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Aortic and mitral flow quantification
using dynamic valve tracking and
machine learning: Prospective study
assessing static and dynamic plane
repeatability, variability and agreement

Julio Garcia1,2,3,4,5 , Kailey Beckie1,2,3,4, Ali F Hassanabad1,2,
Alireza Sojoudi6 and James A White1,3

Abstract

Background: Blood flow is a crucial measurement in the assessment of heart valve disease. Time-resolved flow using

magnetic resonance imaging (4D flow MRI) can provide a comprehensive assessment of heart valve hemodynamics but it

relies in manual plane analysis. In this study, we aimed to demonstrate the feasibility of automate the detection and

tracking of aortic and mitral valve planes to assess blood flow from 4D flow MRI.

Methods: In this prospective study, a total of n¼ 106 subjects were enrolled: 19 patients with mitral disease, 65 aortic

disease patients and 22 healthy controls. Machine learning was employed to detect aortic and mitral location and motion

in a cine three-chamber plane and a perpendicular projection was co-registered to the 4D flow MRI dataset to quantify

flow volume, regurgitant fraction, and a peak velocity. Static and dynamic plane association and agreement were eval-

uated. Intra- and inter-observer, and scan-rescan reproducibility were also assessed.

Results: Aortic regurgitant fraction was elevated in aortic valve disease patients as compared with controls and mitral

valve disease patients (p< 0.05). Similarly, mitral regurgitant fraction was higher in mitral valve patients (p< 0.05). Both

aortic and mitral total flow were high in aortic patients. Static and dynamic were good (r> 0.6, p< 0.005) for aortic total

flow and peak velocity, and mitral peak velocity and regurgitant fraction. All measurements showed good inter- and intra-

observer, and scan-rescan reproducibility.

Conclusion: We demonstrated that aortic and mitral hemodynamics can efficiently be quantified from 4D flow MRI

using assisted valve detection with machine learning.
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Introduction

Moderate or severe valvular heart disease (VHD) are

notably common in the North American population

with prevalence of 2.5–3% of the population.1 The

most common types of left-sided VHD in the

Western world are aortic stenosis (AS), aortic regurgi-

tation (AR), and mitral valve regurgitation (MVR),

with estimated prevalence of 0.4%, 0.5%, and 1.7%,

respectively.2 Diagnosis and staging of VHD is primar-

ily determined using Doppler echocardiography.

However cardiac magnetic resonance imaging (MRI)
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is indicated in moderate or sever AR and chronic pri-
mary MR when images are suboptimal to assess heart
volumes and function.3 Two-dimensional phase con-
trast MRI with single direction (through plane) veloc-
ity encoding is the standard-of-care technique to
quantify blood flow but its capacity to assess complex
valvular flow patters is limited.4,5 Four-dimensional
flow MRI (4D flow MRI) is a novel imaging technique
capable of measuring complex blood flow in the three
principal directions and as a function of time, allowing
for accurate quantification of blood flow in patients
with VHD.6,7 A particular benefit of 4D flow MRI is
the retrospective selection of analysis planes at any
location within the 3D data volume to perform blood
flow quantification, although analysis planes are typi-
cally static and don’t follow the motion of the heart
valves. Valve tracking have showed to improve the
characterization and quantification of eccentric regur-
gitation using 4D flow MRI.8 Similarly, previous work
demonstrated that machine learning (ML) can help to
identify valvular dysfunctions and therefore used for
the diagnosis of heart valve degradation.9 However, it
requires further validation.

We hypothesize that ML when applied to dynamic
valve tracking may improve the assessment of valvular
blood flow in 4D flow MRI datasets. In this study, we
aimed: a) to assess the performance of dynamic valve
tracking (assisted with ML for valve location identifi-
cation) to quantify mitral and aortic flow, peak velocity
and regurgitant fraction from 4D flow MRI datasets;
b) to compare dynamic valve tracking quantification
with static analysis planes placed at aortic and mitral
valve locations within the 4D flow MRI datasets; and
c) to evaluate intra- and inter-observer variability
between both methods.

Methods

Patients, setting and study design

Study population. A total of 116 subjects were identified
and enrolled at the time of clinical referral for cardiac
MRI or research exam. Study cohort included 106 sub-
jects, n¼ 19 with mitral disease patients (48� 18 years,
8 female), n¼ 65 with aortic disease patients (46�
15 years, 15 female) and n¼ 22 healthy controls (40�
13 years, 10 female). Patients were recruited under an a-
priori sub-study of the Cardiovascular Imaging
Registry of Calgary (CIROC, REB13-0902), a prospec-
tive observational registry at the Libin Cardiovascular
Institute, University of Calgary. Patients were required
to have confirmed aortic and mitral valve disease by
trans-thoracic echocardiography or prior MRI, to be
�18 years of age with not more than mild mitral valve
insufficiency. Patients with any evidence of significant

systolic dysfunction (left ventricle ejection fraction
[LVEF]< 50%), history of known ischemic or non-
ischemic cardiomyopathy, or complex congenital
heart disease were excluded, as were patients with
implantable devices or other recognized contraindica-
tions to MRI. Ten patients were excluded for poor
image quality in the 4D flow MRI datasets. Healthy
control subjects were recruited and were required to
have no known cardiovascular disease, hypertension,
diabetes, renal disease or any standard contra-
indications for MRI. Healthy control screening was
performed by a certified nurse from our institution.
The study was coordinated using AcuityVR (Cohesic
Inc., Calgary, Alberta) for the delivery of patient
informed consent, health questionnaires and for collec-
tion of standard MRI-related variables. The study was
approved by the institutional review board (IRB) at
our institution and all subjects provided written
informed consent. All research activities were per-
formed in accordance with the Declaration of Helsinki.

Cardiac magnetic resonance imaging protocol. All healthy
volunteers and patients underwent a standardized
MR imaging protocol using a 3T clinical scanner
(Prisma or Skyra, Siemens Healthineers, Erlangen,
Germany) inclusive of standard multi-planar steady-
state free-precession (SSFP) cine imaging in four-
chamber, three-chamber, two-chamber, at valve
planimetry to characterize valve type, short-axis of
the left ventricle (LV) at end-expiration, 3D magnetic
resonance angiography (MRA) of the thoracic aorta,
and 4D flow MRI.10 A trans-valvular jet in-plane
velocity acquisition served as complementary velocity
scout for 4D flow MRI velocity encoding (Venc) selec-
tion. 4D flow MRI was performed using a retrospec-
tively triggered sequence (Siemens WIP 785A) with
respiratory navigator-based gating. Whole heart 4D
flow MRI was added at the end of the protocol for
the assessment of 3D hemodynamics. 4D flow imaging
parameters were: Venc¼ 1.5–4.0 m/s, field of view¼
200–420mm� 248–368mm, spatial resolution¼ 1.9–
3.5� 2.0–3.2� 1.8–3.5mm3, temporal resolution¼ 25–
35ms, phases¼ 30, and flip angle¼ 8–15�. Acquisition
time ranged from 8–18min.

4D flow MRI analysis. Cine MR images were processed
and analyzed using cvi42 5.11.5 (Circle Cardiovascular
Imaging Inc., Calgary, Canada) to determine LV end
diastolic volume (LVEDV), and LV mass. Where
appropriate, volume and mass measurements were
indexed to body surface area (BSA), calculated using
the Mosteller formula. Standard 2D PC-MRI was used
to provide conventional measures of hemodynamic sig-
nificance, including flow volume, regurgitant fraction,
and a peak velocity (PV) based on simplified
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Bernoulli’s equation. Aortic valve stenosis and regurgi-

tation severity were ranged according to current guide-

lines.1 4D flow MRI analysis was performed using a

prototype module from cvi42.11,12 Pre-processing cor-

rections were applied to reduce noise, correct for eddy

currents, and perform phase unwrapping in the case of

velocity aliasing. ML module was trained for LV seg-

mentation and valve location identification using pub-

licly cardiac MRI data from the UK biobank.13–15 A

total of 800 studies were selected, 640 studies were ran-

domly included in the training process and 160 studies

were used for evaluation as reported in a previous

study.15 In our study the trained module was used to

identify the location of the aortic and mitral valve in a

3-chamber cine. Tissue feature tracking was applied in

the three-chamber cine series to create dynamic planes

following valve motion (dynamic valve plane track-

ing).16 Then plane locations were interpolated into

the 4D flow MRI dataset where an automated contour

detection was use for facilitating flow/velocity quanti-

fication (Figure 1). Contours were manually verified

and corrected as needed. Net flow, regurgitant fraction,

and PV were automatically calculated at each plane. A

sub-cohort of 16 cases were assessed by two observers

for assessing agreement, repeatability and scan-rescan

variability. Automatic contour detection was used to

quantify flow for each time point at every plane.

Statistical analysis

Histograms and Shapiro-Wilks normality test were
conducted to determine the distribution of the param-
eters in each cohort. Analysis of variance (ANOVA) or
non-parametric equivalent was applied to compare
control, aortic and mitral cohorts. Individual cohort
comparisons were assessed by t-test or equivalent
non-parametric test. Pearson’s correlation coefficients
were calculated to identify relationships between static
and dynamic measurements for net flow, regurgitant
fraction, and PV. Observer repeatability and scan-
rescan variability were evaluated by Bland-Altman
analysis. For all statistical tests, a p-value of less than
0.05 was considered significant. All statistics were per-
formed in SPSS 25 (Chicago, IL).

Results

Subjects in control cohort were younger than aortic
and mitral patients which showed similar age range
(p¼ 0.015). Left atrial indexed volume was increased
in mitral patients as compared with controls and
aortic valve disease patients (p< 0.001). Table 1 sum-
marizes demographic and cardiac MRI measurements.

Overall subjects, aortic total flow was higher in
aortic valve disease as compared with mitral valve dis-
ease (p< 0.05). Aortic regurgitation fraction was

Figure 1. Workflow. (a) Shows pre-processed data and angiogram rendering; (b) shows velocity mapping; (c) illustrates static/manual
plane positioning at aortic and mitral valve locations; (d) illustrates the automated machine learning detection of valve planes and
tracking; (f) shows the aortic (red) and mitral (green) flow plots; and (g) shows the convolutional neural network used for seg-
mentation of the left ventricle and detection of the aortic and mitral valve locations using two-, three-, and four-chamber images from
the UK Biobank database (n¼ 800 total cases, trained with n¼ 640 cases and tested with n¼ 160 cases).
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elevated in aortic valve disease subjects as compared

with controls and mitral valve disease patients

(p< 0.05). Mitral peak velocity was higher in mitral

valve disease as compared with controls and aortic

valve disease (p¼ 0.001). Similarly, mitral regurgitant

fraction was higher in mitral patients (p< 0.05). A sum-

mary of aortic and mitral plane measurements and

ANOVA test is provided in Table 2.
Static and dynamic planes in the aorta showed a

good correlation for aortic total flow (r¼ 0.71,

p¼ 0.003) and aortic peak velocity (r¼ 0.75,

p¼ 0.001), mitral peak velocity (r¼ 0.62, p¼ 0.014)

and mitral regurgitation fraction (r¼ 0.63, p¼ 0.012).

Modest associations were found for aortic regurgita-

tion fraction (r¼ 0.34, p¼ 0.216) and mitral total

flow (r¼ 0.33, p¼ 0.222). Correlation plots are pre-

sented in Figure 2(a) to (f). Bias agreement between

static and dynamic planes was greater in mitral meas-

urements than in aortic measurements, as showed in

Bland-Altman plots in Figure 2(g) to (l).
Intra- and inter-observer variability showed good

agreement for both aortic and mitral plane

measurements. Measurements were more spread in
the mitral plane. Intra-observer Bland-Altman plots
are shown in Figure 3(a) to (f) and inter-observer
plots in Figure 3(g) to (l). Scan and rescan measure-
ments showed minimal bias for all cases. Aortic total
flow, and mitral measurements showed larger spread in
Bland-Alman plots (Figure 3(m) to (r)).

Discussion

In this study, we demonstrated the feasibility of assis-
ted aortic and mitral valve planning and tracking using
machine learning in 4D flow MRI datasets. Mitral
measurements demonstrated more variability in the
assessed sub-cohort. Despite the latter, the proposed
approach demonstrated a good inter- and intra-
observer variability, as well as scan-rescan variability.

Comparison of results to previous studies

Doppler-echocardiographic indices (i.e. PV and valve
orifice area) can be inconsistent or may be incongruent
with the patient’s clinical status.17–19 For this reason,

Table 1. Demographic and cardiac MRI measurements.

Parameters Control Mitral Aortic p-values

Age (years) 37� 14 48� 17 48� 16 0.015

Sex, female (%) 1� 0.4 1� 1 1� 0.4 0.339

Height (m) 73� 84 36� 69 77� 88 0.179

Weight (kg) 80� 24 73� 16 85� 21 0.094

Body surface area 2� 0.3 2� 0.2 2� 0.2 0.066

Heart rate (bpm) 63� 10 65� 13 63� 12 0.786

SBP (mmHg) 113� 16 113� 15 110� 15 0.834

DBP (mmHg) 61� 16 66� 12 65� 13 0.652

LVEDV (ml) 166� 40 191� 49 177� 71 0.436

LVEDV indexed (ml/m2) 86� 17 102� 22 88� 32 0.096

LVEF (%) 62� 5 60� 9 61� 13 0.803

LVESV (ml) 64� 19 77� 29 72� 39 0.472

LVESV indexed (ml/m2) 37� 16 44� 18 36� 19 0.282

LV mass (g) 103� 32 109� 28 119� 57 0.389

LV mass indexed (g/m2) 52� 10 58� 11 59� 26 0.47

LVCO (l/min) 7� 2 7� 2 7� 3 0.742

LA volume (ml) 70� 16 98� 30 71� 27 0.013

LA volume indexed (ml/m2) 37� 9 53� 16 35� 13 <0.001

Table 2. Aortic and mitral valve measurements.

Parameter Control (n¼ 22) Mitral (n¼ 19) Aortic (n¼ 65) p-values

Aortic Total Flow (ml) 73� 19 65� 12 80� 23 0.025

Aortic Peak Velocity (cm/s) 117� 24 118� 76 133� 62 0.445

Aortic Regurgitant Fraction (%) 0.3� 0.4 4� 6 15� 17 0.003

Mitral total flow (ml) 65� 16 62� 17 66� 21 0.706

Mitral Peak Velocity (cm/s) 71� 19 109� 58 74� 32 0.001

Mitral Regurgitation Fraction (%) – 12� 3 3� 1 0.032
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there has been interest in exploring innovative imaging

modalities to help better identify patients who will ben-

efit most from surgical intervention. 4D flow-derived

measurements found in our cohort were generally in

fair agreement with findings in other MRI studies.

While studying the mitral and tricuspid valve blood

flow, Westenberg et al. found that the use of 4D flow

MRI with valve tracking to measure net flows over the

mitral valve (MV) and tricuspid valve (TV) has been

associated with markedly higher correlations between

values than the 2D PC-MRI (Pearson’s r¼ 0.34, p ¼
0.34 for 2D PC-MRI as opposed to r¼ 0.91, p< 0.01

for 4D flow MRI).20 In another study by Ewe et al.

found that 4D flow MRI and 3D TTE can capture

regurgitation better than 2D TTE because they are

not limited by geometrical assumptions and suboptimal

alignment with the flow jet (r¼ 0.66, p¼ 0.005).21 Also,

recent large-scale studies found MRI-derived regurgi-

tant volume to be a better predictor of referral for sur-

gery and all cause mortality than echocardiographic

parameters.22,23 These findings may evoke changes in
the diagnostic and prognostic workup of MV patients,
causing MRI to gain ground in the clinical manage-
ment of these patients. Our study showed that assisted
valve planning and tracking can provide reliable clini-
cal flow measurements.

Study limitations

The analyst was blinded to comparative 2D measures
during processing of 4D flow data. However, the ana-
lyst was not blinded to whether the subject was a
healthy volunteer or patient with mitral or aortic
valve disease at the time of cvi42 analysis. This may
have introduced unintentional bias to this study and its
results. Furthermore, the discrete spatial and temporal
resolution of 4D flow MRI may result in a systematic
underestimation of peak velocity,24,25 due to partial
volumes effects and temporal filtering when using
only analysis planes instead of full volume analysis.
This limits the accuracy of 4D flow-derived parameters

Figure 2. Static and dynamic planes correlation and agreement for aortic and mitral planes.
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which may be underestimated. Turbulence and com-

plex flow can also result in signal dephasing, which

may further compromise the accuracy of measurements

estimated from 4D flow and 2D PC-MRI.26

Conclusions

Dynamic valve plane tracking assisted by machine
learning showed good feasibility and performance for

Figure 3. Intra-observer, inter-observer, and scan-rescan assessment for aortic and mitral planes.

6 JRSM Cardiovascular Disease



the assessment of aortic and mitral total flow, peak

velocity and regurgitation fraction. Further, investiga-

tion of mitral and aortic severity quantification/grad-

ing and its association with valve disease is warranted.
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