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ABSTRACT
Chibby 1 (CBY1) is a small and evolutionarily conserved protein, which act as 

β-catenin antagonist. CBY1 is encoded by C22orf2 (22q13.1) Its antagonistic function 
on β-catenin involves the direct interaction with:

The C-terminal activation domain of β-catenin, which hinders β-catenin binding 
with Tcf/Lef transcription factors hence repressing β-catenin transcriptional 
activation.

14-3-3 scaffolding proteins (σ or ξ), which drive CBY1 nuclear export into a stable 
tripartite complex with β-catenin. 

The relative proximity of C22orf2 gene encoding for CBY1 to the BCR breakpoint 
on chromosome 22q11, whose translocation and rearrangement with the c-ABL 
is the causative event of chronic myeloid leukemia (CML), suggested that gene 
haploinsufficiency may play a role in the disease pathogenesis and progression. 
We found CBY1 down-modulation associated with the BCR-ABL1, promoted by 
transcriptional mechanisms (promoter hyper-methylation) and post-transcriptional 
events, addressing the protein towards proteasome-dependent degradation through 
SUMOylation. CBY1 reduced expression in clonal progenitors and, more importantly, 
in leukemic stem cells (LSC), is contingent upon the tyrosine kinase (TK) activity 
of BCR-ABL1 fusion protein. Accordingly, its induction by Imatinib (IM) and second 
generation TK inhibitors contributes to β-catenin inactivation through multiple events 
encompassing the activation of endoplasmic reticulum (ER) stress-associated unfolded 
protein response (UPR) and autophagy, eventually leading to apoptotic death. These 
findings support the advantage of combined regimens including drugs targeting DNA 
epigenetics and/or proteasome to eradicate the BCR-ABL1+ hematopoiesis.

INTRODUCTION

The “hierarchal clustering” model of tumors 
posits the key role of cancer stem cells (CSC), a pool 
of relatively quiescent cells otherwise named tumor 
initiating cells (TIC), in carcinogenesis. In this context, 
no tumor can be cured until the CSC pool has been 
eradicated. As the normal counterpart, CSC display self-
renewal, express telomerase and activate anti-apoptotic 
and multi-drug resistance pathways [1]. The availability 
of in vitro culture techniques since the pioneering work 

of Till and McCulloch and the exhaustive phenotypic 
characterization of myeloid progenitor cells at different 
differentiation levels let define the ontogenesis of 
normal and transformed hematopoiesis [2, 3]. Finally, 
identification of the causative event of CML as the BCR-
ABL1 fusion protein TK let distinguish LSC from normal 
HSC, hence providing a host of information on signals 
involved in self-renewal, proliferation and life expectancy 
associated with leukemic transformation [4]. The most 
significant trait of CML LSC is BCR-ABL1 independence, 
which makes them autonomous from the fusion protein 
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TK for proliferation and survival and drives their 
resistance to TK inhibitors IM, Nilotinib and Dasatinib, 
hence providing a sanctuary for the disease relapse upon 
drug withdrawal and a putative source of drug-resistance 
[5]. Pro-survival signaling pathways of BCR-ABL1+ LSC 
have therefore attracted great interest in view of their use 
as pharmacological targets. 

b-catenin is a central component of BCR-ABL1+ 
LSC self-renewal and microenvironment protection from 
TK inhibitors [6–9]. β-Catenin activation in CML is mostly 
contingent upon mechanisms hampering its degradation, 
including BCR-ABL1-mediated phosphorylation at specific 
tyrosine residues (Y86 and Y654), which prevents the 
recruitment by the adenomatous polyposis coli (APC)/
Axin/glycogen synthase kinase 3 β (GSK3 β) destruction 
complex, the overexpression of growth arrest specific 2 
(GAS2), which reduces calpain-dependent degradation, 
and GSK3β inactivation due to the prevalence of a GSK3β 
mis-spliced isoform unable to phosphorylate β-catenin and/
or to GSK3β de-phosphorylation by the Fas-associated 
phosphatase 1 (Fap1) [10–13]. The prerequisite of β-catenin 
transcriptional activity is nuclear import and interaction 
with transcription factors of the TCF/LEF1 family and 
additional co-factors, such as B-cell lymphoma 9 (BCL9), 
cyclic AMP response element binding protein (CBP) and 
pygopus to regulate a series of target genes [14]. β-catenin 
nuclear transport is mediated by direct contact with the 
nuclear pore and regulated by phopshorylation and binding 
partners, including Forkhead box M1 (FOXM1), insulin 
receptor substrate (IRS-1), mucin 1 (MUC-1), BCL9, 
androgen receptor and LEF-1 [14]. Our review will be 
focused on the β-catenin antagonist CBY1. 

CBY is a 14.5 kDa protein highly conserved 
throughout evolution. It directly interacts with the 
C-terminal activation domain of b catenin and competes 
with TCF/LEF factors for b catenin binding hence 
repressing its transcriptional activity [15]. Moreover, 
it forms a stable tripartite complex with 14-3-3z and b 
catenin hence promoting the b catenin nuclear exclusion 
and cytoplasmic compartmentalization [16, 17]. 

CBY1 participation in the constitutive activation 
of β-catenin in CML was suggested by our recent study 
showing that a significant reduction in CBY1 expression 
levels is associated with BCR-ABL1 and correlates with 
nuclear b catenin increment [18]. The relative proximity of 
C22orf2 gene encoding for CBY1 to the BCR breakpoint 
on chromosome 22q11 as a consequence of deletions of 
distal BCR sequences occurring at the time of Philadelphia 
translocation suggested the gene haploinsufficiency 
eventually associated with disease worse prognosis [19]. 
Indeed, fluorescent in situ hybridization (FISH) did not 
let any evidence of C22orf2 loss associated with CML 
more advanced stage or worse prognosis. Conversely, 
we observed CBY1 down-modulation, driven by 
transcriptional and post-transcriptional mechanisms and 
evoked by the constitutive TK activity of BCR-ABL1 

fusion protein. CBY1 induction in BCR-ABL1+ cell 
response to TK inhibitors triggers a series of events, 
including activation of the unfolded protein response 
(UPR) and autophagy eventually leading to selective 
leukemic cell death [20, 21]. Targeting signals involved 
in CBY1 down-modulation in CML may be, therefore, 
advanced as a complementary strategy to eradicate clonal 
hematopoiesis.

CBY1 DOWN-MODULATION ASSOCIATED 
WITH BCR-ABL1 TK CONTRIBUTES TO 
β-CATENIN ACTIVATION IN LEUKEMIC 
HEMATOPOIESIS

CBY1 is a small conserved antagonist of β-catenin. 
It is encoded by the C22orf2 gene at chromosome 22q13.1, 
downstream of BCR cluster region (22q11) involved in the 
t [9, 22] translocation [22]. CBY1 antagonistic function 
on β-catenin encompasses its direct interaction with the 
C-terminal activation domain of β-catenin (which hinders 
β-catenin binding with TCF/LEF transcription factors 
hence repressing β-catenin transcriptional activation) 
and 14-3-3 scaffolding proteins (s or z, which drives 
CBY1 nuclear export into a stable tripartite complex 
with β-catenin) [15–17]. Accordingly, CBY1 “loss of 
function” has been involved in the pathogenesis of some 
types of cancers, such as colon carcinomas and pediatric 
ependymomas [23, 24]. Due to the relative proximity of 
C22orf2 [22q13.1] to the breakpoint cluster region on 
BCR (22q11) we first investigated whether C22orf2 haplo-
insufficiency, originated by deletion(s) downstream of 
BCR sequences as a result of the t(9, 22) translocation, was 
correlated with CML prognosis [22]. However, fluorescent 
in situ hybridization (FISH) established that the full length 
C22orf2 gene follows BCR sequences in CML myeloid 
progenitors, and relocates to the derivative chromosome 
9 (der(9q)) in patients with the typical translocation  
t [9, 22] [q34;q11] or to the second fusion gene in patients 
with variant translocations [18, 19]. Still, CBY1 expression 
is reduced in hematopoietic progenitors of CML patients 
at clinical diagnosis compared to healthy donors and 
further lowered in the LSC (CD34+) compartment, 
where β-catenin provides a key signal for proliferation 
and survival [8]. Restored expression of CBY1 in CML 
patients at the time of complete or major molecular 
response during treatment with TK inhibitors (when 
the whole or major part of hematopoiesis is the normal, 
BCR-ABL1- one) supports CBY1 down-modulation as 
a trait of leukemic clone. Lack of correlation between 
CBY1 expression, disease prognosis and response 
to TK inhibitors seems to exclude its involvement in 
the disease progression [18]. Further investigation let 
establish the dependency of CBY1 down-modulation 
from BCR-ABL1 TK. The fusion protein inhibition in 
response to IM induced, in fact, CYB1 expression, 
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which, in turn, abolished the leukemic clone growth 
and survival advantage through events proceeding from 
β-catenin nuclear export and degradation in the cytoplasm, 
activation of ER stress-associated pathway known as 
UPR, which leads to apoptotic death, and induction of 
an autophagic pathway, which addresses β-catenin to 
proteasome-independent degradation [20, 21, 25]. 

CBY1 down-modulation associated with BCR-ABL1 
TK is driven by multiple events, including transcriptional 
mechanisms, caused by the gene promoter hyper-methylation, 
and post-transcriptional modifications involved in the 
ubiquitin-mediated degradation by proteasome [15–17]. 

CBY1 DOWN-MODULATION ASSOCIATED 
WITH BCR-ABL1 IS MEDIATED BY GENE 
PROMOTER HYPERMETHYLATION AND 
PROTEIN INSTABILITY

DNA methylation consists in the attachment of 
methyl groups (CH3) at the 5′ carbon position of the 
cytosine ring. It predominantly occurs at high density CpG 
regions named CpG islands, which cover the transcriptional 
initiation sites of approximately 70% of annotated gene 
promoters [26]. It is promoted by a family of enzymes, the 
DNA methyltransferases (DNMTs, encompassing the de 
novo methyltransferases DNMT3a and DNMT3b and the 
maintenance methyltransferase DNMT1), which catalyze 
CH3 group transfer to establish a permissive landscape 
for methyl-binding (MBD) proteins, such as MeCP2, 
MBD1, MBD2 and MBD4, involved in transcriptional 
repression [27]. Indeed, DNA hyper-methylation is a 
critical epigenetic mechanism for transcriptional silencing 
of genes involved in cancer development and progression, 
including those controlling DNA repair, cell cycle, cell 
adhesion, apoptosis and angiogenesis. Accordingly, it 
may be considered as a second hit in the Knudson’s two-
hit model of cellular transformation [28]. From a clinical 
perspective, such integrated view into cancer genomics 
might improve the therapeutic approach through DNA de-
methylating agents. DNA hyper-methylation is a common 
event in CML and affects multiple genes [29]. We found 
that enhanced recruitment of DNMT1 at the C22orf2 
promoter is a component of CBY1 down-modulation 
in CML hematopoietic progenitors and LSC, hence 
suggesting the putative advantage of DNA-demethylating 
drugs, such as 5-Aza-CdR (also referred to as decitabine), 
in the disease therapy [30]. 

The reduction of protein stability is a further 
mechanism driving CBY1 down-modulation in CML. 
As CBY1 reduced transcription, the protein instability 
is mediated by BCR-ABL1 TK activity through events 
affecting CBY1 binding with 14-3-3. Those events 
includes phosphorylation by AKT at a critical residue 
of CBY1 (serine 20) for 14-3-3 binding and the 
impaired phosphorylation at a 14-3-3 residue (serine 

186) by c-Jun N-terminal kinase (JNK) [17, 20]. The 
enhanced degradation of CBY1 is driven by the ubiquitin 
proteasome system (UPS) through a complex and tightly 
controlled process encompassing the covalent attachment 
of K48-linked polyubiquitin chain to flag target proteins 
for degradation through the 26S proteasome [31]. In 
particular, a post-translational modification which 
utilizes small ubiquitin-like modifier (SUMO) groups 
to covalently attach target substrates and promote their 
ubiquitination and degradation has been involved in CBY1 
increased degradation associated with BCR-ABL1 [17, 
32]. These findings suggest that inhibitors of AKT/mTOR 
axis, 14-3-3 binding or proteasome have the potential 
to attenuate β-catenin signalling and may be, therefore, 
tested for clinical use. Notably, pilot studies support 
the synergistic effects of proteasome inhibitors and TK 
inhibitors on BCR-ABL1+ cells, including LSC [33, 34].

CBY1 INDUCTION IN BCR-ABL1+ CELLS 
ACTIVATES UPR AND TRIGGERS THE 
EXECUTION PHASE OF APOPTOSIS

b-catenin nuclear exclusion and transcriptional 
inactivation is the major consequence of CBY1 enforced 
expression following C22orf2 stable transfection and 
CBY1 induction in response to IM in BCR-ABL1+ cells 
[18]. In such a cell context, as in other cell types, CBY1-
driven cytoplasmic re-location of β-catenin activates UPR, 
which, in turn, induced the BCL2-interacting mediator 
of cell death (BIM), hence contributing to the execution 
phase of apoptotic death [20]. 

UPR is a homeostatic signaling network that 
transduces information about the protein-folding status 
in the ER lumen to buffer fluctuations in the unfolded 
protein load and let the recovery of ER function. 
Under physiological conditions it acts as an adaptive 
mechanism to promote cell survival, while under high-
level or chronic ER stress, it becomes overshadowed by 
alternative signals which commit cells to degeneration 
and culminate in apoptosis [35]. UPR occurs via three 
mechanisms: i) reduced translation of misfolded proteins, 
ii) enhanced translation of ER chaperones and iii) ER-
associated degradation (ERAD) of misfolded proteins, 
which are transferred from the ER to  the cytoplasm 
for subsequent ubiquitination and degradation by the 
26S proteasome. UPR is triggered by the activation 
of three trans-membrane ER proteins: pancreatic ER 
kinase (PERK), inositol-requiring enzyme 1a (IRE1a) 
and activating transcription factor 6 (ATF6), whose 
oligomerization at the ER luminal domain activates 
downstream activities, to transduce life or death signals 
[36]. We proved that CBY1 enforced expression as 
well as its induction in response to IM activate PERK 
and IRE1a, which, in turn, trigger specific transcription 
factors to up-regulate their target genes. Activated PERK 
phosphorylates the eukaryotic translation initiator factor 
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2a (eIF2a) to slow down mRNA translation and protein 
synthesis [37]. Moreover, it allows selective translation 
of the activating translation factor 4 (ATF4) to induce 
transcription of the C/EBP-homologous protein (CHOP, 
otherwise termed GADD153), which inhibits expression 
of the anti-apoptotic BCL-2 to hasten cell death [38]. 
More importantly, CHOP induces transcription of BIM, 
a crucial tumor suppressor gene for CML response to IM 
[39, 40]. BIM participates in the death signal transmission 
from ER to mitochondria, hence contributing to the 
execution phase of apoptosis through the activation of ER 
resident caspase 12 [40]. Finally, CHOP induction inhibits 
β-catenin/TCF-dependent transcriptional activation and 

may, therefore, contribute to cyclin D1 reduction to 
promote BCR-ABL1+ cell growth arrest [41]. Still, the 
role of UPR in the survival of CML progenitors and LSC 
is elusive. Three recently published studies established 
the pro-survival effects of UPR on BCR-ABL1+ cells, 
hence raising the question of the fusion protein impact on 
individual UPR branches [42–44]. Further investigation is 
required, in particular, to elucidate the misfolded nature of 
BCR-ABL1 protein, whether and how its expression and 
phosphorylation levels are involved in UPR activation, 
and the participation of BCR-ABL1 downstream targets, 
such as JNK and AKT, in the induction of UPR sensors 
and effectors [36].

Figure 1: CBY1 down-modulation associated with BCR-ABL1 TK promotes β-catenin retention in the nucleus and 
its transcriptional activation. It is driven by transcriptional and post-transcriptional events involving DNA hyper-methylation and 
protein enhanced degradation. Through its effects on β-catenin sub-cellular localization, CBY1 impacts UPR and autophagy in clonal 
hematopoietic progenitors.
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CBY1-INDUCED AUTOPHAGY 
PARTICIPATES IN BCR-ABL1+ CELL 
COMMITMENT TO APOPTOTIC DEATH

Autophagy is a further consequence of CBY1 
enforced expression and induction in response to IM in 
BCR-ABL1+ cells [21]. Autophagy is a self-catabolic 
process wherein bulk cytoplasmatic components such 
as aggregated/misfolded proteins and organelles are 
sequestered within double- or multi-membrane vesicles 
(autophagosomes) and then delivered to lysosomes 
for degradation. It may either serve as a cell death 
mechanism (otherwise named type II programmed 
cell death) or play a pro-survival role as part of an 
adaptive and detoxifying process in response to sub-
lethal stress such as starvation, hypoxia, heat shock 
and microbial pathogens, and contingent upon the cell 
context and oncogenic status [45, 46]. In BCR-ABL1+ 
cells autophagy has been regarded as a complementary 
pathway to apoptotic cell death response to IM and other 
TK inhibitors proceeding from ER stress and ER Ca2+ 
store mobilization [47, 48]. More recently, autophagy 
has been implicated in normal and cancer stem cell 
self-renewal and survival in the low-oxygen “niche” 
of bone marrow microenvironment as well as in their 
quiescence through the m-TOR complex 1 (m-TORC1)-
mitochondria-reactive oxygen species (ROS) axis. 
Moreover, it protects BCR-ABL1+ LSC from the lethal 
effects of TK inhibitors, hence contributing to the 
disease persistence. Indeed, cells expressing the BCR-
ABL1 rearranged gene of CML exhibit low basal levels 
of autophagy, but are highly dependent on autophagy for 
response to stress and leukemia induction in allograft 
models [49–52]. In a recently published study we 
showed that the autophagic phenotype originated in 
BCR-ABL1+ cells by the elevation of free Ca2+ release 
from ER stores in response to IM generates a 28 kDa 
cleaved calpain fragment which, in turn, promotes 
the cleavage of the ER-resident caspase 12 into a 42 
kDa fragment corresponding to its activated isoform 
hence contributing to apoptosis commitment shown in 
a previously published study [21]. Notably, β-catenin 
is a calpain target [53]. Accordingly, its decrease 
following CBY1 induction in response to IM may be 
partly mediated by calpain activation and autolysosomal 
clearance upon autophagy induction [54]. It is worth to 
mention the calpain-mediated cleavage of β-catenin 
accumulated within the cytoplasmic compartment 
into a 75 kDa fragment still owning TCF-dependent 
transcriptional activity [55, 56]. Such β-catenin fragment 
may be regarded as the putative mediator of autophagy 
pro-survival effects in BCR-ABL1+ cells following IM 
treatment. Further investigation is required to identify 
signals directing autophagy impact on cell decision 
between life and death in a BCR-ABL1+ cell context. 

CONCLUSIONS

Here we report of a new component of β-catenin 
network in CML (Figure 1). CBY1 down-modulation 
associated with BCR-ABL1 TK promotes β-catenin retention 
within the nuclear compartment and transcriptional 
activation. It is driven by transcriptional and post-
transcriptional events involving DNA hyper-methylation 
and protein enhanced degradation. Through its effects on 
β-catenin sub-cellular partitioning, CBY1 impacts UPR and 
autophagy in clonal hematopoietic progenitors and, more 
importantly, in LSC. The activation of UPR and autophagy 
may have a role in the balance between life and death of 
BCR-ABL1+ cells in response to TK inhibitors.
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