
RESEARCH ARTICLE

Agricultural and geographic factors shaped

the North American 2015 highly pathogenic

avian influenza H5N2 outbreak

Joseph T. HicksID
1*, Dong-Hun Lee2, Venkata R. DuvvuriID

1, Mia Kim Torchetti3, David

E. SwayneID
4, Justin BahlID

1,5*

1 Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Ecology and

Biostatistics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America,

2 Department of Pathobiology and Veterinary Science, the University of Connecticut, Storrs, Connecticut,

United States of America, 3 U.S. Department of Agriculture, Ames, Iowa, United States of America, 4 Exotic

and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural

Research Service, U.S. Department of Agriculture, Athens, Georgia, United States of America, 5 Duke-NUS

Graduate Medical School, Singapore

* joseph.hicks@uga.edu (JTH); justin.bahl@uga.edu (JB)

Abstract

The 2014–2015 highly pathogenic avian influenza (HPAI) H5NX outbreak represents the

largest and most expensive HPAI outbreak in the United States to date. Despite extensive

traditional and molecular epidemiological studies, factors associated with the spread of

HPAI among midwestern poultry premises remain unclear. To better understand the dynam-

ics of this outbreak, 182 full genome HPAI H5N2 sequences isolated from commercial layer

chicken and turkey production premises were analyzed using evolutionary models able to

accommodate epidemiological and geographic information. Epidemiological compartmental

models embedded in a phylogenetic framework provided evidence that poultry type acted

as a barrier to the transmission of virus among midwestern poultry farms. Furthermore, after

initial introduction, the propagation of HPAI cases was self-sustainable within the commer-

cial poultry industries. Discrete trait diffusion models indicated that within state viral transi-

tions occurred more frequently than inter-state transitions. Distance and sample size were

very strongly supported as associated with viral transition between county groups (Bayes

Factor > 30.0). Together these findings indicate that the different types of midwestern poul-

try industries were not a single homogenous population, but rather, the outbreak was

shaped by poultry industries and geographic factors.

Author summary

The highly pathogenic avian influenza outbreak among poultry farms in the midwestern

United States appears to be influenced by agricultural and geographic factors. After initial

introduction of the virus into the poultry industries, no further introductions (such as

from a wild bird reservoir) were necessary to explain the continuation of the outbreak

from March to June 2015. Additionally, evidence suggests that proximity increases the
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chances of viral movement between two locations. While many theories have been pro-

posed to explain the transmission of virus among poultry farms, presented evidence sug-

gests human-mediated viral transportation played a key role in the spread of the highly

pathogenic H5N2 outbreak in North America.

Introduction

In 2014, a novel reassortant highly pathogenic avian influenza (HPAI) H5N8 virus of the hem-

agglutinin (HA) clade 2.3.4.4 was identified in South Korean poultry and wild birds and

quickly spread to other Asian countries and Europe [1–3]. By the end of 2014, both the Eur-

asian H5N8 virus and its North American H5N2 reassortant were reported in western Canada

and the United States [4–6]. The ensuing 2014–2015 North American HPAI outbreak marked

the largest and most expensive HPAI outbreak in the United States to date [7]. In late Novem-

ber 2014, commercial poultry flocks in British Columbia, Canada were reported to be infected

with the novel reassortant HPAI H5N2 [5], soon followed by HPAI H5N8 isolation within

wild birds in the United States Pacific Northwest [4]. Over the next several months, sporadic

infections arose in wild and domestic birds, including both commercial production and back-

yard poultry operations. In March 2015, a drastic increase of HPAI H5N2 cases was observed

within domestic poultry in the Midwestern United States. By the end of the outbreak in June

2015, over 50.4 million poultry died or were culled due to the outbreak, costing the US govern-

ment over $850 million, the poultry industries an estimated $700 million to $1 billion and had

a negative $3.3 billion impact on the economy [7–9].

Risk factors that explain the continued transmission of HPAI between domestic poultry

facilities remain unclear. For instance, previous analyses have provided conflicting evidence as

to the role of wild birds in the propagation of the outbreak within the midwestern poultry

industries. Despite frequent reports of wild birds on the grounds and within barns of HPAI-

positive turkey premises [10], a case-control study found no significant difference in exposure

to wild birds between positive turkey premises and matched controls [11]. Similarly, one phy-

lodynamic analysis found no evidence of continued HPAI introductions into the midwestern

poultry industries [12], but others have suggested multiple introductions [13,14]. Geographic

and environmental variables, such as human population, agricultural, climatological, and eco-

logical measures, may help explain farm-to-farm transmission observed within the poultry

industries. For example, proximity between midwestern poultry premises has been implicated

as an important risk factor for HPAI infection [11,13]. Although it has been suggested that

poultry production type did not affect outbreak transmission [12], this has not been formally

tested. Despite extensive molecular epidemiological studies, such environmental and ecologi-

cal covariates of viral spread during this outbreak have not been formally investigated while

accounting for epidemiological linkage.

Direct epidemiological links between most poultry premises are difficult to establish with

traditional epidemiological approaches [15], limiting the ability to investigate risk factors that

facilitated HPAI transmission among poultry farms. The incorporation of pathogen genetic

sequence data into epidemiological investigations can elucidate network connections between

infectious entities, be that individual hosts or populations, such as poultry farms. One

approach is viral phylodynamic modeling, ie. the integration of epidemiological and evolution-

ary models to explore viral ecological dynamics. Based on the assumption that viral epidemiol-

ogy and evolution occur on the same time scale, viral phylodynamic modeling can reveal

underlying epidemiological patterns. Recent incorporation of generalized linear models

Agricultural and geographic factors of the 2015 HPAI US outbreak
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(GLM), a family of commonly used regression methods, into Bayesian phylogenetic frame-

works have enabled investigation into the impact of ecological factors on the diffusion of viral

pathogens among discrete geographic regions [16,17]. This is in contrast to continuous trait

phylogeographic modeling, which can also model environmental impacts on viral spread,

given location data is continuously distributed (i.e., latitude and longitude coordinates) [18–

20]. Through such approaches, factors associated with HPAI movement within United States

poultry industries might be identified, informing future control efforts.

In this study, we integrated epidemiological and ecological parameters with genomic

sequence data collected contemporaneously with the midwestern poultry industries HPAI out-

break to formally test outstanding hypotheses. Whole genome HPAI H5N2 sequence data iso-

lated from layer chicken and turkey premises were analyzed using evolutionary model-based

techniques. First, we utilized epidemiological compartmental population models to test the

importance of poultry sector divisions (i.e. layer chicken vs turkey industries) and external

viral introductions from an unsampled avian population in the propagation of the outbreak.

Second, we evaluated ecological predictors of geographic diffusion of virus among midwestern

counties to help identify environmental and human variables associated with viral transmis-

sion. Together, these analyses use information that accumulated within the HPAI H5N2

genome during the outbreak to help decipher higher-order patterns of viral dispersal among

commercial poultry farms.

Results

HPAI H5N2 evolution among domestic poultry

182 full genome HPAI H5N2 genetic sequences, each representing a single commercial poultry

farm operation across 49 counties in six states (Iowa, Minnesota, Nebraska, North Dakota,

South Dakota, and Wisconsin), were included in the present analysis. The sequences were iso-

lated from samples collected between March 25 and June 15, 2015 from positive turkey prem-

ises (72.5%) and layer chicken farms (27.5%). Based on the visual comparison of maximum

likelihood phylogenetic trees of each gene segment and a recombination evaluation of the

concatenated sequence data set using RDP4 [21], no evidence of reassortment was present

within the concatenated whole genome sequence data set. A root-to-tip regression based on a

preliminary maximum likelihood tree revealed the presence of a temporal signal within the

sequence data set (R = 0.72, x-intercept = 2015.03; S1 Fig). Two molecular clock assumptions

and three “traditional” coalescent models (i.e., constant population, exponential growth, and

extended Bayesian skyline plot [EBSP]) were compared with marginal likelihood estimation

(MLE) to evaluate the underlying population and evolutionary dynamics of the 2015 HPAI

outbreak. The flexible EBSP coalescent with a strict molecular clock assumption had the best

fit for the included sequence data (log(BF) = 4.45, compared with the next best fitting model,

EBSP coalescent with a relaxed molecular clock; Fig 1A). Under the strict molecular clock and

EBSP coalescent model, the estimated TMRCA was March 1, 2015 (95% HPD: February 16 to

March 10, 2015; Fig 1C).

HPAI H5N2 host dispersion and population dynamics

To explore the extent of viral dispersal between poultry industries, multiple phylogeographic

methods were performed: the structured coalescent, the discrete trait diffusion model, and epi-

demiologic compartmental model-based coalescent. Each of these methods estimate a different

approximation for the dispersal of virus between populations. The structured coalescent treats

layer chicken premises and turkey premises as separate population demes between which virus

was allowed to “migrate,” and thus estimates a migration rate between the two demes. In

Agricultural and geographic factors of the 2015 HPAI US outbreak
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contrast, discrete trait diffusion models treat the trait of interest (here, poultry industry) as a

characteristic that evolves over time, inferring a transition rate, analogous to a nucleotide sub-

stitution model. Finally, compartmental models enable the calculation of transmission rates
between the two poultry compartments. Although all approximate the amount of viral dis-

persal among the poultry industries, each measure is calculated differently with unique

assumptions and so are referred to by a particular term. All methods estimated that viral dis-

persal from layer chicken premises to turkey premises occurred more frequently than from

turkey premises to layer chicken (S1 Table). In the structured coalescent, the migration rate

from layer chicken to turkey premises was much greater than the reverse (migration rate from

chickens to turkeys: 12.6, 95% HPD: 6.2–18.7; migration rate from turkeys to chickens: 0.7,

95% HPD: 0.00001–2.2). The transition rates between the poultry industries estimated from

the discrete trait diffusion model were much more similar to each other (transition rate from

chickens to turkeys: 1.4, 95% HPD: 0.04–3.9; transition rate from turkeys to chickens: 0.3, 95%

HPD: 0.003–0.9). These models suggest the dispersion of virus between poultry industries was

not symmetrical, potentially indicating poultry type played a role in the outbreak dynamics.

Fig 1. Evolutionary history of HPAI H5N2 isolated from commercial poultry premises, 2015. (A) Bayes factor (BF) tests between molecular

clock and coalescent evolutionary models. For each coalescent model (exponential growth [Expo] and extended Bayesian skyline plot [EBSP]), BF

was calculated using the constant coalescent model as reference (Const, indicated with asterisk) under the same molecular clock model. Two

horizontal gray reference lines denote log(BF) = 1 and log(BF) = 5, which represent support and very strong support, respectively, for improved fit

over the reference. (B) Molecular clock rate (substitutions per site per year) comparison between molecular clock and coalescent evolutionary

models. (C) The estimated time of the most recent common ancestor (TMRCA; decimal year) compared between molecular clock and coalescent

evolutionary models. (D) Maximum clade credibility tree representing the ancestral reconstruction of poultry industry (layer chicken vs. turkey)

across the evolutionary history of the outbreak. The ancestral reconstruction assumed an EBSP coalescent and strict molecular clock evolutionary

model. Tree branches are colored based on the most probable poultry industry of the descendant node. Thin gray node bars represent the 95%

highest posterior density (HPD) of the node height (i.e., the time at which that ancestor is estimated to have existed).

https://doi.org/10.1371/journal.ppat.1007857.g001
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To formally test this hypothesis, we used epidemiological compartmental model equations

to describe the coalescent process [22]. Four competing scenarios were constructed (Fig 2A, S1

Text). Models 1 and 2 described a homogenous poultry population that differed by the pres-

ence of a continuous external viral source in Model 2. In contrast, Models 3 and 4 described a

host population stratified by poultry production system, again differing based on an external

viral source in Model 4. It should be noted that due to the sampling scheme of genetic

sequences (one HPAI whole genome sequence per infected premises), the epidemiologic unit

Fig 2. Comparison of hypothesized HPAI H5N2 epidemiological compartmental models. (A) Each compartmental

model represents a Susceptible-Infectious-Removed (SIR) model with varied population heterogeneity: 1) a single,

closed, homogenous population, 2) a single, homogenous population with a continual external source of virus (U), 3) a

closed population, stratified by poultry system (turkeys (T) and layer chickens (C)), and 4) the stratified population

with a continual external source of virus. (B) Compartmental model fit for the midwestern highly pathogenic avian

influenza (HPAI) H5N2 outbreak, 2015. Akaike’s information criteria for Markov chain Monte Carlo (AICM)

calculated based on the posterior distribution of the structured tree likelihood was used to evaluate the relative model

fit for the four assessed compartmental models under differing molecular clock assumptions. Under both molecular

clocks, Model 3 provided the best model fit. (C) Estimated infectious period of layer chicken and turkey farms during

the 2015 midwestern highly pathogenic avian influenza (HPAI) H5N2 outbreak. During model specification, an

informative prior was provided for the Bayesian process. This prior probability distribution was based on the reported

average time from HPAI confirmation to depopulation plus 5 days to allow for delay between infection and HPAI

confirmation. Model 3 estimated the infectious period for layer chickens to be longer than expected given the prior

information.

https://doi.org/10.1371/journal.ppat.1007857.g002
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of interest was the premises (or farm), and not the individual bird. That is, findings of the com-

partmental models should be interpreted on the farm-to-farm scale, not the dynamics of trans-

mission between individual birds. Akaike’s information criteria for Markov chain Monte

Carlo (AICM) calculated from the posterior sample of structured tree likelihood estimates

revealed that Model 3 provided the best fit for the data under both strict and relaxed molecular

clock assumptions (AICM under strict clock = 330.1; under relaxed clock = 376.3; Fig 2B, S2

Table). This suggests the midwestern portion of the 2015 HPAI outbreak was isolated from

external sources but most likely structured by poultry production system. Model 4, which

includes parameters that allow for an external unsampled source, estimated an introduction

rate that includes zero, equivalent to Model 3 (ηT 95% HPD 0.0–6.4; ηC 95% HPD 0.0–0.7).

Estimated parameter values for each model are provided in S3 Table. Four transmission rates

were estimated for Model 3 to describe the interaction between the layer chicken and turkey

populations: two within-poultry system rates (βT and βC) and two between-poultry system

rates (βTC and βCT). The model estimated the transmission rates within the turkey production

system to be highest (βT = 11.6, 95%HPD: 2.0–22.0), followed by transmission rates from

chicken farms to turkey farms (βCT = 4.9, 95% HPD: 0.6–9.6). The lowest transmission rate

was estimated from turkey farms to chicken farms (βTC = 0.1, 95% HPD: 0.02–0.22). This is

similar to the results of the structured coalescent model and discrete trait model described

above (S1 Table). Infectious period of a farm also varied substantially between the two produc-

tion systems. A HPAI-positive turkey premises was estimated to remain infectious for 5.7 days

(95% HPD: 4.3–10.5), whereas layer chicken premises were estimated to remain infectious for

32.1 days (95% HPD: 22.4–49.3; Fig 2C).

Ecologic predictors of HPAI H5N2 geographic diffusion

Using the posterior distribution of phylogenetic trees estimated under the EBSP coalescent

and strict molecular clock assumptions, discrete trait diffusion models were estimated to

describe the geographic dispersal of HPAI H5N2 throughout the midwestern United States.

County of origin was used as the basis to categorize the 182 sequences. To capture both geo-

graphic and host information in the discrete trait definition, counties were grouped based on

state and host composition. Counties were composed of only commercial turkey farms, only

commercial layer chicken farms, or a mix of both farm types. In the final categorization, coun-

ties with only commercial layer chicken farms and a mix of farm types were combined to

avoid categories with sparse sequence data, resulting in a total of 10 discrete trait categories (2

to 60 sequences per category). County groups with only turkey cases are henceforth referred to

as turkey-exclusive while county groups with at least one layer chicken case are referred to as

mixed poultry. The complete ancestral reconstruction of the midwestern outbreak is shown in

Fig 3A. The three largest transition rates were observed between county groups within the

same state, particularly Minnesota and Iowa (Fig 3B; S4 Table). The most frequent transitions

occurred from Minnesota mixed poultry counties to Minnesota turkey-exclusive counties

(median rate: 3.3 transitions per year; 95% HPD 0.7–6.4; BF = 490.6) and from Iowan mixed

poultry counties to Iowan turkey-exclusive counties (3.3 transitions per year; 95% HPD 1.4–

5.7; BF = 28,139.6). In Minnesota, the reverse rate (i.e., from turkey-exclusive counties to

mixed poultry counties) was also decisively supported and had a relatively high transition rate

(2.3 transitions per year; 95% HPD: 0.6–4.6; BF = 2,007.1). Three inter-state transitions were

also decisively supported, but less frequent. These transitions were estimated from Iowa

mixed-poultry counties to Minnesota turkey-exclusive counties (0.9 transitions per year; 95%

HPD 0.2–2.2; BF = 14,068.3), from Minnesota turkey-exclusive counties to Wisconsin turkey-

exclusive counties (0.74 transitions per year; 95% HPD 0.1–1.8; BF = 202.3) and from

Agricultural and geographic factors of the 2015 HPAI US outbreak
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Wisconsin turkey-exclusive counties to Iowan mixed-poultry counties (0.9 transitions per

year; 95% HPD 0.01–2.6; BF = 134.8). All supported transition rates (BF> 3.0) were found

either within a state or between states that share borders, except for a single weakly supported

rate from South Dakota turkey counties to Wisconsin mixed poultry counties (0.6 transitions

per year; 95% HPD 0.0002–2.1; BF = 3.2). This suggests geographic distance influences the dis-

persal of HPAI H5N2 among midwestern counties.

As a secondary analysis to examine temporal patterns in viral dispersion among county

groups, the discrete trait diffusion model was divided into two epochs, before and after April

10, 2015. This date represents the midpoint in time between the root of the phylogenetic tree

Fig 3. Discrete trait diffusion model of HPAI H5N2 among midwestern county groups. (A) Maximum clade credibility tree representing the ancestral

reconstruction of county groups across the evolutionary history of the outbreak. The ancestral reconstruction was based on an EBSP coalescent and strict molecular

clock evolutionary model. Tree branches are colored based on the most probable county group of the descendant node. Thin gray node bars represent the 95% highest

posterior density (HPD) of the node height (i.e., the time at which that ancestor is estimated to have existed). (B) Diffusion rate summary among county groups.

County groups were defined based on state and composition of host type within the county. Counties with only turkey cases (turkey exclusive; T) were grouped

separately from counties with at least one layer chicken case (mixed poultry; C). Arrows represent transition rates with strong support (Bayes factor> 10) with arrow

thickness proportional to the magnitude of transition rate. (C) Conditional effect size of environmental and geographic covariates within the generalized linear model

(GLM). Conditional effect size represents the effect size of the variable coefficient given inclusion in the GLM. Supported covariates (Bayes factor> 3) are bolded.

Covariates are ordered by Bayes factor. The dashed gray line represents a conditional effect size of 0, signifying little impact of the covariate on viral dispersal.

https://doi.org/10.1371/journal.ppat.1007857.g003
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and the last branch-point in the evolutionary history of the outbreak. Before April 10, only

four transition rates were statistically supported, all of which originated from turkey-exclusive

county groups, particularly in Minnesota and Wisconsin (S5 Table; S2 Fig). In contrast, after

April 10, of the eight supported transition rates, six originated from mixed county groups. In

the later part of the outbreak, only Iowa and Minnesota counties acted as origins of the virus

to other areas. The sole transition rate supported in both phases of the outbreak was estimated

from Minnesota turkey-exclusive counties to Minnesota mixed poultry counties.

The single-epoch discrete trait diffusion model was extended with a GLM that assessed the

impact of distance and other environmental variables on the transition rates among the

defined county groups. County characteristics for the 9 modeled variables are summarized in

S6 Table. On average, county centers were 266 km apart, ranging from 30 to 862 km. HPAI-

positive counties had a higher density of layer chicken farms (0.02 farms/km2) than turkey

farms (0.004 farms/km2). Counties also had a broad range of human population density rang-

ing from about 1 to 58 people/km2. In addition to the 9 environmental variables, sample size

of the origin and destination county groups was included and compared with a GLM model

that did not adjust for sample size. Only one predictor was statistically supported to be associ-

ated with diffusion of HPAI H5N2 among county groups in both GLM models (Fig 3C, S7

Table, S8 Table). In the sample size-adjusted model, distance between county group centroid

was decisively supported to be negatively associated with transition between two groups (log

conditional effect size = -0.8; 95% HPD -1.0, -0.6; BF = 242,228.2). In other words, viral transi-

tions are less likely between county groups that are separated by a greater distance. Sample size

of the originating county group was decisively supported in the sample-size adjusted model

(log conditional effect size = 1.8; 95% HPD 0.8–3.2; BF = 783.3). While Road density of the ori-

gin county group (log conditional effect size = 1.2; 95% HPD 0.6–1.7; BF = 42.8) and propor-

tion of the destination county group covered with water (log conditional effect size = 0.6; 95%

HPD 0.2–0.9; BF = 3.9) were positively associated with viral dispersion in the non-adjusted

analysis, these associations disappear with the inclusion of sample size. This suggests county

group sample size partially explains viral dispersion observed in the analysis. To assess the

impact of highly correlated environmental characteristics (S3 Fig), the GLM was repeated

removing human density and important bird area (IBA) variables, providing similar results to

the main analysis (S9 Table).

Discussion

Our exploration of population models to describe the 2015 midwestern United States HPAI

H5N2 outbreak provides evidence that upon entering the midwestern poultry industries, the

outbreak was self-sustaining, requiring no further viral introductions from outside sources to

explain the observed epidemiological trajectory. Furthermore, the statistical support for a strat-

ified poultry population suggests that poultry industries should not be considered a homoge-

nous host population for viral pathogens. It should be noted that poultry production system

barriers were not the only observed factors influencing the course of the outbreak within the

midwestern United States. As observed in the discrete trait diffusion models, geographic dis-

tance is associated with viral dispersion among counties, indicating viral movement is not ran-

dom, but rather governed by environmental realities. Furthermore, viral dispersal patterns

among both poultry production systems and geographic regions shifted over time, from an

outbreak predominated by turkey premises in Minnesota to a predominance of infected layer

chicken premises in multiple states.

In our analysis, the EBSP coalescent model had better support than the other traditional

coalescent models in terms of model fit. This is most likely a reflection of EBSP’s flexibility, i.e.

Agricultural and geographic factors of the 2015 HPAI US outbreak
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the piece-wise nature of this method, which facilitates the identification of complex population

changes. Coalescent theory has been a popular technique to infer population demographics

underlying viral outbreaks [23–32]. By relating effective population size to the rate at which

phylogenetic lineages converge backwards in time, the coalescent has become a powerful tool

to infer demographic changes in the face of incomplete sampling. Traditionally, the estimation

of the coalescent process required rigid prior assumptions in the form of simplistic mathemati-

cal growth functions (e.g., constant population size, exponential growth, logistic growth, and

expansion growth). To better reflect biological reality, methods have been developed that

incorporate more flexibility than a one to two parameter mathematical function, such as the

Bayesian skyline, extended Bayesian skyline (EBSP), skyride and skygrid plots [33–36]. For

instance, the EBSP assumes demographic changes follow a smoothed, piece-wise, linear func-

tion whose change points are inferred from the sequence data [35]. To date, mathematical

methods to incorporate population structure into EBSP coalescent models have not been

developed even though population structure has been observed to confound coalescent esti-

mates [37,38].

Despite the flexibility of EBSP, compartmental-based coalescent models are worth assessing

as they allow for direct incorporation and hypothesis testing of specific population structures.

Rather than the non-parametric, piece-wise approach of EBSP, the prior mathematical func-

tions assumed are ordinary differential equations (ODEs) constructed from the specification

of epidemiological compartmental models. It is the parameters of these ODEs that are fit dur-

ing the Markov chain Monte Carlo (MCMC) process. Among the four analyzed compartmen-

tal models, we found that the closed, stratified population provided the best fit for the

sequence data, suggesting layer chickens and turkeys represented two separate host popula-

tions that interacted with each other, but did not receive virus from a continuous external

source. Interestingly, when only observing the single homogenous population models (Models

1 and 2), the inclusion of an external viral source (Model 2) improves model fit compared to

the closed population model (Model 1). Once the population structure of poultry type is

included (Models 3 and 4), the closed population model provides a better fit than that with

continual viral introductions. This observation underlines the importance of including popu-

lation heterogeneity within evolutionary demographic models to explain observed viral diver-

sity and population dynamics.

To help improve the ability to estimate the remaining parameters within the compartmen-

tal model, expected prior distributions for the infectious period of affected premises were spec-

ified based on reported USDA data [7]. Despite the informative assumption, the infectious

period of layer chicken farms was estimated to be longer than expected. In our model, we

assumed a 5-day period between the onset of infectivity of the farm and reporting of HPAI

infection. Delays in the identification and/or reporting of HPAI infection could result in infec-

tious periods that begin well before the assumed 5 days. Continued infectivity beyond the com-

pletion of flock depopulation is another likely contributor to prolonged infectious periods.

Although commercial poultry depopulation occurred on average 6.4 days after National Veter-

inary Services Laboratory (NVSL) HPAI confirmation, premises were not considered to be

virus-free until, on average, 87.7 days following confirmation [7]. In either case, our models

suggest layer chicken farms remained infectious for much longer than turkey farms, poten-

tially explaining why the transmission rate from chicken farms to turkey farms was higher

than its counterpart. In fact, regardless of the model (i.e., structured coalescent, discrete trait

diffusion model, or compartmental model), layer chicken farms played a more central role to

viral transmission than turkey farms during the outbreak. This may seem contradictory to

experimental evidence that demonstrated the HPAI H5N2 virus had longer mean death times

in turkeys (5–6 days) compared to chickens (2–3 days [39]. However, such experimental
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infections only describe transmission information on the individual bird scale, rather than the

farm-to-farm transmission scale captured in this analysis. Although it may be that individual

turkeys survive longer, in practice turkey premises were quicker to be depopulated, resulting

in a shorter farm-level infectious period compared to chicken farms. Because intervention (i.e.

depopulation) was performed on the farm level, individual-level infectious periods alone are

not adequate to describe the overall observed outbreak dynamics.

The implementation of a GLM into a Bayesian discrete trait analysis has been previously

applied to HPAI in China [40] and Egypt [41], providing evidence that environmental, agricul-

tural and anthropogenic factors influence viral movement. Due to differences in social, gov-

ernmental and agricultural systems, the generalization of these previous GLM results to other

countries may not be appropriate. When such phylogeographic methods are applied to the

North American HPAI outbreak among commercial poultry farms, distance is estimated to be

a key factor that influenced the geographic spread of HPAI H5N2 among midwestern counties

in the spring of 2015. A recent spatial modeling analysis revealed that HPAI spread among

Minnesota poultry premises was heavily distance-dependent during the 2015 outbreak [13].

Our results support this claim by providing evidence that the frequency of viral transition

between two locations increases as the distance between locations decreases. Risk of infection

due to proximity can also be observed in our discrete trait diffusion model in which within-

state HPAI spread was much more frequent than inter-state spread. HPAI movement between

states may explain Bonney, et al.’s finding that distance-independent transmissions signifi-

cantly improved the fit of their transmission kernel model [13].

Although the causal relationship between the supported covariates and viral dispersal can-

not be determined from our analysis, the statistical support for road density within the GLM

may provide evidence for the relative importance of anthropogenic movement of virus. The

significance of road density is called into question, though, as it loses statistical support follow-

ing adjustment for sample size. While the inclusion of sample size as a covariate has been

argued as a means to assess the presence of sampling bias in phylogeographic GLM analyses

[42], there is evidence to suggest that such practices hinder coefficient estimation [43]. Fur-

thermore, the data analyzed in the present study were not subject to differential sampling

efforts; rather, the geographic and host distribution of sequences reflect the outbreak distribu-

tion, thanks to intensive surveillance and sequencing efforts among commercial poultry prem-

ises during the outbreak. High road density may correlate with better logistic connectivity

between farms, increasing the likelihood that an infected premises will export virus to nearby

farms and counties. Road density has been associated with HPAI H5N1 outbreaks in Bangla-

desh [44], Thailand [45], Romania [46], Indonesia [47,48], and Nigeria [49], although high

road density in these countries may reflect greater human population density and, therefore, a

higher likelihood of case detection [50]. Intensive commercial poultry surveillance during the

2015 outbreak and the lack of support for human population density as a covariate within our

model suggest that the statistical support for road density in the dispersal of HPAI among mid-

western counties may not merely be an artifact of greater case detection in densely populated

counties. A more exact measure of logistic connectivity between premises is the calculated

driving time between infected poultry premises. Unfortunately, due to the lack of exact coordi-

nates of infected premises, this covariate could not be included in the analysis. Alternatively,

circuit theory can be used to compute environmental distances between discrete locations,

which takes into account inaccessible areas and multiple paths of travel, to provide a more

complete measure of the connectedness of two locations [19].

In this analysis, we provide limited evidence of the association between HPAI dispersal and

the proportion of a destination county group covered by surface water. In other words, coun-

ties with a larger proportion of surface water received virus more frequently compared to
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those with less surface water. Surface water resources have been associated with HPAI dis-

persal and prevalence in China and may signify movement of virus by migrating waterfowl

that stopover in lakes, rivers and wetlands [40,51]. In our analysis, this variable was only

weakly supported, had a relatively small effect size and was not supported once the model was

adjusted for county group sample size. Additionally, other variables that represent potential

migratory stopover habitats, such as Important Bird Areas and agricultural land, were not sup-

ported within the model, suggesting that if wild birds contributed to HPAI dispersal within the

Midwest, their role was limited. This further supports previous studies, which indicated that

the midwestern portion of the outbreak was driven by inter-farm transmission [11,12,14]. Sev-

eral mechanisms have been proposed to explain HPAI transmission between farms during the

2015 outbreak, including equipment sharing, personnel overlap, and aerosolization.

Due to the restricted number of sequences in the presented analysis, the number of vari-

ables and demographic scenarios that could be modelled was limited. This also affected the res-

olution of the geographic covariates that could be included within the GLM. In addition,

precise locations of commercial premises were not available, preventing the ability to perform

a continuous trait diffusion analysis. Rather, the most granular level of geographic information

was county-level. Ideally, the environmental and agricultural characteristics of each individual

farm or county would be evaluated as predictor for HPAI spread; however, the individual tran-

sition rates between 182 farms or even 49 counties would be impossible to accurately estimate

from the 182 sequences of this dataset. For this reason, sequences were categorized into 10

county groups, resulting in a manageable transition rate matrix as well as permitting the sum-

marization of environmental characteristics across a few counties rather than across an entire

state. It should be noted that the grouping of counties by state and poultry type composition

may have influenced both discrete trait and GLM analyses. While state boundaries are some-

what arbitrary, states are a practical means of categorizing agricultural entities as many agricul-

tural policies are enacted at the state level. The division of counties by those with only infected

turkey premises versus those with any infected chicken premises may have introduced bias

into the analyses. For example, connections between the turkey and mixed poultry county

groups may solely be due to viral dispersal among turkey premises. Categorization also

assumes that categories are meaningfully different from each other. Similarity among county

groups of the included environmental factors could make it difficult to detect associations with

viral dispersal. Another potential limitation of phylogeographic models is sampling bias intro-

duced by differential sampling effort. The influence of sampling bias in our GLM analysis is

likely mitigated for two reasons. First, as mentioned, due to intense surveillance activities dur-

ing the outbreak and viral sequencing of almost all infected premises, the sampling propor-

tions across counties likely reflect true patterns in viral distribution. Second, when sampling

disparities were adjusted for in the GLM, the covariate with the strongest support remained

statistically significant. A GLM analysis based on a structured coalescent model may help

resolve impacts of sampling on predictors of viral dispersal by incorporating demographic

dynamics and allowing dispersal rates to vary with time [52].

Despite potential limitations, our results present several implications for future HPAI sur-

veillance and control in the United States. While wild birds may provide a means of viral dis-

persal across large distances and initial introduction into an area, evidence suggests the HPAI

outbreak within the midwestern poultry industries could be maintained without continued

introductions. In this sense, in-place biosecurity efforts may have been enough to prevent con-

tinued viral introductions from outside sources (including wild birds, backyard poultry flocks,

or long-distance movement from other geographic regions), but were ineffective against local

farm-to-farm transmission. For instance, it has been suggested that biosecurity factors could

explain the lack of HPAI cases within the broiler chicken industry in the Midwest [53]. A
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better understanding of how HPAI-positive farms are logistically connected would greatly aid

surveillance and control efforts. With the knowledge of how these farms share personnel and

equipment, future outbreaks could be contained by disruption of the transportation network.

Methods

Dataset

Whole genome HPAI H5N2 sequences collected, isolated and sequenced by the United States

Department of Agriculture (USDA) during the 2014–2015 North American HPAI outbreak

served as the basis for the analyzed data set. Full description of their collection and sequencing

has been reported elsewhere [14]. A subset of this sequence data was selected to better investi-

gate the farm-to-farm transmission dynamics of the midwestern portion of the HPAI H5N2

outbreak. This subset was defined by the following inclusion criteria: 1) sequences isolated

from commercial domestic poultry samples and 2) membership of the sequence in a phyloge-

netically distinct group, as determined by maximum likelihood estimation by Lee, et al [14].

These viruses represented midwestern HPAI-positive poultry premises from the latter part of

the outbreak, which was defined by a rapid increase in incidence within the midwestern poul-

try industries. As within-farm epidemiological dynamics were not of interest in this analysis,

only one viral sequence per positive poultry premises was included. Viruses isolated from

backyard poultry operations and wild birds were not included due to the incongruency in sur-

veillance and sampling between these populations and the domestic poultry industries. A full

list of the included sequence names and accession numbers are provided in S10 Table.

Coalescent model comparison

Coalescent theory provides the statistical framework to estimate population changes over time

from genetic sequence data. To investigate the population dynamics of the midwestern poultry

portion of the outbreak, various coalescent population model prior assumptions were imple-

mented and compared in BEAST2 [54]. Using ModelFinder [55] as implemented in the

IQ-TREE software package (http://www.iqtree.org/), the Kimura three parameter (K3P; i.e.,

one transition rate and 2 transversion rates) model [56] with unequal base frequencies and a

gamma distribution of rate variation among sites [57] was determined as the best fit nucleotide

substitution model and was used for each BEAST2 model. Based on the maximum likelihood

tree produced by IQ-TREE, a root-to-tip regression was performed using TempEst [58] as a

preliminary assessment of the presence of a temporal signal within the sequence data. All coa-

lescent models were separately estimated under both strict and lognormally distributed, uncor-

related, relaxed molecular clock assumptions. For each BEAST2 model, at least three

independent MCMC runs of 50 million chain length were initiated from random starting

trees. Convergence and chain stationarity was assessed in Tracer v1.5, ensuring an effective

sample size (ESS) > 200 for each estimated parameter. If ESS< 200 or stationarity had not

been reached at the default 10% burn-in fraction, the discarded burn-in fraction was increased

or more MCMC runs were performed. Three “traditional” coalescent models (i.e., constant

population, exponential growth, and EBSP [35]) were performed to investigate demographic

dynamics. The mean rates for both the strict and relaxed molecular clocks were specified as a

uniform distribution from 0 to 1 with an initial value of 0.0033. For all coalescent models, the

mean population size was specified as a log normal distribution with a mean in real space of

5.0 and S = 1.25. All other parameters remained set to default settings. Model fit was compared

among the coalescent and molecular clock models with path sampling to calculate the mar-

ginal likelihood estimate (MLE) [59]. Estimating the marginal likelihood enables the calcula-

tion of a Bayes Factor (BF), which is a ratio of two marginal likelihoods. A log(BF) > 5

Agricultural and geographic factors of the 2015 HPAI US outbreak
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indicates very strong statistical support for one model over the other [60]. Viral dispersion

between poultry industries (layer chicken vs. turkey) was initially estimated with a simple dis-

crete trait diffusion model [61,62] as well as a structured coalescent [29]. The EBSP coalescent

model was used as the tree prior for the discrete trait diffusion model. Both viral dispersion

models were performed under both strict and relaxed molecular clock, as above.

A recently developed structured coalescent-based BEAST2 package (PhyDyn) was used to

investigate more complex pathogen population scenarios by specifying epidemiological com-

partmental models [22]. Four alternative compartmental models were assessed to investigate

the presence of population structure by poultry type (layer chicken vs. turkey) and continual

viral introductions from an unknown source population. Each compartmental model was a

Susceptible-Infectious-Removed (SIR) model with varied population heterogeneity (Fig 2A):

1) a single, closed, homogenous population, 2) a closed population, stratified by poultry sys-

tem, 3) a single, homogenous population with a continual external source of virus, and 4) a

stratified population with a continual external source of virus. By including models with an

external viral source, the models test whether repeated introductions of HPAI from wild birds,

backyard poultry, or undetected HPAI-positive premises had a significant role during the out-

break among commercial poultry. Prior settings for the PhyDyn coalescent models are pro-

vided in S11 Table. Since marginal likelihood estimation via path sampling has not yet been

developed for the PhyDyn package, Akaike Information Criterion for MCMC (AICM) [63]

was used to assess model fit and was calculated from the posterior MCMC sample of the struc-

tured tree likelihood with the R package, aicm (https://rdrr.io/cran/geiger/man/aicm.html).

Discrete trait diffusion models

To estimate the impact of environmental variables on the geographic diffusion of HPAI

between midwestern counties, a discrete trait diffusion model was constructed and further

extended with a generalized linear model (GLM) in BEAST v1.10 [64]. Discrete trait diffusion

models are a phylogeographic technique in which each analyzed genetic sequence is assigned

an observed characteristic trait that is assumed to have changed across the viral evolutionary

history in a continuous time Markov chain process [61]. Transition rates among these

observed traits can then be inferred. In this analysis, the discrete character trait definition was

based on the United States county in which the HPAI-positive poultry premises was located.

Counties were then categorized by state and whether the county’s sequences exclusively origi-

nated from turkey production premises. This method of categorization was employed to

group sequences by both geographic region and poultry industry. Because the majority of

sequences originated from turkey premises, counties with only infected turkey premises were

more common than counties with infections of only layer chicken premises. Therefore, layer

chicken-exclusive and mixed poultry counties were combined to avoid categories with sparse

sequence data as well as limiting the total number of discrete categories in the face of a low

overall sample size. In contrast to the above discrete trait model that solely tested viral disper-

sion between the two poultry industries, this model enables viral dispersion among geographic

regions to be estimated. Because the midwestern outbreak appears dominated by two waves of

viral proliferation, a secondary analysis was performed in which temporal patterns of HPAI

geographic diffusion were assessed by defining two epochs of viral movement during the out-

break [65]. The epoch change point was determined as the halfway point between the tree root

and the youngest internal node based on the annotated phylogenetic tree estimated under

strict molecular clock and EBSP coalescent assumptions.

The geographic discrete trait diffusion model was extended with a GLM to assess the impact

of environmental covariates on the viral transition rates among county categories. In this
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approach, viral diffusion rates among discrete geographic regions act as the outcome to a log-

linear combination of environmental variables, regression coefficients and indicator variables

[17]. Environmental and anthropogenic variables were selected based on previous indication

of their importance to avian influenza risk [50]. Layer chicken farm density and turkey farm

density were calculated from USDA 2012 census data (https://quickstats.nass.usda.gov/)

divided by the land area of the county group. Human population density and proportion of

county covered in water was obtained from United States census data (https://factfinder.

census.gov/). The remaining variables were summarized per county group using ArcGIS Pro.

Geographic distance was calculated as the linear distance between county group centroid.

Road density was estimated as the total length of road per county divided by the total county

group area. Proportion of county designated as an important bird area (IBA) was calculated

using the publicly available Audubon Important Bird Areas and Conservation Priorities data

[66]. Proportion of the county group used for agriculture (i.e., covered by pasture, hay or culti-

vated crops) was obtained from the United States Geological Survey National Land Cover

Database created in 2011 and amended in 2014 [67]. The number of frozen days was calculated

from daily freeze-thaw satellite data from March 1 to June 15, 2015 [68,69]. A frozen day was

defined as a day in which more than half of the county group area had a temperature measured

as below 0 C. All covariate measures were log-transformed and standardized before inclusion

in the GLM. Two secondary GLM analyses were performed to assess the influence of collinear-

ity and sampling bias on the observed results. First, collinearity of included covariates was

assessed with the Pearson correlation test, and the GLM was performed with highly correlated

variables (R2> 0.85) removed. Second, sample size of both the originating and destination

county group was included in the GLM. This attempts to control for disparities in sampling

magnitude among the discrete trait categories [42].

The discrete trait diffusion models were applied to the empirical distribution of phyloge-

netic trees from the best fitting evolutionary model. For each diffusion model, three indepen-

dent MCMC runs of 1 million steps in length were performed, sampling every 100 steps.

Convergence was assessed in Tracer v1.5, ensuring ESS> 200 for each estimated parameter.

Removing the first 10% of each run as burn-in and re-sampling every 300 steps, log and tree

files were combined using LogCombiner in the BEAST v1.10 software suite. Statistical support

for transition rates in the discrete trait diffusion model and the covariate coefficients of the

GLM were inferred using Bayesian stochastic search variable selection (BSSVS). Briefly, for

each estimated parameter, an indicator variable (I) is stochastically turned on (I = 1) or off

(I = 0) at each step of the MCMC [16,61]. The posterior distribution of indicator values can be

used to calculate a Bayes factor (BF), indicating the level of statistical support for the inclusion

of that parameter in the model. BF support was defined in the following categories: no support

(BF< 3.0), substantial support (3.0� BF< 10.0), strong support (10.0� BF< 30.0), very

strong support (30.0� BF < 100.0), and decisive support (BF� 100.0). Median transition

rates, median conditional coefficients, 95% highest posterior density (HPD) and BF were cal-

culated using personalized Python scripts that incorporate functions from the PyMC3 module

[70]. BEAST code and customized analytical scripts have been uploaded to a public GitHub

depository, https://github.com/jt-hicks/Hicks-et-al_2019_HPH5.

Supporting information

S1 Text. Mathematical equations that parameterize the four investigated epidemiologic

compartmental models.

(PDF)
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S1 Table. Estimates of viral transmission between poultry industries during the 2015

highly pathogenic avian influenza virus H5N2 outbreak within the midwestern United

States.
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S2 Table. Akaike’s information criteria for Markov chain Monte Carlo (AICM) for the epi-

demiological compartment-based coalescent models.

(PDF)

S3 Table. Parameter estimates of the Bayesian framework epidemiologic compartmental

models. Posterior probability, likelihood, structured tree (ST) likelihood, and prior probability

are provided. Each model was performed under two different molecular clock assumptions

(lognormal relaxed and strict). Median values with corresponding 95% highest posterior den-

sity (HPD) are displayed. Refer to Appendix B: Text S3.1 for parameter definitions.

(PDF)

S4 Table. Discrete trait diffusion matrix of the midwestern highly pathogenic avian influ-

enza (HPAI) H5N2 outbreak, 2015. Median rates and associated 95% highest posterior den-

sity intervals (in brackets) are presented in each cell. The diffusion model is asymmetrical, and

therefore, rates have directionality from a source county group (indicated on the left) to a sink

county group (indicated across the top). County groups were defined by state (IA—Iowa, MN

—Minnesota, ND—North Dakota, NE—Nebraska, SD—South Dakota, WI—Wisconsin) and

composition of poultry type (T—turkey exclusive, CM—layer chicken exclusive and mixed

poultry). Rates are colored by the level of Bayes factor support: no support (BF< 3.0), substan-

tial support (3.0� BF< 10.0), strong support (10.0� BF< 30.0), very strong support

(30.0� BF< 100.0), and decisive support (BF� 100.0).

(PDF)

S5 Table. Discrete trait diffusion matrix, by epoch, of the midwestern highly pathogenic

avian influenza (HPAI) H5N2 outbreak, 2015. Two diffusion matrices were estimated:

before and after April 10, 2015. Median rates and associated 95% highest posterior density

intervals (in brackets) are presented in each cell. The diffusion model is asymmetrical, and

therefore, rates have directionality from a source county group (indicated on the left) to a sink

county group (indicated across the top). County groups were defined by state (IA—Iowa, MN

—Minnesota, ND—North Dakota, NE—Nebraska, SD—South Dakota, WI—Wisconsin) and

composition of poultry type (T—turkey exclusive, CM—layer chicken exclusive and mixed

poultry). Rates are colored by the level of Bayes factor support: no support (BF< 3.0), substan-

tial support (3.0� BF< 10.0), strong support (10.0� BF< 30.0), very strong support

(30.0� BF< 100.0), and decisive support (BF� 100.0).

(PDF)

S6 Table. Demographic and geographic characteristics of the 49 United States counties

with HPAI-positive commercial poultry premises during the H5N2 outbreak, 2015.

(PDF)

S7 Table. Generalized linear model (GLM) conditional effect sizes and statistical support

for agricultural and geographic covariates of the dispersal of highly pathogenic avian

influenza (HPAI) H5N2 among midwestern county groups. Sample sizes of origin and desti-

nation county groups have been included to estimate the influence of sampling bias. Condi-

tional effect size and 95% highest posterior density (HPD) were calculated based on the

estimated GLM coefficients given the Bayesian stochastic search variable selection (BSSVS)

indicator = 1. The posterior probability (PP) refers to the proportion of Markov chain Monte
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Carlo (MCMC) samples in which the BSSVS indicator = 1. Bayes factor (BF) > 3.0 indicates

statistical support for the inclusion of the covariate within the GLM.
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S8 Table. Generalized linear model (GLM) conditional effect sizes and statistical support

for agricultural and geographic covariates of the dispersal of highly pathogenic avian

influenza (HPAI) H5N2 among midwestern county groups. Conditional effect size and 95%

highest posterior density (HPD) were calculated based on the estimated GLM coefficients

given the Bayesian stochastic search variable selection (BSSVS) indicator = 1. The posterior
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which the BSSVS indicator = 1. Bayes factor (BF) > 3.0 indicates statistical support for the

inclusion of the covariate within the GLM.

(PDF)

S9 Table. Median conditional effect sizes of environmental and geographic covariates within

the generalized linear model (GLM), with highly correlated variables removed. Conditional

effect size represents the effect size of the variable coefficient given inclusion in the GLM. Sup-

ported covariates (Bayes factor> 3) are bolded. Covariates are ordered by Bayes factor.
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S10 Table. Accession number and names of 182 included HPAI H5N2 full genome sequences.

(PDF)

S11 Table. Prior settings of the compartmental coalescent models. All parameters were

specified to be log normally distributed with a lower bound of 0. Mean (M) and standard devi-

ation (S) are specified in the log distributed space. Initial values are in real space.
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S1 Fig. Root-to-tip regression of 182 included HPAI H5N2 full genome sequences.

(PNG)

S2 Fig. Diffusion rate summary among county groups, by epoch. Epochs were defined as

before (A) and after (B) April 10, 2015. Counties with only turkey cases (turkey exclusive; T)

were grouped separately from counties with at least one layer chicken case (mixed poultry; C).

Arrows represent transition rates with strong support (Bayes factor> 10) with arrow thickness

proportional to the magnitude of transition rate.
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S3 Fig. Correlation matrix of investigated environmental covariates. Variables have been

log-transformed and standardized. Lower half of the matrix represents scatterplots between
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