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Abstract Protein folding and protein—ligand docking have
long persisted as important subjects in biophysics. Using
multicanonical molecular dynamics (McMD) simulations
with realistic expressions, i.e., all-atom protein models and
an explicit solvent, free-energy landscapes have been com-
puted for several systems, such as the folding of peptides/
proteins composed of a few amino acids up to nearly 60
amino-acid residues, protein—ligand interactions, and cou-
pled folding and binding of intrinsically disordered proteins.
Recent progress in conformational sampling and its appli-
cations to biophysical systems are reviewed in this report,
including descriptions of several outstanding studies. In
addition, an algorithm and detailed procedures used for
multicanonical sampling are presented along with the meth-
odology of adaptive umbrella sampling. Both methods con-
trol the simulation so that low-probability regions along a
reaction coordinate are sampled frequently. The reaction
coordinate is the potential energy for multicanonical sam-
pling and is a structural identifier for adaptive umbrella
sampling. One might imagine that this probability control
invariably enhances conformational transitions among dis-
tinct stable states, but this study examines the enhanced
conformational sampling of a simple system and shows that
reasonably well-controlled sampling slows the transitions.
This slowing is induced by a rapid change of entropy along
the reaction coordinate. We then provide a recipe to speed
up the sampling by loosening the rapid change of entropy.
Finally, we report all-atom McMD simulation results of
various biophysical systems in an explicit solvent.
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Introduction

Large-scale intramolecular conformational motions are nec-
essary for protein folding, with large intramolecular transla-
tional/rotational motions causing protein—ligand binding.
With the rapidly increasing capabilities of computers, the
study of these motions has come to be an important com-
putational task. To trace large motions, fast computers spe-
cialized for molecular simulations, such as MDGRAPE-3
(Narumi et al. 2006) and ANTON (Shaw et al. 2007;
Maragakis et al. 2008), might be useful. An alternative useful
approach is the use of a source program that is especially
coded for rapid processing, such as GROMACS (van der
Spoel et al. 2005). A generalized ensemble method is also
an alternative means to accelerate conformational sampling
(Mitsutake et al. 2001). This algorithmic approach is useful
whether or not fast computers or suitable programs are used.

Protein conformational sampling is equivalent to an ex-
ploration of a conformational space, which is an abstract
space used to completely express the structural variety of a
protein. When the protein consists of N,, amino-acid resi-
dues, the number of degrees of freedom to specify any
allowable protein structure is approximately proportional
to N,,. It is likely that a power law of N,, approximates
the volume V¢, of the conformational space for the protein as

Ves o sgaa, (1)

where s, is a constant that is specific to the protein system.
Then, V., increases rapidly with increasing N,,, and the
conformational sampling is confronted with a difficulty.
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Actually, rigorous all-atom computations of peptides in
explicit solvent have demonstrated that three-residue pro-
longation of N,, expands V by tenfold (Ikebe et al. 2011a).
Furthermore, numerous low-energy basins (energetically
stable structures) or narrow energetic pinholes distributed
widely in the conformational space trap the conformation
during the simulation. A larger basin has a lower free energy
than a smaller one. Consequently, it is desirable that the
sampling method be able to both escape from basins and
also be able to measure the basin size.

Protein simplification is a useful computational technique
to study the overall features of protein folding (Go 1983;
Dill 1985; Miyazawa and Jernigan 1985; Bryngelson et al.
1995). The Go-like model (Go 1983) modulates the poten-
tial energy in advance so that the native protein structure has
the lowest energy. It can then predict the folding core
regions (Koga and Takada 2001) and the folding kinetics
(Munoz and Eaton 1999) for two-state proteins. The
smoothing of the potential energy surface speeds up the
protein conformational motions considerably. In an all-
atom simulation, in contrast, the conformation is easily
trapped in a local energy basin during a prolonged simula-
tion time: once the conformation escapes from the basin,
another basin traps it, and so on. This repetition of trapping-
and-escape is likely to be the real picture of the protein
folding occurring in a time scale that is too short to be
identified experimentally. Consequently, all-atom simula-
tion is an indispensable research step to ascertain the details
of molecular events.

When a protein is bound to its partner molecule, the two
molecules move in space to form a complex. In theory,
numerous complex modes are possible. Additionally, once
a complex is formed in the simulation, the thermodynamic
stability of the complex should be examined. Consequently,
the sampling is expected to be sufficiently powerful to
produce various complexes and to estimate the binding free
energy for each complex accurately. Intrinsically disordered
proteins (IDPs), classified as a new protein group, are struc-
turally disordered in the free state (unbound state) and adopt
well-defined tertiary structures upon binding to their partner
molecules (Wright and Dyson 1999; Sugase et al. 2007). In
terms of IDP function, therefore, the binding is coupled
indivisibly with the folding. As the time scale for this
process is too short to be traced experimentally, a computer
simulation is a key approach to study this process. However,
one must solve the folding and binding in parallel, which
necessitates higher sampling efficiency than solving either
folding or binding alone.

As described in this paper, we review the multicanonical
simulation, which is compatible with the all-atom treatment
of proteins in explicit solvent. This method can assign free
energies (i.e., statistical weights) to the energy basins.
Therefore, a realistic free-energy landscape is obtained by
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mapping/projecting the sampled conformations in the
conformational space. The multicanonical algorithm was
originally introduced to study a physical system, namely, a
two-dimensional Potts model (Berg and Neuhaus 1992), and
was applied to polypeptide systems combined with a Monte
Carlo simulation (Hansmann and Okamoto 1993; Kidera
1995). Subsequently, the algorithm was combined with a
molecular dynamics (MD) simulation to study large fluctu-
ations of a peptide (Hansmann et al. 1996; Nakajima et al.
1997b). Nakajima’s MD version, denoted as McMD in
this paper, solves the Newtonian equations in Cartesian
coordinate space, while Hansmann’s version integrates the
equations in a dihedral-angular space. In the all-atom treat-
ment, a protein consists of densely packed atoms, and sol-
vent atoms tightly surround the protein. The Monte Carlo
simulation is unsuitable for such a crowded-atom system
because most trial conformations result in rejection by atom-
ic bumps. Consequently, the adoption of MD is extremely
important. The McMD simulation has been applied to var-
ious systems, from a two-residue peptide (Nakajima et al.
2000) to a 57-residue protein (Ikebe et al. 2011b), and
applied to protein—ligand flexible docking (Nakajima et al.
1997a, b; Kamiya et al. 2008). A trajectory-parallelization
method has been developed (Higo et al. 2009; Ikebe et al.
2011a) to increase the sampling efficiency still further, and
this method has been applied to the coupled folding and
binding of an IPD to generate the free-energy landscape
(Higo et al. 2011).

Another useful simulation method used to generate the
free-energy landscape is the replica-exchange method
(REM). Herein we briefly mention this method, although
we do not specifically examine this method in this review.
REM was introduced to study an Ising spin glass system
combined with the Monte Carlo simulation (Hukushima and
Nemoto 1996) and applied to a biological system combined
with canonical MD (Sugita and Okamoto 1999). A user
executes multiple runs of the same system (replicas) at
different temperatures in parallel and tries to exchange the
temperatures among different replicas with reference to a
physicochemical exchange probability between the replicas.
When the exchange is accepted frequently, the replicas are
relaxed thermally, and the sampled conformations are used
to generate the free-energy landscape. To increase the ex-
change probability, the replica-exchange and multicanonical
methods are combined (Sugita and Okamoto 2000) or a
microcanonical MD version is used (Kar et al. 2009). An
optimal choice of replica set has been discussed (Trebst et
al. 2006). Furthermore, this method was generalized for
exchanging parameters other than temperature (Sugita et
al. 2000), and it was extended to a Hamiltonian-exchange
form (Fukunishi et al. 2002). Another generalized-ensemble
replica-exchange method has been proposed to focus on the
first-order transition phenomena (Kim et al. 2010).
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As explained later, the multicanonical simulation controls
the sampling so that the energy distribution converges to a
desired form. One can imagine a simulation in which a distri-
bution function of another parameter than energy converges to
a desired form, as introduced by Paine and Scheraga (1985) or
Mezei (1987). This sampling method is now called ‘the adap-
tive umbrella (AU) sampling’. The multicanonical and AU
sampling methods therefore are similar in terms of their meth-
odology. This review report describes the methodology of AU
sampling as well as that of multicanonical sampling.

In this review, we begin with an introductory/preparative
section (‘Preparation’) in which we provide a general ex-
planation of conformational sampling; this is followed by
two sections ‘Adaptive umbrella sampling” and ‘Multica-
nonical sampling’, respectively, which describe in detail the
theory of AU and multicanonical methods. We then solve a
simple protein—ligand docking problem to show that the AU
method does not always enhance sampling (‘Traffic slowing
in enhanced sampling’) and provide a recipe to drastically
increase the sampling efficiency (‘Traffic enhancement’).
This recipe provides an important supplement tor both the
AU and multicanonical methods. Next, we explain actual
procedures for multicanonical and AU methods (sections
‘Actual procedure for multicanonical sampling’ and ‘Actual
procedure for adaptive umbrella sampling’) and provide
some technical sections (‘Methods to update the canonical
distribution’, ‘TTP-multicanonical sampling’, and ‘Other
computational techniques’). After the free-energy landscape
(‘Free-energy landscape’) is explained we further describe
the results of the McMD simulations of various biophysical
systems expressed by the all-atom model in explicit solvent
(‘All-atom McMD simulations of various systems’).

Preparation

In this section, we provide a general description of confor-
mational sampling to produce a canonical ensemble, which
is linked smoothly to the discussion in the next section on
enhanced conformational sampling.

Consider that a system consists of biomolecular and
solvent-molecular atoms. We express the position of atom
i in the system by its Cartesian coordinates: x;, y;, and z;.
Then, a microscopic state of the system is expressed com-
pletely using a vector r as

r= [xlaylazl7x27y27227"'7ZNayN;ZN]7 (2)

where N is the number of atoms in the system. Consequently,
the microscopic state is assigned to a position of the N-
dimensional conformational space. The conformational sam-
pling is equivalent to move r in the N-dimensional space with
a transition rule among the microscopic states. We

schematically present the transition between two microscopic
states m, and mg as

ma (k_i) mpg» (3)

ks

where k5 and kg respectively represent the rate constants
(kinetic constants) for the ma-to-mg transition and its inverse
process. We refer to the positions of m, and mg in the N-
dimensional space as r, and rg, respectively. Equation 3 is re-
expressed using a couple of differential equations (reaction
equations) as

{ Dt — —kyp(ras 1) + ko p(rs, 1)
dp(rs.t)

i =kap(ra,t) — kep(rs,t) (4)

where p(r,?) is a probability assigned to r at time . We assume
that the system reaches equilibrium for ¢ — oo:

Jim p(r,t) = pe(r). (5)

Then, Eq. 4 is reduced to a single equation.

pe(ra) ks
o)~ Ea ©)

If the canonical ensemble characterizes the equilibrium,
then p.(r) is given by the Boltzmann factor as

E(r)

pulr.) = e |- 20, )
where E(r) denotes the potential energy at r, T the temper-
ature of the system, R represents the gas constant (energy is
expressed in kcal/mol in this study), and A4 is a normaliza-
tion constant (or an inverse of the partition function). The
probabilities at r, and rg are then given formally and
respectively as p.(ra,7)=A. exp[— E(ra) / RT] and p.(rg,T)=
A exp[— E(rg) / RT]. We obtain the following relation for the
rate constants:

B e [— ﬂ , (s)

where AE=E(r,) — E(rg). Equation 8 is usually called the
detailed valance between microscopic states, and it does not
determine k£ and kg individually. Nonetheless, Eq. 8 guaran-
tees that a sufficiently long simulation trajectory converges to
the canonical ensemble (Eq. 7) independent of the initial
simulation configuration. The ensemble from either set of
[ka, kg] and [cka, ckg] (c#0) converges to the same distribu-
tion sooner or later.

In a Monte Carlo (MC) simulation, the rate constants are
usually set as shown below.

[eAE/RT’ 1]

- kB]:{[l, AT R A o S A O

(for E(ra) > E(rg))
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In a MD simulation, ¥ moves according to the Newtonian
equation, and Eq. 9 is not used. The force f; acting on atom 7
is given by a gradient of the potential energy as

OE(r) OE(r) OE(r)

i = iE = —€x - - €z 5
fi grad;E(r) e o, e o e o,

(10)

where e,, e,, and e respectively represent the unit vectors
parallel to the x-, y- and z-coordinate axes. It has not been
generally proved that an MD simulation trajectory always
converges to the canonical distribution p.(r,7). However,
many MD studies have assumed convergence because en-
ergy dissipation occurs extensively in the atom-crowded
system (biological system) when the simulation temperature
is controlled appropriately (Evans and Morriss 1983; Nose
1984; Hoover 1985).

The MD and MC methods described above are generally
regarded as canonical sampling and the sampled conforma-
tions as a canonical ensemble. However, canonical sam-
pling does not guarantee a quick convergence of the
simulation trajectory to the canonical ensemble. In fact, very
slow convergence is often experienced when a large and
complicated system is simulated. To avoid this difficulty,
enhanced conformational sampling has been proposed.

Adaptive umbrella sampling

The energy surface of a biological system is generally
vast and bumpy. Therefore, acceleration for the sam-
pling is crucial. Here we introduce a modified potential
energy h(r), which is an arbitrary single-valued function
that is differentiable with respect to the atomic coordinates
{¥1,...,zy}. Accordingly, the detailed balance between the
microscopic states m and mg is defined as

ks Ah
= i 11
ka xp [ RT} ’ (11)

where Ah=h(ra) — h(rg). Then a long simulation trajectory
converges to a non-Boltzmann distribution as
h(r)
T)=4 ——Z 12

pu(r, T) heXp{ RT} (12)
where A4y, is a normalization constant. In performing an
MD simulation, the force acting on atom i is given as
fi=—grad;h(r). The canonical distribution p(r,T) is computed
readily from py,(r,T) as

E(r) = h(r)

0 e, (13)

pc(r7 T) = Ach €Xp |:_

where A4, is a normalization constant.

@ Springer

The switching of the detailed balance from Eq. 8 to
Eq. 11 varies the rate constants among the microscopic
states. This variation might accelerate the sampling when
the function form of A(r) is set carefully. However, the
adjustment of A(r) for the acceleration is a difficult task
because the detailed balance should be modulated consis-
tently among a very large number of the microscopic states
in the system. To control the sampling more practically, we
contract p.(r,7) to a one-dimensional (1D) distribution for a
structural parameter A as

P.(2,T) = A/lc/D(a(r) =) p(r,T)dr, (14)

where A4, is a normalization constant, a(r) is an arbitrary
function of r, and D(a(r) — )) is defined as

1/v,

Dla(r)—2)= { A (for regions of a(r) = A) (15)

(elsewhere) '

where V; is a volume of the regions of a(r)=A in the N-
dimensional space expressed as

v, — / ar. (16)
a(r)=2

Integration in this equation is taken over regions of
a(r)=A. When the equation a(r)=A represents an (N-1)-
dimensional hypersurface in the N-dimensional space, D
(a(r) — L) is reduced to a delta function: d(a(r) — A).
Equation 14 shows that P.(A,7) is an accumulation of
the canonical probabilities p.(r,7) within the regions of
a(r)=\.

To control the 1D distribution, AU sampling (Paine and
Scheraga 1985; Mezei 1987) was developed by introducing
a potential function £, as

Eu(r) = E(r) + RT In[P.(A, T)). (17)

Then, the equilibrated probability assigned to a micro-
scopic state is given formally as

pu(r, T) = Ay exp |:_ E;(]}:):|
Ay Er)] p(r,T)
“ P, 1) P [_ RT} =y A7) (18)

where 4, is a normalization constant. The 1D contraction of
pu(r,T) on the parameter axis A produces a uniform distri-
bution as follows.

Py(A,T) = /D(a(r) —)py(r, T)dr
Ay

—_— r, T)dr = const 19
Pc(lv T) /a(r)—/l pC( ) ( )
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Equation 19 shows that a sufficiently long simulation
produces a flat distribution on the A axis. This property of
E(r) may enhance the sampling in a following situation:
presuming that the canonical distribution P.(A,T) is a bi-
modal distribution function (broken line in Fig. 1a) where
the conformation is stable at around A, and A, and unstable
at around A=MA,;q (Fig. 1a), then the transitions between the
stable states might be rare in the canonical sampling. In
contrast, P,(A,7T) is flat (solid line in Fig. 1a). Therefore,
we expect that the inter-state transitions using E,(r) are more
frequent than those obtained by canonical sampling, as
presented in Fig. 1b. Figure 1 was prepared so that A, called
the reaction coordinate, is a good parameter to discriminate
the stable and unstable states.

The usual aim of AU sampling is to generate a flat 1D
distribution on the A axis at equilibrium (Eq. 19). However,
one might want to generate a non-flat distribution instead of
a flat one. We can see that the flat distribution is a particular
case of the non-flat distribution. We therefore redefine the
modified potential function E,(r) as

P.(A, T
Eu(r) = E(r) + RT In {?(1))} : (20)
a
:é‘ -~ ’/\\\
g /’ \\\ III \\‘
g // \\\ // \\
’,’ N__’ \\‘ - 7\’

Mo Mmid M2

b

-
:__%»1

Mo Mid A

Fig. 1 a The one-dimensional (1D) probability distribution as a func-
tion of structural parameter A. Ai, Ay, and Ap;q are explained in the
main text. Broken line Canonical distribution P, obtained from canon-
ical sampling with the original potential energy E(r), solid line flat
distribution P, from adaptive umbrella (AU) sampling with the mod-
ified potential energy E,(r). b Time () development of conformation
on the A axis. Broken and red solid lines represent results obtained
using the canonical and AU sampling methods, respectively

where g(A) is an arbitrary single-valued function differentia-
ble with respect to A. The simulation generates the following
distribution at equilibrium.

E
PuLT) = Ay / D(a(r) — A) exp [— “(r)}dr
RT
Ay
) [ o 2]y,
Pc(j'a T) a(r)=1 RT
The detailed valance for MC is

kB AEu
Fn €xXp [ ﬁ} ) (22)
where AE,=E,(ra) — Eu(rg). The force for MD is
fi = —grad;E,(r) = —grad;E(r) — RTgrad; In {ch(a)n] (23)

The term —grad;E(r) is the force derived from the original
potential energy (Eq. 10). The other term can be arranged as

P.(,T)|  —RTg(2) Pe(A,T)
’RTg’“""I“{ <) ]‘ P, T) g”’d’{ ) }
_ —RTg(A) 0 [P.(A,T)
TP, T) ﬁ[ g(A) }
xgrad;a(r).

(24)

‘We have not specified the function form of a(r) because it
should be set according to the problem to be solved. When
the parameter A is specific only to the protein conformation,
a(r) involves no solvent coordinates; then, the gradient with
respect to the solvent coordinates is zero.

Multicanonical sampling

Because A is an implicit function of r, E,(r) controls the
fluctuation of A, but it cannot control the energy (E) fluctu-
ations. To control these energy fluctuations, we introduce

another modified potential energy E,,. as
Enc(E) = E+ RT In[P.(E, T)], (25)

where P, is the canonical energy distribution at 7 (i.e., the
contracted distribution on the energy axis).

P.(E, T):AE/n(E) exp [— b;;)] dr=Agn(E) exp [— IfT}
(26)

In those equations, Ag is a normalization constant. The
function n(E) is the density of states: i.e., the number of
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microscopic states in an iso-potential energy shell [E, E+AFE]
in the N-dimensional conformational space is given by n(E)dE.
The E,, is rewritten using n(E) as

Enc(E) = RT In[n(E)). (27)

A long simulation using E,,,. gives the following energy
distribution

Puc(E,T) = Amen(E) exp {— = const,

(28)

where 4,,. is a normalization constant. This simulation is
called multicanonical simulation or multicanonical sampling.

The aim of multicanonical sampling is to speed up energy
relaxation. In this context, therefore, multicanonical sam-
pling does not directly aim to speed up structural relaxation.
However, energy barriers separate thermodynamically sta-
ble structures in the N-dimensional conformational space.
Consequently, structural relaxation is related to energy re-
laxation. Figure 2a shows the conformational space charac-
terized by E. In canonical sampling at a high temperature
Thigh, the conformation ascends into the high-energy regions
without descending into energy barriers (red line in Fig. 2a),
and the energy distribution P (E,Tpien) is narrow (red line in
Fig. 2b). Consequently, the room temperature (7;oom) Struc-
tures in the oblique-line region are seldom sampled. In
contrast, at a low temperature 7T},,, the conformation is
trapped in an energy basin (blue line in Fig. 2a), and the

a
A
Thigh
w
Tlow
EX/@% L 777X 7777 Troom
- >
b

Pc(E,T
o IOW) Pc(E, Th|gh)

J\ J\>

Fig. 2 a Energy (E) and structural (r) fluctuations from the high-
temperature (7)) canonical simulation (red line), low-temperature
(T}yy) canonical simulation (b/ue), and multicanonical simulation
(black). Gray line Energy surface, oblique-line region room tempera-
ture (T,00m) range. b The energy probability distribution P.(E,Tp;gn)
from the high-temperature canonical sampling (red line), the low-
temperature sampling P (E,T},,,) (blue), and the distribution P, .(E,T)
from multicanonical sampling (black)

probability
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energy distribution P.(E,T\,) is narrow (blue line in
Fig. 2b). Therefore, the escape from the basin requires a
considerably long simulation time. Although we might ob-
tain some room temperature structures in this basin, we
cannot judge whether those structures are biophysically
more important than those in other basins because the tra-
jectory visited only one basin. Multicanonical sampling
explores both the high-energy regions and low-energy
basins (black line in Fig. 2a), yielding a flat energy distri-
bution P, (black line in Fig. 2b).

The modified potential £, involves P, (see Eq. 25), but
the function form of P. is unknown when we start the
simulation. Consequently, P, is estimated self-consistently
during the simulation, as explained later. At all events, once
P is given accurately in a wide energy range, Py, resultant
from a long run is flat in this range. Although P.(E,T) is the
distribution specific to the simulation temperature 7, we can
convert it to P.(E,T,) at another temperature 7, as

Pe(E, Ty) = Aen(E) exp [ RTJ

— AP(E, T)exp{E E] (29)

RT RT,
We used Eq. 26 to obtain this equation.
The final process in this section is to expand multicanon-
ical sampling to yield a non-flat energy distribution g(E), as
was done for AU sampling (see Eq. 20). The modified
potential energy is redefined as

Enc(E) =E+RTIn [%} .

The simulation trajectory with this potential energy con-
verges to g(E) as

Puc(E,T) = Ame / S(E'(r) — E)exp {— f;;f} dr

(30)

n(E)

For the McMD simulation at 7, the atomic forces are
defined as

= Ame 8(E) = Amcg(E). (31)

fi = —gradiEn.(r) = —grad;E(r) — RTgrad; In {%}

= —grad;E(r) — grad;E(r)

[dPET]

d P(E, T)H.

(E
:—gradiE(r)[l‘f'RTp( ){dE g(E)

(32)

The AU sampling procedure is effective when an essen-
tial reaction coordinate is known, along which biophysically
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important structures are well discriminated. Multicanonical
sampling is suitable to sample the entire conformational
space and to generate the entire free-energy landscape. We
can identify thermodynamically important energy basins
and the free-energy barriers in the conformational ensemble
at a desired temperature.

Traffic slowing in enhanced sampling

Enhanced conformational sampling controls the distribution
as Py(A,T)=g(\) or Py(E,T)=g(E). Therefore, the sampling
indirectly controls the traffic of conformation along the A or
E axis as a by-product of the probability control (see
Figs. 1b and 2a). Below we solve a simple protein—ligand
docking problem by AU sampling and show that the
probability-control does not always enhance the traffic, con-
trary to our expectations.

Here we consider a simple system mimicking protein—
ligand binding. First, we prepare a large box designated as
‘LC’ in Fig. 3a. The x-, y-, and z-coordinate axes are defined
so that they are parallel to the box sides, with the origin set
on the body center of the LC box. Next, the LC box is
divided into 3D cubic lattices with dimensions of 2413,
where 241 (= 2x120+1) lattice points line up along each
of the coordinate axes. The ligand is represented as a particle
(open circle in Fig. 3a) moving on the 3D lattice points. The
ligand position (7, r,, ) is then conditioned as —120<
<120, —120<r,<20, and —120<7.,<20. The smaller box,
designated as ‘PC’ in Fig. 3a, is the protein of which the
dimensions are 7°: seven lattice points line up along each of
the x-, y-, and z-axes. Figure 3b shows a cross-section (x—y
plane with z=0) of the system. The body center of PC is set
at the coordinate origin, at which the ligand-binding site
(filled circle of Fig. 3b) is also set. A cuboid-shaped hole,
mimicking the ligand binding cleft, is caved on the plane of
x=3 of PC, for which the dimensions are 5x3x3 (Fig. 3b).
The ligand then accesses the binding site through the hole.
We also assume that the ligand can access the lattice points
on the protein surface (open circles in Fig. 3b) but cannot
enter into the protein interior (gray region in Fig. 3b). There
are 89 sites in the inhibited region. The number of the
accessible sites for the ligand is then 13,997,432 (= 2413 —
89). We set the potential energy as zero (E=0) at any
accessible site to assess an entropy effect in the sampling.
Below we examine two sampling methods: non-enhanced
sampling and AU sampling.

The non-enhanced sampling is a conventional Monte-
Carlo sampling. The ligand was initially put randomly at a
lattice point with excluding a case in which the ligand is
buried in the protein interior and then moved randomly to
the nearest neighbor lattice points. The moves were accept-
ed unconditionally (remember that E is always zero), except
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a
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A
/y
wo| |2
cuboid|hole
y
b | | S I O

cuboid hole

X
ligand-binding
site

Fig. 3 a Overview of the system consisting of protein (PC) and ligand
(open circle) confined in a large cubic box (LC). The origin of the x-, y-,
and z-axes ( arrows x, y, z, respectively) is set at the center of LC. The
center of PC is also set on the origin. Zigzag line Ligand motions. The
cuboid hole in PC mimics a cleft through which the ligand access to the
ligand-binding site. b Cross section [x—y plane (arrows x, y, respectively,
with z=0] of PC to show the cuboid hole and the ligand-binding site (filled
circle). Lattice points, labeled such as (-3, 3, 0), are the edge positions of
the PC, open circles PC-surface lattice points, at which the ligand can
access. The ligand cannot access the interior of the PC (gray region)

for a motion to outside the LC box or the protein interior.
We estimated the average interval for the reciprocation
of the ligand between the binding site and a ‘Far region’
(Jr</=100, |r,|>100, or |r|>100) presented in Fig. 4, as fol-
lows: once the ligand reached the binding site at a step number
Ny, we memorized this number and waited until the ligand
reached the Far region, for which the step number is denoted
as Ny. Before reaching the Far region, the ligand might revisit
the binding site. However, we did not reset N, to the revisiting
step. The trajectory interval for this motion was then defined
as ANp,=N;— N,. We then waited until the ligand visited the
binding site, for which the step number is denoted again as V.
Before accessing the binding site, the ligand might
revisit the Far region. However, we did not reset Nt to
the revisiting step. We then calculated the interval for this
motion as AN, =N, — N;. The simulation was continued, the
reciprocation was observed many times, and the average for
the intervals was calculated as<AN>= (<ANp,>+<ANy¢>)/
2, where<ANgp,>and<AN,¢>represent the average of ANy,
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Fig. 4 Two-dimensional drawing to identify the space partitioning.
Protein (PC) is located at the center of the LC box. State I Ligand-
binding cleft, with the ligand-binding site at the center of State I,
which overlaps the center of PC. In the two-state adaptive sampling,
the region other than State 1 (i.e., State 2 + State 3 + State 4) is called
the ‘Other region’. Boundary 1 partitions States 1 and 2, Boundary 2
partitions States 2 and 3, and Boundary 3 partitions States 3 and 4. The
‘Far region’ is a part of State 4. Positions of Boundaries 2 and 3 are
specified uniquely by L, and L3, respectively, which are intercepts of
the boundaries to the x-axis

and AN, respectively. This simulation was performed four
times, with each run executed for 5% 10'? steps, discarding the
initial 10® steps to compute<AN>. We used the Mersenne
twister MT19937 (Matsumoto and Nishimura 1998) to gen-
erate a random number series. The resultant value was
<AN>= (2.53+0.02)x 107, where the ligand moved about
197,000 times between the binding site and the Far region.
The next step in the AU sampling is to enhance the
probability of the ligand in the binding cleft. As such, we
defined State 1 as having dimensions of —=1<r,<1, -1<r,<1,
and —1<r.<1, as portrayed in Fig. 4. The binding site is
located at the center of State 1. We controlled the distribution
as Psiate1 =Pother, Where Pggie1 and Pog,e, denote the proba-
bilities of the ligand in State 1 and the ‘Other region’, respec-
tively. States 2, 3, and 4 in Fig. 4 (States 2+3+4=Other
region) are described in the next section. We designate this
adaptive umbrella sampling as the ‘two-state AU sampling’ or
simply ‘two-state sampling’. Boundary 1 separates State 1 and
the Other region (Fig. 4). The numbers (Nsae; and Noger) Of
ligand accessible sites are 27 and 13,997,405, respectively, for
State 1 and the Other region. The transition probability of the
ligand traversing Boundary 1 from State 1 to the Other region
iS Nstate1/Notmer This setting of the transition probability is
explained later. The transition for the reversal process is
accepted unconditionally. Other moves are always accepted.
We repeated the simulation four times, with each run executed
for 5x10'? steps and discarding the initial 10® steps. The
resultant interval is< AN>= (2.81+0.01)x 107, where the
ligand moved about 178,000 times between the binding site

@ Springer

and the Far region. The probabilities were controlled well as
Psiate1/Pomer=0.998. This probability partitioning is in con-
trast to the result from the non-enhanced sampling: Pgee1 /
Pone=0.193%107. Consequently, the two-state AU sam-
pling enhanced Pgaer- In return, this sampling slowed
traffic<AN>, as shown above. For the ligand starting
from the Far region, the probability of visiting State 1
is the same for each of the two simulations because all
moves are unconditionally accepted in both. For the
ligand starting from the binding site, all moves are also
accepted unconditionally in the non-enhanced simula-
tion. In contrast, in the two-state AU simulation, the
ligand traverses Boundary 1 with the small transition
probability Nggie1/Noter, Which slows the traffic.

In the current protein—ligand docking model, the slow
traffic does not cause a problem,; i.e., the simulation is able
to predict the correct complex structure once the ligand
reaches the ligand-binding site. In an all-atom treatment,
however, the ligand may enter the binding site with a dif-
ferent orientation from that in the correct complex structure
or may weakly bind with non-binding sites on the protein
surface. Those non-native complexes should be dissociated as
quickly as possible during the enhanced sampling. Therefore,
the slow traffic may cause a serious problem in conformation-
al sampling. To increase the statistical significance, the traffic
should be increased.

We survey the two-state AU sampling with the aim of
more fully understanding a mechanism of the slowed-down
traffic. The enhanced conformational sampling introduces
the modified potential energy £,,,,4 to control the probability
distribution: E,,,q=F.(r) and E,.(r) for the AU and multi-
canonical methods, respectively. The potential energy E is
always zero in the present system. Therefore, the canonical
ensemble assigns an equal probability to all accessible lat-
tice points. The canonical distributions P.(Statel) and
P(Other) are proportional, respectively, t0 Nsguee1 and Noger
The modified potential energy £,,04 is then given as

Emod(Other) = In P, (Other) = In Noger (33)

{Emod(Statel) = In P, (Statel) = In Nsyel
where we set R7T=1 because the temperature does not appear
in this simulation. The rate constants then satisfy the following
detailed balance as

kstate1 —Other Nsuatel

= exp[—AEmo] = (34)

b
kOther—> Statel N Other

where AE,0q=FEmod(Other) — Ep,,q(Statel) and the subscrip-
tions for the rate constants represent the reaction processes. In
the two-state AU sampling, ksgtel>0ther 18 considerably
smaller than komer—statel DeCaUSE 0f Ngiare1 << Nother Finding
the small region (State 1) for the ligand fluctuation in the
Other region is arduous. To redress the balance between Pgyae1
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and Poger, the escape from State 1 should also be arduous,
which makes kgite1.omer Small; consequently the traffic
slows.

Introducing entropy, AE,,q is rewritten as

AEmod =In [M} = SOther - SStately (35)
Statel

where Ssue1 and Somer represent entropies for State 1 and
the Other region, respectively: Ssuie1 =INNstater and Soger=
InNoger Therefore, when traversing Boundary 1 from State
1 to the Other region, the ligand is expected to overcome a
high-energy barrier AE,,q that originated from the entropy
difference. As a general rule, in adequate enhanced sam-
pling, the traffic slows down when the conformation tra-
verses a boundary with a large change in entropy.

It is noteworthy that coercive traffic enhancement might
result in a non-equilibrated ensemble, particularly in the all-
atom treatment with explicit solvent where deep pinholes
characterized by small entropies are distributed throughout
the conformational space. The coercive enhancement pushes
the conformation into a pinhole in the vicinity of the current
conformation before the conformation takes a long trip to
visit a wide energy basin.

Traffic enhancement

Is there any prescription for enhancing the traffic solely by
controlling the distribution function? We now introduce
States 2—3 partitioned by boundaries (Fig. 4). Boundary i
is uniquely specified by six planesx=+L;, y== L, and z=+ L,,
and eventually by a digit ,. The probability of ligand in State i
is denoted as Psy; and the number of ligand accessible sites
as Nsuiei- As we can calculate Nggqe; €xactly in advance, the
detailed balance for transitions between States i and j for even
probabilities (Psuic1 = Pstate2=Pstate3 = Pstatc4) are set as

kStateiHStatej o Nstatei (36)
kstatei—Statei  Nstatej

We denote this AU sampling as ‘four-state AU sampling’
or simply ‘four-state sampling’. The simulation was per-
formed with various sets of Boundaries 2 and 3 (i.e., various
values of L, and L3) to investigate the dependency of the
traffic on the boundary positions. We fixed State 1 (binding
cleft) and the Far region as in the two-state sampling for all
simulations. This simulation was performed four times at
each set of boundary positions, and each run was executed
for 1x10'? steps with the initial 10® steps being discarded to
compute<AN>.

Figure 5 shows the dependence of <AN>on the boundary
set [L,,L3]. The probability was well controlled as Pgei=
25.004+0.01%. The traffic was enhanced considerably for all
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Fig. 5 Dependence of <AN> on the boundary set [L,,L;], which is
defined in Fig. 4. x Site at which the smallest<AN>was obtained

boundaries examined. The smallest<AN>(fastest traffic)
was 5.21x10° steps at [L,,L3]=[10,60], where the traffic
was about 50-fold faster than that from two-state sampling
because the introduced states (States 2—4) loosened the large
entropy Change: |SStatei - SStatei+l|<< |SStatel - SOther|' The
modified potential energy of this system is funnel-like (red
line in Fig. 6), contrasting to the golf hole-like potential of
the two-state sampling (black broken line in Fig. 6). We also
plot E o4 for two other sets [L,,L3]=[5,15] (blue line) and
[40,80] (green line) in Fig. 6, for which<AN>was 9.45 x 10°
and 24.1x10° steps, respectively. The former is more
golf-hole-like than the red line, and the latter was more
jar-like. Modulation of the boundaries to speed up the
traffic is subtle—even for this simple sampling. We also
examined simulations to produce uneven distributions
(81Pstate1 =€2Pstatc2=€3Pstate3=g4Pstate4) and found that
<AN>depends on g;. For instance, a set [g, £, &3, g4]=
[1,1,0.5,1] provided the fastest traffic (SAN>= 5.12% 10°
steps) for [L,,L3]=[10,45].

The introduction of the intermediate states, States 2—4,
corresponds to the adoption of a reaction coordinate suitable
for weakening the entropy gaps. Because the present system

L o A S A L B
10k ] 4
3 8H J —— L2=10,L3=60 | |
i sdj —— L2=5, La=15|
4} —— L2=40,L3=80 |
73 S (e Li=1 .
(0]} S | | I I

Fig. 6 Modified potential energy (E,,,,) for four systems as a function
of L, which is the distance from the ligand-binding site to a site on the
x-axis (see caption of Fig. 4). Colored lines E.,.q for the four-state AU
sampling, for which L, and L; are shown in the inset, broken line E,,qq
for the two-state AU sampling
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is extremely simple, its conformational space is also very
simple. As a general rule, the choice of the reaction coordi-
nate depends on the structure of the conformational space,
and the structure remains unknown for most biological
systems. It is also likely that the energy surface of a real
biological system involves several low-energy basins, pin-
holes, and dead ends of conformational changes, which
cause deep conformational trapping. Consequently, to de-
fine an effective reaction coordinate might be a difficult task
for the realistic protein system. However, we generally note
that the appropriate reaction coordinate drastically enhances
the protein dynamics. For example, the tuning of g(A) (or
g(E) for multicanonical sampling) increases the sampling
efficiency, as shown above. Then, starting with g=1, we can
detect values of A or £ at which the traffic slows. We can
then modify g at the values.

Actual procedure for multicanonical sampling

To perform enhanced conformational sampling, one should
define the modified potential energy, E,,.(E) or E,(r), which
involves the canonical distribution P.(E,T) (Eq. 30) or P.(A,T)
(Eq. 20). This is self-contradictory because the canonical
distribution is unknown in advance. To solve this problem,
we iterate the simulation where the canonical distribution
function gradually converges to the aimed function g(E) or g
(A). Below, we first explain practical procedures for multi-
canonical sampling and then explain those for the AU
sampling.

First, we mention the energy range [Ej,w, Eyp] to be
explored in the multicanonical simulation. From a general
thermodynamic formula 1/RT=d In n(E)/dE, we obtain the
following relation.

L _d( Elp (E,T)
RT — dE\ " |P|Rr] * T
1 n 0
~ RT  OE
This equation yields the following.

In[P.(E, T)] (37)

8% In[P.(E,T)] =0 (38)

Consequently, solving Eq. 37 is equivalent to evaluating
the energy value [denoted as Ep,(7)] at the maximum
value of P.(E,T). To ensure quick structural relaxation in
the multicanonical simulation, the upper limit £, should
correspond to a high temperature 7,,,, at which the confor-
mation overcomes high energy barriers. However, our bio-
physical interest is usually devoted to the conformations at
room temperature (7;oom). The lower energy limit Ej,y, is
therefore expected to correspond to a temperature 7., that
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is slightly lower than T;,.,. For that reason, the energy
range [Ejow.Eyp) is determined as

[EloW7Eup] = [Eme(Tlow)yEme(Tup)]- (39)

When we initiate multicanonical simulation, this energy
range is unknown because Epn,(7) is evaluated from P (E,T),
which is unknown in advance. In the iterative procedure
explained below, P.(E,T) converges to an accurate function,
following which the energy range is determined gradually.

The iterative procedure used to evaluate P.(E,T) is as
follows. A canonical simulation (denoted as ‘pre-run’) is
first performed at 7;,, with setting £,,,.=E. This run produces
a canonical energy distribution PP"(E, T,,), where the su-
perscription ‘pre’ clarifies that the pre-run generated the
distribution. Because the pre-run explores a narrow energy
range around Epmy(T,p), the distribution PP'(E, T,) is
accurate only in this range, denoted as [Ep, £,p] in Fig. 7a,
which is narrower than the targeted range [Ejow,£up)- Epre Can
be determined quantitatively as PP (Epw, Tup) / < PP x
(E, Typ) >= dgman, Where < PP°(E,T,,) > is the average
of PP"(E, T\, ) over the range, and dypay is a value such as 0.1
or 0.05. Alternatively, £, may be intuitively set by viewing
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Fig. 7 The energy (E) probability distribution from the pre-run (a), the
first multicanonical run (b), and the second multicanonical run (c).
Broken lines in b and ¢ correspond to the solid lines in a and b,

respectively. ValuesE,, £}, and E, are described in the main text
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the shape of PP"(E, T\). To increase the operability of PR™ x
(E, Typ), one might approximate In[P?*(E, T,)] or PP x
(E, Typ) by a polynomial of E or other differentiable functions.
We do not reset the upper limit because £, is always the
upper limit for all iterative runs. The function PP*(E, T,,)
outside [Epy, Eyp] is a linear function of E for which the
gradient is determined by the following condition.

dPY™ (E,Typ)
dE

_ dPE By Tip)

(for E < Epre)

. e (40)
chp ‘ggsTup) — dPS ;g:iTup) (fOI‘ E > Eup)

This equation sets walls in the energy axis so that the
conformation only slightly extends outside [Ep., Eyp]. Be-
low E,., the sampling is equivalent to a canonical simula-
tion at temperature T satisfying Epp(T)=Epe; above Eyp,
the sampling is that at 7 satisfying Eppn(T)=Ey.

To expand the energy range in which the canonical distri-
bution is determined accurately, we perform the first multi-
canonical run at T, using the following modified potential:

(41)

mc

P(E, T,
EP°(E) = E + RT,, 1n[7° (£, P)}

g(E)

The initial conformation for this run is the final confor-
mation of the pre-run. This choice of the initial conforma-
tion is important for quick relaxation of the system. This run
produces an energy distribution PL_(E, T,,) that is related
formally to PP"(E, Tp) as

Pl (E,Ty,) = n(E) exp _ Ene (42)
mc ) S up RTup
g(E)
=2 v uE - .
PI(E, Typ) n(E) exp { RTup]

If PP™(E, Tyyp) had been determined sufficiently accurate-
ly in [Eyye, Eyp] and if the first multicanonical run is suffi-
ciently long, then P! (E,T,,) converges to g(E) in this
energy range. Figure 7b portrays a flat distribution for Prlnc X
(E, Typ) assuming that g(E)=1. In practice, however, PP" x
(E, T,p) might not be sufficiently accurate, where PP x
(E,Typ) deviates appreciably from g(E). For the second
multicanonical run, we define the canonical energy distri-
bution P! (E, T,,) using Eq. 42 as

E ] Pl (E Ty)P™E,T,
PA(E7Tup):n(E)6Xp|:— :|_ mc( ) up) ¢ ( s up).

RTy| g(E)

(43)

Regarding that equation, P!(E,T,,) is uniquely deter-
mined because PP(E, T,,) and P. (E,T,,) are computed
numerically from the pre-run and the first multicanonical run,
respectively, and g(E) is given definitely by users. The
distribution P! (E,T,,) decreases outside the range

[Epre» Eupl (Fig. 7b) because of the energy walls
(Eq. 40). The sampling range can then be expanded to
[E1, Eypl, where E; might be set as Pl (Ey,Ty) / <
Pl (Epres Tup) >= dsmanr, where < Pl (Epe, Typ) > i
the average of P! (E, Typ) over the range [Epe, Eypl.
Equation 43 defines P! (E, T,) only in this energy range, and
its outside range is determined as shown below.

dP\(E,T, dP!(E,,T,
‘(dE' ) — (dEl ») (for E < Ey) (44)
1 1

dp; (dEgTUP) = ch(dEg:;TUP> (f()r E > E“p)

Next, we define the modified potential energy as

PN E,Ty)
EL (E) =E+RTy,In [Ci‘“’ . (45)
mc p g(E)

The second multicanonical run using E! . produces nu-
merically the distribution function P2 (E,T,,) (Fig. 7c).
This procedure is repeated until the energy range reaches
[Elow» Evupl, at which point the energy distribution converges
to g(E).

Generally the i-th multicanonical run produces P x
(E,Typ) numerically, and the canonical distribution P’ x
(E, Typ) is computed as

i i1
PCI(E, Tup) :Prm:(E? TUP)PC (E7 Tup). (46)
g(E)

Then, the modified potential energy for the (i+1)-th

multicanonical run is defined as

EL(E)=E+RT,In [%;“p)] .

In the McMD simulation, the derivatives of In[PL(E, Typ)]
or PL(E, T,,) should be computed (Eq. 32). Similar to the
process used for P"(E, T,), one might approximate In[P. x
(E, Typ)] or P.(E, T,,) by a polynomial of £ or other differen-
tiable functions. The derivatives are then computed analytically.

(47)

Actual procedure for AU sampling

In multicanonical sampling, all microscopic states of the
same energy E contribute evenly to P.(E,T). For this reason,
the density of states n(E) appears in the formulae (Egs. 26
and 27). Although AU sampling has some similarity to
multicanonical sampling, n(E) does not appear in the former
formulation because microscopic states of the same A,
which contribute to P.(A,7), have various energies. There-
fore, the procedures for the AU sampling are somewhat
different from those for multicanonical sampling.

We denote the sampled range for A as [Ajow, Aypl, Where
the canonical distribution P.(A,7) should be determined

@ Springer



38

Biophys Rev (2012) 4:27-44

accurately. If the structures at A, and A, belong to differ-
ent stable states (different energy basins) at 7, then the
sampling might provide possible pathways for the confor-
mational changes between the states. To start with, a canon-
ical run (again demoted as ‘pre-run’) is performed using the
original potential energy at 7, which is usually an interesting
temperature such as room temperature. In this run, we
restrict the sampling in a range [A}0, AB¥], which is usually
narrower than [Aoy, Aypl, by setting artificial walls outside
the range, and the initial simulation conformation is better in
this range. The pre-run produces a canonical distribution

PP(4,T), which is accurate only in [A75, APF]. Then we
)&1

up» Where

1
low>

extrapolate PP"(1,T) to a wider range [A
}“llow < lpre

Jow and llllp > Al - Subsequently, we set the modi-

fied potential energy as

P2, T)}

EF(r) = E(r) + RTln[ Cg(/”t , (48)

and perform the first AU run at 7. The numerically obtained
distribution function P! (1, T) is related to PP"(2,T) as

o,

Py, T) = / D(f(r) — 2) exp [_ -

g1 E
= B T (A)T / exp [— ] dr
c ( ) ) a(r)=2 RT

_gWPLA.T)
TG @)

where the normalization constant (4, in Eq. 21) is omitted.

The 1D canonical distribution P! (1, T) is then determined as

_PLAT)PY(A,T)
g(1)

We now expand again the range for P! (1, T)to [A2,, A2 ],

low> ““up

P2, T)

C

(50)

reset the walls, and define the modified potential energy as

1
ENr)=E(r) + RTIn [%} .

u
The second AU run is then performed at 7. The procedure
is repeated until the sampling covers the intended range
[Mows Aupl- The expansion of the sampling range and the
simulation length should be determined carefully with pro-
gression of the iteration.

(51)

Methods to update the canonical distribution
In the methods described above, the modified potential

energy is invariant during an iterative run, and the canonical
distribution function P.(q,T), in which g=F or A, is updated
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after completion of the iterative run. The i-th run should be
performed sufficiently long to generate P! (g, T) as accurate-
ly as possible in a given range [gi,,,, ;,]. Consequently, the
simulation is categorized in equilibrium sampling when the
initial relevant simulation conformation is prepared. We
have designated this updating method as ‘the every-run
update method’.

An alternative means is to update P, slightly at every step
of the simulation. When the conformation is detected in a
bin [¢, ¢+ Agq], P, is modified by a small increment Ag as

Pe(q,T) — Pe(q, T) + APc(q)- (52)

This method is called the Wang—Landau sampling for g=
E (Wang and Landau 2001) and the metadynamics (Laio
and Parrinello 2002) or the filling potential sampling meth-
od (Fukunishi et al. 2003) for g=A. The increment AP, is
usually positive and restricted in the detected bin or bins in
the vicinity of the detected bin. When the sampling is based
on MD, AP, should be differentiable with respect to ¢. The
modified potential energy is modified at every simulation
step. Therefore, this simulation is categorized in non-
equilibrium sampling independently of the initial simulation
conformation. During the simulation, the conformation feels
a repulsive force to escape from bins that have been visited.
With progress of the simulation, increment AP, decreases
gradually, ultimately vanishing: AP.— 0. One expects con-
vergence of P, to the accurate distribution function at this
final stage. We designate this updating method as ‘the
every-step update method’.

The benefit of the every-step update is its ease of auto-
mation: Once the protocol for setting AP, is determined,
one can perform the simulation without manual operations
until AP, vanishes. However, the conformational space of a
large biological system is vast, within which numerous
energy basins, pinholes, and energy barriers can be distrib-
uted. In this case, the emerging repulsive force might push
the conformations within a local region of the conforma-
tional space before the conformation fluctuates toward vast
regions that have not yet been visited. In other words, the
conformation wanders among a small number of basins/
pinholes without overcoming energy barriers to visit the
new regions.

To avoid this delicate problem, a force-biased multica-
nonical sampling (Kim et al. 2004) has been proposed. In
this method, the modified potential energy is maintained for
a long interval of the simulation, during which AP, is
summed up (APgym = Y4 APé, where i specifies the simu-
lation step) but not added to P, at every time step. Then,
after executing the interval, AP, is added to P.. This
method is categorized in the equilibrated sampling in each
interval. We designate this updating method as ‘the every-
interval update method’. If the interval length is sufficiently
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long, then the method is substantially equivalent to the
every-run update. However, if the interval is short, this
method reaches the every-step update. The benefit of the
every-interval update is its ease of automation, where the
setting of the interval length controls the entire sampling
process.

All of these methods target the accurate estimation of the
canonical distribution P.(¢q,7). Consequently, a long final
run (production or sampling run) is required while using
the converged canonical distribution without another up-
date. This additional procedure is important for checking
whether the converged distribution can produce the aimed
distribution g(g) [usually g(¢)=1)] Coincidentally, the sam-
pled conformations from the production run are used for
analyses.

A conventional MD (canonical MD) at a temperature
provides a canonical energy distribution, P.(E,T), which is
accurate only in a narrow energy range, from which a
partially accurate density of states n(E) is obtained. Terada
et al. (2003) performed several canonical MD runs at differ-
ent temperatures, obtained the fractions of n(E), and con-
structed the entire density of states by integrating the
fractions. When the computed system is small, the con-
structed n(E) is useful for the production run of multicanon-
ical simulation without the iterative procedure. With
increasing system size, however, the accuracy of the con-
structed n(E) decreases because a canonical run at a temper-
ature sample only involves a restricted region of the
conformational space. However, this method provides the
first approximation of n(E), which can be refined via itera-
tive multicanonical runs.

TTP-multicanonical sampling

The methods described above guarantee that the accuracy of
P.(gq,T) increases concomitantly with increased simulation
length. However, the volume of the conformational space
increases rapidly with increased system size (Eq. 1), while
the moving speed of the conformation in the conformational
space remains almost unchanged despite the system size.
Consequently, equilibration becomes unachievable in an
actual computational time with increased system size.
Trajectory-parallelization methods have recently been
developed for use in the multicanonical simulation of a large
system in which many runs are performed, starting from
various initial conformations (Higo et al. 2009; Sugihara et
al. 2009). In the trivial trajectory-parallelization multicanon-
ical molecular dynamics (TTP-McMD), the multiple trajec-
tories are simply connected, where each trajectory might be
short. Importantly, the integrated long trajectory can be
regarded theoretically as a single simulation trajectory be-
cause the detailed balance is satisfied at the inter-trajectory

connection points (Ikebe et al. 2011a). Because the initial
conformations spread in the conformational space in ad-
vance, the sampled space is wider than that by the single
multicanonical simulation, even though the length of the
integrated trajectory is equal to or shorter than the single
simulation trajectory (Fig. 8). To substantialize the wide
sampling, trajectory parallelization is done from the pre-
run stage, where the conformations are randomized in the
high-energy region. The next multiple runs (first multica-
nonical runs) are then initiated from the last snapshots of the
pre-runs, and so on. This method has been used for the
coupled folding and binding of an intrinsically disordered
protein (Higo et al. 2011).

Parallel computing to speed up a single run by a number
of computing nodes is effective when the time development
of the system is of interest. In multicanonical sampling (and
in any of the generalized ensemble methods) the simulation
trajectory does not provide realistic time development of the
system. The purpose of multicanonical sampling is to obtain
the conformational ensemble. To increase the statistics of
the ensemble, N runs should be executed when there are N
computing nodes. In fact, the computing nodes do not
communicate during the simulation. In other words, the
parallelization efficiency is always 100% in the TTP
method.

Other computational techniques

The enhanced sampling methods explained in this review are
those that control the sampling by a 1D distribution P.(g,7).
This can be extended naturally to a multi-dimensional version
where P.(q1, g2, ...; T) controls the sampling. Some 2D
versions have already been proposed (Higo et al. 1997; Iba
et al. 1998; Nakajima 1998; Okumura and Okamoto 2004),

Fig. 8 Scheme for trivial trajectory-parallelization (TTP) multicanon-
ical sampling. Differently colored lines Different trajectories. Confor-
mational space is represented two-dimensionally. The multiple
trajectories are distributed in three gray regions (R,, Ry, R.). Broken
line Long single-simulation trajectory that does not visit R,
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such as multi-dimensional AU sampling (Bartels and Karplus
1997), multi-dimensional replica exchange (Sugita et al.
2000), and multi-dimensional AU/multicanonical sampling
(Zheng et al. 2008). If the sampling is performed for a suffi-
ciently long period to determine P.(q;, ¢», T) accurately, then
the generated conformational ensemble provides more infor-
mation than the 1D distribution.

We now introduce two computational techniques: the
mass-scaling and puddle-skimming methods. Although
these methods are not categorized in the generalized ensem-
ble method, they can be combined to the AU or multica-
nonical sampling. In the mass-scaling method, atomic
masses are varied to speed up the sampling. Feenstra et al.
(1999) scaled up the mass of hydrogen atoms in a system
and increased the time step Af to integrate the Newtonian
equations because fast motions related to the hydrogen
atoms are slowed by mass scaling. In contrast, Gee and
van Gunsteren (2006) scaled down the masses of the solvent
atoms, with the result that the viscosity decreased and the
peptide moved quickly. One might point out that the system
kinetics changes through mass scaling, suggesting that this
method is less useful for tracing the time series of the system
motions. However, the equilibrated distribution converges
to the canonical ensemble (i.e., after a long simulation)
irrespective of the unrealistic kinetics. Mass-scaling can
help the generalized ensemble method to speed up the
sampling.

A protein is a long polypeptide chain in which the atoms
are connected by covalent bonds. Therefore, once the chain
has misfolded during a simulation, the structure should
unfold to restart the folding. In the puddle-skimming meth-
od, energy that is higher than a given value E,, is reset to £y,
(Steiner et al. 1998; Rahman and Tully 2002a, b). When E,,
is set to a high value, conformations with energies larger
than E}, do not influence the equilibrated ensemble at room
temperature. This method might allow self-overlapping
of the polypeptide chain, i.e., misfolded structure refolds
without unfolding. A simplified protein model has
shown that the self-overlapping considerably enhances
the structure relaxation when the overlap is controlled
well (Iba et al. 1998).

Free-energy landscape

The enhanced conformational sampling is used for con-
structing the free-energy landscape. The free-energy land-
scape visualizes conformational clusters (low free-energy
basins) and inter-cluster pathways. The free energy assigned
to cluster 7 is defined as F;=— RT, In[V;], where N; is the
number of conformations involved in the cluster and 7}, is
the temperature at which the conformational ensemble is
obtained (detail is described later). Therefore, the largest
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cluster (i.e., the cluster involving the most conformations)
has the lowest free energy, and the free-energy difference
between clusters 7 and j is calculated as AF=F; — F;=— RT,
In[N; / N;]. When a conformational distribution P(q,g2,...)
is computed from the ensemble, where the set of parameters
[q1,92,---] specifies a position in the conformational space,
the free-energy map is defined as F(qy,q2,...)=— RT,
In[P(g1,9>,...)]- In the map, a cluster corresponds to a low
free-energy region, and free-energy barriers are identified
among the low free-energy regions.

In multicanonical sampling, the entire conformational
ensemble, denoted as Q,y, is characterized by a wide energy
distribution. A canonical conformational ensemble Q.(7,) at
temperature 7, is generated as follows: first, we pick a
conformation from Q,y;, for which energy is denoted as Ep,
and assign a probability P.(Ep;c,13) to the selected confor-
mation as
PelEpie, T2) = PelEyie, T,)[PT(T), (53)
where P (T,) is the maximum value of Po(E,T,). If p(Epic,
T,) is larger than a random number distributed uniformly in
[0,1], then the chosen conformation is registered in Q.(73).
Repeating this procedure for all conformations in Q,y, the
ensemble O(T,) is generated. The most biophysically inter-
esting ensemble is usually that at room temperature:
Oc(Troom)- We can generate a visible free-energy landscape
by projecting the structures in Q¢(7Tioom) Onto a low-
dimensional conformational space. The low-dimensional
space might be constructed by overall structural identifiers,
such as the radius of gyration, solvent accessible surface
area, or root mean square deviation measured from a given
structure, or by abstract coordinate axes derived from prin-
cipal component analysis (PCA). Ono et al. (1999) con-
structed a fine free-energy landscape for the cis/trans-imide
isomerization of a peptide dimer, —Ala—Pro—.

The TTP-McMD produces short trajectories, and a long
trajectory is generated connecting the short trajectories.
Since the long trajectory can be regarded as a single multi-
canonical trajectory, the snapshots recorded in the long
trajectory construct the entire conformational ensemble Q.
The distribution P.(E,T,) is also computed from the long
trajectory and then the ensemble Q.(7,) is computed with
the method explained above.

We note a disadvantage of the overall structural identi-
fiers to generate the free-energy landscape: widely different
protein tertiary structures can have the same value as
the structural identifier. This structural ambiguity leads
to a misleading interpretation of a free-energy barrier.
We experienced that free-energy barriers identified in
the PCA space completely vanish in the space con-
structed by the overall structural identifiers (Kamiya et
al. 2002; Higo et al. 2011).
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All-atom McMD simulations of various systems

Lastly in this paper, we describe our all-atom McMD studies
of various biophysical systems. In these studies, we gradu-
ally increased the system size to be sampled and determined
that at the present time the McMD method is applicable to
the 57-residue system. We first applied McMD to a two-
residue peptide and produced a free-energy landscape in
which possible conformations were identified as clusters
(Nakajima et al. 2000). The clusters were separated by
free-energy barriers and might be bridged by free-energy
pathways. This work revealed that McMD is useful to study
biological systems.A seven-residue peptide (DNA-binding
segment of a DNA binding protein) was subsequently
solved (Higo et al. 2001b). Although this segment adopts
a helix in the protein framework, it is disordered in the
isolated state. We have shown that the free-energy landscape
consists of various secondary structures, such as helices,
hairpins, and other disordered conformations. It is particu-
larly interesting that a cluster was found whose structure is
the same as that in the protein framework. A similar result
was obtained in McMD simulations of a nine-residue seg-
ment taken from a distal 3-hairpin of a SH3 domain (Ikeda
et al. 2003). These results suggest that the segment structure
in the protein framework is metastable, even in the disor-
dered state. The McMD simulations of a seven-residue f3
segment (Higo et al. 2001a; Kamiya et al. 2002) revealed
that three {3-hairpin clusters exist in the free-energy land-
scape and that each cluster is characterized by a different
number of inter-strand hydrogen bonds. Therefore, hydro-
gen bond formation accompanies a jump in a free-energy
barrier. A similar result was obtained in the work described
above (Higo et al. 2001b). The McMD simulation of a 16-
residue chameleon sequence (a part of DNA binding pro-
tein) showed that this sequence has a strong propensity to
fold into «-helix or (3-hairpin, each of which correlated well
with the experimentally determined polytypic structures
(Ikeda and Higo 2003). The free-energy landscape visual-
ized probable pathways for conformational changes be-
tween the o and {3 structures, suggesting that the actually
selected structure (x or ) is determined by an interaction
between the DNA-binding protein and DNA.

We then proceeded to longer peptides, which might exist
as a single chain state without a protein framework. The
McMD simulation of a 25-residue segment from the Alz-
heimer's (3 amyloid peptide (A3) in a TFE/water co-solvent
showed that this peptide folds into the experimentally de-
termined helical structure (Kamiya et al. 2007), although it
is disordered in water (Ikebe et al. 2007a). The free-energy
landscape was funnel-like above 325 K, where the funnel
bottom corresponded to the experimental structure, and the
landscape transitioned abruptly to a rugged one below
325 K. This work might have captured a general property

of the temperature-induced structural transition exhibited by
many peptides/proteins. The effect of solvent on the poly-
peptide conformation is an interesting issue in biophysics. A
24-residue peptide, humanin, is disordered in water and
adopts a helical structure in the TFE/water co-solvent. We
performed McMD simulations of this peptide in both sol-
vents (Yagisawa et al. 2008). The results obtained showed
good agreement with the experiment in which we discussed
details of the interactions among the peptide, TFE, and
water. McMD simulation of a 40-residue protein, the C-
terminal domain of H-NS, in explicit water has also ben
performed (Ikebe et al. 2007b). This small protein consists
of « and {3 secondary-structure elements in the native struc-
ture. The obtained conformational ensemble involved a
small cluster, which corresponded to the native structure,
and a large cluster, where half of the protein (helical region)
folded well to the native structure but the other half (3
region) adopted a distorted (3-hairpin. Analyses showed that
the two regions were incorrectly packed together. The anal-
yses also suggested that the force field might not be suffi-
ciently accurate. Nevertheless, the existence of the small
native-like cluster was encouraging because the McMD
approach proved to be powerful for the protein. It is likely
that the small cluster grows as the largest cluster if an
accurate force field is used.

Based on those studies, we proceeded to a 57-residue
protein, the first repeat of human glutamyl-prolyl-tRNA
synthetase (EPRS-R1), surrounded by an explicit solvent
(Ikebe et al. 2011b). This protein comprises two long helices
adopting a helix—hairpin fold in its native NMR structure
(Jeong et al. 2000). The force field was set carefully so that
it prefers either a « or (3 secondary structure depending on
the sequence (Kamiya et al. 2005), although EPRS-R1 is the
helical protein. Starting from a fully extended conformation,
the McMD simulation produced conformational ensembles
at several temperatures. The protein was disordered at a high
temperature (600 K for instance). In contrast, the ensemble
at 300 K was characterized by two helical regions, which
corresponded to those observed in the NMR structure. This
room temperature ensemble was subjected to a structure
clustering, resulting in 20 clusters. Importantly, the largest
cluster (lowest free-energy cluster) showed the most native-
like structure of all clusters. Subsequent analyses revealed
that the hydrophobic core formation between the two helical
regions drives the conformation toward the native fold with
exclusion of water molecules from the protein interior.

The McMD simulation was used to study protein—ligand
flexible docking. The first application was done on the
binding of a short proline-rich peptide to a Src homology
3 (SH3) domain (Nakajima et al. 1997a). Although the
protein and ligand were put into a vacuum, a conformational
cluster corresponded to the native complex. In the flexible
docking of lysozyme and its inhibitor in explicit solvent, a
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number of different clusters were obtained (Kamiya et al.
2008). Importantly, the largest cluster (lowest free-energy
cluster) corresponded to the native complex form, and the
native cluster was discriminated from the other minor clus-
ters by a free-energy barrier.

The McMD simulation was applied on an IDP system
consisting of a 15-residue IDP segment (NRSF/REST) and
its receptor protein mSin3 (Higo et al. 2011). Its native
complex structure was resolved through an nuclear magnet-
ic resonance experiment in which NRSF/REST adopts a
helix when it binds to the deep binding cleft of mSin3
(Nomura et al. 2005). Starting from a conformation where
NRSF/REST was disordered and apart from the receptor in
explicit solvent, an ensemble at 300 K was obtained. The
free-energy landscape revealed that NRSF/REST can bind to
mSin3, adopting various conformations, with cluster analy-
sis showing that the largest is the native-complex cluster.
The other minor clusters are non-native ones. In the non-
native clusters, NRSF/REST adopts bent or extended struc-
tures in the binding cleft of mSin3, with some of these
adopting the opposite orientation against NRSF/REST in
the native complex. The free-energy landscape exhibited
two free-energy barriers. Analyses have shown that NRSF/
REST changes the chain orientation or the end-to-end dis-
tance to overcome free-energy barriers. Additional McMD
simulations of single-chain NRSF/REST have revealed that
NRSF/REST is disordered in solution and that the various
conformations in the complex state also appear in this free
state. Therefore, NRSF/REST is highly flexible in both the
complex and free states. We have proposed a mecha-
nism for this system in which the coupled folding and
binding is achieved through coupling of the population shift
(Bosshard 2001; Yamane et al. 2010) and induced folding
(Monod et al. 1965; Spolar and Record 1994).

Conclusion

With the rapidly increasing capabilities of computers, the
study of the conformational sampling of large biological
systems is becoming important. In this context, the enhance-
ment of sampling is of crucial importance in the exploration
of the energy surface with statistical significance,. In this
article, we have explained the methodology of multicanon-
ical and AU sampling methods, which are categorized in
generalized ensemble methods. These methods directly con-
trol the probability distribution and indirectly control the
transition probability (rate constant) among different states.
Studies of various biophysical systems, expressed as all-
atom models, were reported here. The results show that
enhanced sampling might slow the large motions of the
system, even when the enhancement is performed fairly,
because the entropy largely varies at a position of the
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reaction coordinate. We have demonstrated that the loosen-
ing of the large entropy change drastically enhances the
sampling.
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