Herbal Medicines, 13(1), 2–16. https://doi.org/10.1016/j.chmed.2020.05.006 

He, Y. L., Geng, Z. Q., Xu, Y., & Zhu, Q. X. (2015). A robust hybrid model integrating 
enhanced inputs based extreme learning machine with PLSR (PLSR-EIELM) and its 
application to intelligent measurement. ISA Transactions, 58, 533–542. https://doi. 
org/10.1016/j.isatra.2015.06.007 

Huang, F. R., Song, H., Guo, L., Guang, P. W., Yang, X. H., Li, L. Q., et al. (2020). 
Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data 
fusion. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 235, 
Article 118297. https://doi.org/10.1016/j.saa.2020.118297 

Huang, X. Y., Yu, S. S., Xu, H. X., Aheto, J. H., Bonah, E., Ma, M., et al. (2019). Rapid and 
nondestructive detection of freshness quality of postharvest spinaches based on 
machine vision and electronic nose. Journal of Food Safety, 39(6), e12708. 

Ichihara, K., Kohsaka, C., & Yamamoto, Y. (2021). Determination of proteinaceous free 
amino acids by gas chromatography. Analytical Biochemistry, 633, Article 114423. 
https://doi.org/10.1016/j.ab.2021.114423 

Ji, L. L., Lin, M., Jiang, W. B., Cao, G. H., Xu, Z. P., & Hao, F. (2022). An improved rock 
typing method for tight sandstone based on new rock typing indexes and the 
weighted fuzzy kNN algorithm. Journal of Petroleum Science and Engineering, 210, 
Article 109956. https://doi.org/10.1016/j.petrol.2021.109956 

Jia, J. M., Zhou, X. F., Li, Y., Wang, M., Liu, Z. Y., & Dong, C. W. (2022). Establishment of 
a rapid detection model for the sensory quality and components of Yuezhou Longjing 
tea using near-infrared spectroscopy. LWT-Food Science and Technology, 164, Article 
113625. https://doi.org/10.1016/j.lwt.2022.113625 

Jiang, H. Y., Zhang, Y. X., Liu, Z. G., Wang, X. Y., He, J. M., & Yin, H. T. (2022). 
Advanced applications of mass spectrometry imaging technology in quality control 
and safety assessments of traditional Chinese medicines. Journal of 
Ethnopharmacology, 284, Article 114760. https://doi.org/10.1016/j. 
jep.2021.114760 

Jimenez-Carvelo, A. M., Martin-Torres, S., Ortega-Gavilan, F., & Camacho, J. (2021a). 
PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of 
avocado samples. Talanta, 224, Article 121904. https://doi.org/10.1016/j. 
talanta.2020.121904 

Jimenez-Carvelo, A. M., Tonolini, M., McAleer, O., Cuadros-Rodriguez, L., Granato, D., & 
Koidis, A. (2021b). Multivariate approach for the authentication of vanilla using 
infrared and Raman spectroscopy. Food Research International, 141, Article 110196. 
https://doi.org/10.1016/j.foodres.2021.110196 

Jin, G., Wang, Y. J., Li, L. Q., Shen, S. S., Deng, W. W., Zhang, Z. Z., et al. (2020). 
Intelligent evaluation of black tea fermentation degree by FT-NIR and computer 
vision based on data fusion strategy. LWT-Food Science and Technology, 125, Article 
109216. https://doi.org/10.1016/j.lwt.2020.109216 
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Sikorska, E. (2021). Rapid screening of apple juice quality using ultraviolet, visible, 
and near infrared spectroscopy and chemometrics: A comparative study. 
Microchemical Journal, 164. https://doi.org/10.1016/j.microc.2021.106051 

Wu, X. M., Zhang, Q. Z., & Wang, Y. Z. (2018). Traceability of wild Paris polyphylla Smith 
var. yunnanensis based on data fusion strategy of FT-MIR and UV-Vis combined with 
SVM and random forest. Spectrochimica Acta Part A-Molecular and Biomolecular 
Spectroscopy, 205, 479–488. https://doi.org/10.1016/j.saa.2018.07.067 

Xiao, Q. L., Bai, X. L., Gao, P., & He, Y. (2020). Application of convolutional neural 
network-based feature extraction and data fusion for geographical origin 
identification of Radix Astragali by visible/short-wave near-infrared and near 
infrared hyperspectral imaging. Sensors, 20(17), 4940. https://doi.org/10.3390/ 
s20174940 

Xiong, L., & Yao, Y. (2021). Study on an adaptive thermal comfort model with K-nearest- 
neighbors (KNN) algorithm. Building and Environment, 202, Article 108026. https:// 
doi.org/10.1016/j.buildenv.2021.108026 

Xu, Y. P., & Wu, Z. Y. (2022). Parameter identification of unsaturated seepage model of 
core rockfill dams using principal component analysis and multi-objective 
optimization. Structures, 45, 145–162. https://doi.org/10.1016/j.istruc.2022.09.020 

Xue, J. T., Yang, Q. W., Li, C. Y., Liu, X. L., & Niu, B. X. (2021). Rapid and simultaneous 
quality analysis of the three active components in Lonicerae Japonicae Flos by near- 
infrared spectroscopy. Food Chemistry, 342, Article 128386. https://doi.org/ 
10.1016/j.foodchem.2020.128386 

Yakimovich, A., Beaugnon, A., Huang, Y., & Ozkirimli, E. (2021). Labels in a haystack: 
Approaches beyond supervised learning in biomedical applications. Patterns, 2(12). 
https://doi.org/10.1016/j.patter.2021.100383 

Yang, W., Knorr, F., Latka, I., Vogt, M., Hofmann, G. O., Popp, J., et al. (2022). Real-time 
molecular imaging of near-surface tissue using Raman spectroscopy. Light-Science & 
Applications, 11(1), 90. https://doi.org/10.1038/s41377-022-00773-0 

Yang, Y., Wu, Y. J., Li, W. L., Liu, X. S., Zheng, J. Y., Zhang, W. T., et al. (2018). 
Determination of geographical origin and icariin content of Herba Epimedii using 
near infrared spectroscopy and chemometrics. Spectrochimica Acta Part A-Molecular 
and Biomolecular Spectroscopy, 191, 233–240. https://doi.org/10.1016/j. 
saa.2017.10.019 

Yao, C., Qi, L. M., Zhong, F. R., Li, N., & Ma, Y. T. (2022). An integrated chemical 
characterization based on FT-NIR, GC-MS and LC-MS for the comparative metabolite 
profiling of wild and cultivated agarwood. Journal of Chromatography B-Analytical 
Technologies in the Biomedical and Life Sciences, 1188, Article 123056. https://doi. 
org/10.1016/j.jchromb.2021.123056 

Yuan, Z. R., Niu, M. Q., Ma, H. T., Gao, T., Zang, J., Zhang, Y. W., et al. (2023). Predicting 
mechanical behaviors of rubber materials with artificial neural networks. 
International Journal of Mechanical Sciences, 249, Article 108265. https://doi.org/ 
10.1016/j.ijmecsci.2023.108265 

Zaroual, H., Chene, C., El Hadrami, E. M., & Karoui, R. (2022). Application of new 
emerging techniques in combination with classical methods for the determination of 
the quality and authenticity of olive oil: A review. Critical Reviews in Food Science and 
Nutrition, 62(16), 4526–4549. https://doi.org/10.1080/10408398.2021.1876624 

Zhang, P. F., Li, T. R., Yuan, Z., Luo, C., Wang, G. Q., Liu, J., et al. (2022). A data-level 
fusion model for unsupervised attribute selection in multi-source homogeneous data. 
Information Fusion, 80, 87–103. https://doi.org/10.1016/j.inffus.2021.10.017 

Zhang, S. J., Gong, X. C., & Qu, H. B. (2022b). Near-infrared spectroscopy and HPLC 
combined with chemometrics for comprehensive evaluation of six organic acids in 
Ginkgo biloba leaf extract. Journal of Pharmacy and Pharmacology, 74(7), 1040–1050. 
https://doi.org/10.1093/jpp/rgab177 

Zhang, X. H., Zhu, Q. X., Jiang, Z. Y., He, Y. L., & Xu, Y. (2018). A novel ensemble model 
using PLSR integrated with multiple activation functions based ELM: Applications to 
soft sensor development. Chemometrics and Intelligent Laboratory Systems, 183, 
147–157. https://doi.org/10.1016/j.chemolab.2018.10.016 

Zhou, X., Li, X. Q., Zhao, B., Chen, X. T., & Zhang, Q. H. (2022). Discriminant analysis of 
vegetable oils by thermogravimetric-gas chromatography/mass spectrometry 
combined with data fusion and chemometrics without sample pretreatment. LWT- 
Food Science and Technology, 161, Article 113403. https://doi.org/10.1016/j. 
lwt.2022.113403 

Zhou, Y. H., Zuo, Z. T., Xu, F. R., & Wang, Y. Z. (2020). Origin identification of Panax 
notoginseng by multi-sensor information fusion strategy of infrared spectra combined 
with random forest. Spectrochimica Acta Part A-Molecular and Biomolecular 
Spectroscopy, 226, Article 117619. https://doi.org/10.1016/j.saa.2019.117619 

Zhuang, T., Xin, M., Wang, Q. K., Wang, Y. M., Saeed, M., Xing, H. X., et al. (2023). 
Determination of protein and fatty acid composition of shell-intact upland 
cottonseed using near-infrared reflectance spectroscopy. Industrial Crops and 
Products, 191, Article 115909. https://doi.org/10.1016/j.indcrop.2022.115909 

Further reading 

Liu, C., Zuo, Z., Xu, F., & Wang, Y. (2023). Study of the suitable climate factors and 
geographical origins traceability of Panax notoginseng based on correlation analysis 
and spectral images combined with machine learning. Frontiers in Plant Science, 13, 
1009727. https://doi.org/10.3389/fpls.2022.1009727 

Y. Zhang and Y. Wang                                                                                                                                                                                                                        

https://doi.org/10.1016/j.microc.2021.106051
https://doi.org/10.1016/j.saa.2018.07.067
https://doi.org/10.3390/s20174940
https://doi.org/10.3390/s20174940
https://doi.org/10.1016/j.buildenv.2021.108026
https://doi.org/10.1016/j.buildenv.2021.108026
https://doi.org/10.1016/j.istruc.2022.09.020
https://doi.org/10.1016/j.foodchem.2020.128386
https://doi.org/10.1016/j.foodchem.2020.128386
https://doi.org/10.1016/j.patter.2021.100383
https://doi.org/10.1038/s41377-022-00773-0
https://doi.org/10.1016/j.saa.2017.10.019
https://doi.org/10.1016/j.saa.2017.10.019
https://doi.org/10.1016/j.jchromb.2021.123056
https://doi.org/10.1016/j.jchromb.2021.123056
https://doi.org/10.1016/j.ijmecsci.2023.108265
https://doi.org/10.1016/j.ijmecsci.2023.108265
https://doi.org/10.1080/10408398.2021.1876624
https://doi.org/10.1016/j.inffus.2021.10.017
https://doi.org/10.1093/jpp/rgab177
https://doi.org/10.1016/j.chemolab.2018.10.016
https://doi.org/10.1016/j.lwt.2022.113403
https://doi.org/10.1016/j.lwt.2022.113403
https://doi.org/10.1016/j.saa.2019.117619
https://doi.org/10.1016/j.indcrop.2022.115909
https://doi.org/10.3389/fpls.2022.1009727

	Machine learning applications for multi-source data of edible crops: A review of current trends and future prospects
	1 Introduction
	2 Multi-source data of edible crops
	2.1 Modern analytical technique
	2.1.1 Spectroscopic techniques
	2.1.2 Chromatography
	2.1.3 Nuclear magnetic resonance spectroscopy
	2.1.4 Mass spectrometry and its hyphenated techniques
	2.1.5 Electronic sensor systems

	2.2 Data fusion
	2.2.1 Pre-processing
	2.2.2 Feature extraction/selection
	2.2.3 Data fusion strategies


	3 Machine learning
	3.1 Unsupervised learning
	3.1.1 Clustering
	3.1.2 Dimensionality reduction

	3.2 Supervised learning
	3.2.1 Regression
	3.2.1.1 Partial least squares regression (PLSR)
	3.2.1.2 Support vector regression (SVR)

	3.2.2 Classification
	3.2.2.1 PLS-DA
	3.2.2.2 Support vector machine (SVM)
	3.2.2.3 Random forest (RF)
	3.2.2.4 Soft independent modeling of class analogy (SIMCA)
	3.2.2.5 K-nearest neighbor algorithm (KNN)
	3.2.2.6 CNN
	3.2.2.7 Artificial neural network (ANN)



	4 Applications
	4.1 Application of multi-source data to quality evaluation of edible crops
	4.1.1 Qualitative perspective
	4.1.2 Quantitative perspective

	4.2 Application of data fusion strategy in edible crops
	4.2.1 Identification variety
	4.2.2 Geographical traceability
	4.2.3 Quality control
	4.2.4 Adulteration detection
	4.2.5 Content prediction


	5 Challenges and prospects
	6 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References
	Further reading


