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� This study proposes additional post-
GWAS evaluation criteria.

� Accuracy serves as a measure of
direct correspondence between
variant positions and phenotypes.

� Every genomic variant position can be
used as a Synthetic phenotype in
GWAS.

� SPAS reveals the landscape of
association for genomic variants.

� Synthetic phenotype leverages
resequenced data set information.
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Introduction: Genome-Wide Association Studies (GWAS) identify tagging variants in the genome that are
statistically associated with the phenotype because of their linkage disequilibrium (LD) relationship with
the causative mutation (CM). When both low-density genotyped accession panels with phenotypes and
resequenced data accession panels are available, tagging variants can assist with post-GWAS challenges
in CM discovery.
Objectives: Our objective was to identify additional GWAS evaluation criteria to assess correspondence
between genomic variants and phenotypes, as well as enable deeper analysis of the localized landscape
of association.
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Phenotyping
Methods: We used genomic variant positions as Synthetic phenotypes in GWAS that we named
‘‘Synthetic phenotype association study” (SPAS). The extreme case of SPAS is what we call an ‘‘Inverse
GWAS” where we used CM positions of cloned soybean genes. We developed and validated the
Accuracy concept as a measure of the correspondence between variant positions and phenotypes.
Results: The SPAS approach demonstrated that the genotype status of an associated variant used as a
Synthetic phenotype enabled us to explore the relationships between tagging variants and CMs, and fur-
ther, that utilizing CMs as Synthetic phenotypes in Inverse GWAS illuminated the landscape of associa-
tion. We implemented the Accuracy calculation for a curated accession panel to an online Accuracy
calculation tool (AccuTool) as a resource for gene identification in soybean. We demonstrated our con-
cepts on three examples of soybean cloned genes. As a result of our findings, we devised an enhanced
‘‘GWAS to Genes” analysis (Synthetic phenotype to CM strategy, SP2CM). Using SP2CM, we identified a
CM for a novel gene.
Conclusion: The SP2CM strategy utilizing Synthetic phenotypes and the Accuracy calculation of corre-
spondence provides crucial information to assist researchers in CM discovery. The impact of this work
is a more effective evaluation of landscapes of GWAS associations.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Even though GWAS have successfully identified many thou-
sands of genetic associations, the ratio of conducted GWAS to suc-
cessful GWAS-derived findings is far from being balanced [1,2].
This is indeed caused by the nature of genetic interconnections
such as pleiotropy and/or epistasis that lead to statistical restric-
tions due to high dimensionality and multicollinearity [3]. For
GWAS, identification of a phenotype-associated haplotype-
tagging variant position with high correspondence among other
variant positions is crucial for correct identification of the associ-
ated genomic region. The fact that the highest associated tagging
variant is not the physically closest variant to a CM, but instead
is in strong LD with it, is a key feature of GWAS that is strikingly
neglected [4,5]. This is especially problematic when low-density
genotype data (less than 1% of total variants) is used that is unli-
kely to have the CM present in the genotype data set. Low-
density genotype data sets are relatively inexpensive and therefore
widely used in GWAS. Genotyping efforts must balance the cost
and effort in capturing the genomic variation with the size and
power needed for association panels. It is therefore of great interest
to improve strategies to identify candidate genes containing the
CM starting with low-density genotype data sets when whole gen-
ome resequenced data sets are available, as they are for many spe-
cies including soybean (Glycine max [L.] Merr.) [6–11].

Our first attempts to explore the landscape of genomic variation
resulted in the online tool, named SNPViz [12], that enables haplo-
type visualizations and was recently enhanced with new features
and data sets (SNPViz v2.0 [13,14]). In the process of expanding
the capabilities of SNPViz, we developed a novel analysis method
enhanced by a GWAS to Genes concept. In this work, we present
demonstrative experiments that show the usefulness of the new
concepts. Fundamentally, GWAS requires a defined accession panel
that has both determined phenotypes and genotype data for each
accession; we have redefined the concept of what can be repre-
sented as phenotype data and refer to that as a Synthetic pheno-
type. A Synthetic phenotype can be any single genomic variant
position present in the data set. For low-density genotypes, each
marker position can be used as a Synthetic phenotype. Analogously
for resequenced data sets, the Synthetic phenotype can be derived
from any variant position that can be a SNP or an insertion/deletion
(InDel), or other sequence structural variation that is of binary
nature.

In a perfect GWAS of a simplified example of a qualitative phe-
notype (real phenotype), a bi-allelic genomic variant at a certain
position present in resequenced genotype data would exactly
match the binary variation in the phenotype [15]. In such a simpli-
118
fied case, this genomic variant would be the CM underlying the
phenotype. Therefore, the allele status (reference and alternate)
of such a variant position could be used as a Synthetic phenotype
in GWAS (SPAS) and illuminate all the other associated variants
that are in LD with the phenotype with the same statistical signif-
icance as the original real/observed phenotype. Applying the con-
cept of the Synthetic phenotype to the CM variant position and
running GWAS backward will produce a landscape of variation
for all other variant positions in LD with the CM, and thus the phe-
notype (Fig S1a). Using the CM as a Synthetic phenotype is the
extreme case of SPAS that we refer to as Inverse GWAS. Thus, in
this perfect GWAS example, the landscape of association for the
real phenotype would be identical with the landscape of associa-
tion for the CM produced by Inverse GWAS (Fig. S1a). On the con-
trary, in the low-density genotype-based GWAS discoveries,
because of the nature of low-density genotype data, the correspon-
dence of an identified low-density tagging variant (tagging marker,
TM) to the phenotype is rarely perfect but always unknown to the
CM a priori (Fig. S1b). We successfully used the CM as a Synthetic
phenotype to identify markers corresponding to the CM (Proxy
markers) in our former work [16,17].

Improving GWAS is an active area of research taking on many
different approaches. Besides fitting statistical models, there are
a number of emerging within-GWAS methods that aim to rapidly
identify a casual gene by putting weight on various trait-genome
characteristics (such as LD [18]). Although LD-based weighting is
a common approach to evaluate GWAS results, accuracy and effi-
ciency [19,20] were also used in previous studies. Nevertheless,
these approaches did not adequately characterize variants in terms
of sensitivity and specificity to express howwell the allele status of
a variant position relates to a phenotype. We extended the stan-
dard GWAS statistical significance of a variant position by a param-
eter that is a simple mathematical measure of direct
correspondence, a concept that we refer to herein as Accuracy.

Soybean offers several high-quality resequenced data sets
[6,7,9,21] as well as reference genomes [22]. The USDA Soybean
Germplasm Collection (GRIN, Urbana, IL) repository contains
�20,000 accessions genotyped with the low-density Illumina
SoySNP50K bead chip (including accessions from the resequenced
data sets) [23]. Therefore, the GRIN collection serves as an
immense pool of available soybean GWAS results for many pheno-
types in which TMs were identified [24,25]. Thus, soybean data
enabled us to test our SPAS on a palette of various traits, pheno-
types and data sets, and here we present our findings on a selection
of three demonstrative soybean phenotypes for pod shattering
(quantitative phenotype) as well as flower color and stem termina-
tion traits (qualitative phenotypes). Furthermore, we used our
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approach to identify a CM for a novel pod shatter gene NST1A [26].
Here we show how our Synthetic phenotype and Accuracy calcula-
tion concepts can be utilized in CM identification. We created a
novel SP2CM strategy where knowledge gained from GWAS with
low-density genotypes for a large set of phenotyped accessions
can be used to leverage an association panel of a limited number
of resequenced accessions for which the desired phenotype infor-
mation may not be available. Thus, the value of high-density infor-
mation of an association panel of resequenced accessions can be
exploited without phenotyping or resequencing another panel of
accessions. The SP2CM strategy improves the effectiveness of
TMs to identify a CM - the fundamental goal in GWAS. To measure
direct correspondence using Accuracy calculations with the
highest possible confidence for each type of association study, we
created a curated panel of accessions for soybean (Soy775
accession panel) that consists of all publicly available otherwise
independent resequenced data sets. We demonstrate utilization
of the SP2CM strategy on CM identification of a novel pod shatter-
ing gene NST1A. We envision that our strategy could directly
improve low-density genotype-based GWAS discoveries that could
be potentially utilized in every other species as well.
Material and methods

Defining SPAS, Inverse GWAS, SP2CM and workflow

SPAS follows the same principles and rules as any other GWAS;
it requires two essential components: genotype input data and
phenotype input data. SPAS, as well as Inverse GWAS, can be per-
formed on either low-density genotyping data or on resequenced
data depending on what landscape is going to be explored. Inverse
GWAS on low-density data can be performed on a data set of rese-
quenced accessions where a CM is present in the genotype and
thus, can be transformed into the Synthetic phenotype and used
in GWAS on all chromosomes with genotypes from either the
SoySNP50K bead chip or a subset of the SoySNP50K positions
directly extracted from the resequenced data. We also performed
Inverse association on resequenced genotype data but only on a
localized part of a single chromosome; therefore, we refer to it as
to the Inverse GLAS (genome-localized association study). Proxy
markers are generated from resequenced data in Inverse associa-
tion. SP2CM consists of two parts. Both parts include an association
and Accuracy calculation step. Part 1 associates a real phenotype
with low-density genotyping data of a panel of accessions in GWAS
with all chromosomes, and Part 2 associates a Synthetic phenotype
in GLAS.
Data sets

Basically, in this work, we used two types of genotype data:
publicly available soybean resequenced data sets and genotyped
accessions form the USDA germplasm collection (GRIN, Urbana,
IL). The majority of accessions from the resequenced data sets were
also genotyped at low-density - the USDA Agricultural Research
Service Soybean Genomics Group has genotyped the entire USDA
Soybean Germplasm Collection counting over 22,000 accessions
with the Illumina Infinium SoySNP50K Illumina Infinium BeadChip
[23] (https://www.soybase.org/snps). We downloaded SoySNP50K
haplotypes (https://soybase.org/snps/download.php) for all acces-
sions with known phenotype information for our three demonstra-
tive traits: pod shattering score, flower color and stem
termination; the downloaded data was used for GWAS of SP2CM-
Part 1.

The resequenced soybean data sets used in this work were pre-
viously published [6,7,11]: 302 wild and cultivated accessions
119
(Zhou, sequencing coverage 11x) [6], 106 soybean genomes geno-
mic diversity and trait discovery project (MSMC, sequencing cover-
age 17x) [7], and 481 diverse soybean accessions from genetic
variation project [11] two data sets with sequencing coverage
15x: USB15x, Soja15x; and one data set with sequencing coverage
40x - USB40x. For simplicity, the data sets were named in the
following format: Name + Average sequencing depth+(number of
unique accessions in the data set). We aggregated all the acces-
sions from these data sets into a single panel of curated accessions
(Soy775 accession panel; described below). We used this Soy775
accession panel for Accuracy calculation and for Inverse GWAS
on low-density genotype data. Otherwise, we used the USB15x
(302) resequenced data set that served as a model data set repre-
senting an ideal compromise between sequencing depth and num-
ber of samples with a sufficient portion of alternate phenotypes
(302 unique Plant Introduction accessions at 15x average depth).
We used this USB15x(302) data set to demonstrate the SP2CM
strategy for stem termination.

Data curation for aggregation of resequenced data sets

To increase power of our Inverse GWAS and Accuracy calcula-
tions, we aggregated all publicly available soybean resequenced
data sets into one curated panel of resequenced accessions. Since
one of the data sets, Zhou11x(293) [6], was assembled in a differ-
ent genome assembly version than the others, we remapped it
from Glycine max Williams 82 a1.v1.1 (Wm82.a1.v1.1) to Wm82.
a2.v1. The Zhou11x(293) data set raw read files were acquired
from SRA as published in the paper [6]. Our PGen [27] workflow,
which incorporates all genotyping required tools into one auto-
mated pipeline for SNP and InDel calling, was utilized to perform
analysis on an XSEDE computation resource. The analysis was con-
ducted using batch procedure (�50 accessions), and it has quality
and filtration steps to filter out low quality reads. It utilizes the
Burrows-Wheeler Aligner (BWA) [28] to align with the G. max
Williams 82 (Wm82.a2.v1) reference genome and Genome
Analysis Toolkit (GATK) [29] to do SNP and InDel calling. Separate
Genomic Variant Call Format (GVCF) files from each batch were
combined using the CombineGVCF argument in GATK and filtered
to create the VCF file, using quality by depth (QD), Fisher strand
values (FS), and mapping quality of variants (MQ) for SNPs and
InDels. The FastQC reports, filtered SNP and Indel VCF files are
available in SoyKB [28,30] via the NGS resequencing data browser.
The Zhou dataset [6] which was remapped using the Wm82.a2.v1
genome assembly version (named Zhou302v2 in short) has 3.78%
more positions compared to the Zhou dataset mapped using the
Wm82.a1.v1.1 genome assembly version (named Zhou302v1 in
short). Among the positions, the Zhou302v2 dataset also has>32
million SNPs while the Zhou302v1 dataset has only around
31 million SNPs.

Aggregation of resequenced data sets into the Soy775 accession panel

The Soy775 accession panel is an aggregation of all nonredun-
dant resequenced soybean accessions. It is comprised of data sets
from the USB-481 resequencing project [11] and Zhou302 data
set [6] remapped to Wm82.a2.v1. VCF files for the USB15x(302),
USB40x(42), Zhou11x(293), Soja15x(43) and MSMC17x(95) rese-
quenced data sets were aggregated into a diverse set of 775 soy-
bean accessions that we named the Soy775 accession panel (See
Figure S2 for detailed composition of the Soy775 accession panel).
This aggregation step was performed via a ‘‘fast merge” method,
whereby any variant that was present in one dataset, but absent
from another, was assigned as missing data in the data set in which
it was absent. All 35,718,025 variants (SNP and InDel positions)
from the combined Soy775 accession panel were run through the
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SNPEff v4.3T software [31], using the Ensembl Glycine max v2.1.47
gtf annotation file, to obtain the predicted impact of each variant.
We performed testing of the Soy775 data set and concluded that
the error in respect to SoySNP50k marker positions was less than
4.7%; those marker positions were omitted from the curated acces-
sion panel due to high missing data values (above 40%). This aggre-
gated file is publicly available for download on the SoyKB [28,30]
server (https://soykb.org/public_data.php). The Soy775 data set
represents the data set used for Inverse GWAS for the pod shatter-
ing trait, and it is used for the Accuracy calculation in the AccuTool
(described further in the Methods).The final list of accessions is
available at https://github.com/nad7wf/AccuTool/tree/master/
publication_files.

Phenotypes for TM identification

Real (observed) phenotypes for soybean pod shattering, flower
pigmentation and stem termination traits were used for GWAS
that aimed to identify SoySNP50K TMs. For all accessions in this
analysis, we used phenotypes that are publicly available in the
GRIN database (https://www.ars-grin.gov) that are downloadable
at Soybase (https://soybase.org/grindata/). For the pod shattering
trait, we used the same categorization as in the recent work of
Zhang and Singh [26] where late shattering score [32] was grouped
into two phenotypes: shattering resistant (scale 1; n = 3,446) and
shattering susceptible (scale 2-–5; n = 8,749). For GWAS on the
flower pigmentation trait, we used white and purple flower color
as phenotypes for the subset of USB15x(302) accessions with avail-
able SoySNP50K genotyping data (purple: n = 114; white: n = 166;
unknown or other flower color: n = 18). The reason for using the
subset of the USB15x(302) accessions for flower pigmentation trait
instead of using all accessions with that available phenotype was
to enable comparison between GWAS and Inverse GWAS on the
same data set. For GWAS on the stem termination trait, we used
16,475 GRIN accessions that were either determinate (n = 8,771))
or indeterminate (n = 7,705). The phenotype files used in this work
are available at https://github.com/nad7wf/AccuTool/tree/master/
publication_files.

Synthetic phenotypes for SPAS

All Synthetic phenotypes used in this work were prepared as
follows: A particular position of a variant or a marker on a chromo-
some in the soybean genome was extracted from SNP matrices of
the original data sets (USB15x(302) [11]) or from SoySNP50K geno-
type data of our Soy775 accession panel that were downloaded at
Soybase (https://soybase.org/snps/download.php). In the Synthetic
phenotype files, the reference and alternate alleles were coded
numerically as wild-type (WT, 1) or mutant (MUT, 2) phenotypes
for each accession. The reference genotype Williams 82 was set
as WT or MUT genotype (depending on the ancestral phenotype).
Accessions with missing data for the position were coded as an
unknown phenotype (NA).

For the Inverse GWAS on pod shattering trait, we derived the
Synthetic phenotype from resequenced data of our Soy775 acces-
sion panel where we numerically coded the pdh1 CM on chromo-
some 16 at position 29,944,393 Glycine max Williams 82.a2.v1
for all SoySNP50K genotyped accessions of the Soy775 accession
panel as described in our earlier work [16].

For Inverse GWAS on flower pigmentation trait, we selected a
variant position of the SNP associated with the deletion/substitu-
tion of the CM in the flavonoid 3050-hydroxylase (F3050H) W1 gene
[33] at chr13: 17,316,756 as the Synthetic phenotype. We per-
formed the Inverse GWAS for USB15x(302) and Soy775 accession
panels, respectively, using SoySNP50K genotyping data. We aimed
to compare the landscape of the CM association between the
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USB15x(302) data set and the Soy775 accession panel. Besides
the Inverse GWAS for flower pigmentation on SoySNP50K genotyp-
ing data, we also performed the Inverse GLAS on the resequenced
genotype data of the Soy775 accession panel. This analysis aimed
to reveal whether and how different the landscape of the w1 CM
associated SoySNP50K markers is in presence/absence of the other
genomic variants (in the resequenced genotype of the Soy775
accession panel). For simplicity of the Inverse GWAS/GLAS associ-
ated SoySNP50K markers, these were extracted from the GLAS
result file (using AccuTool described below) and displayed in a sep-
arate visual output.

To demonstrate how our SP2CM strategy can identify a CM from
a TM, we performed GLAS of SP2CM – Part 2 for stem termination
Dt1 where we used the Synthetic phenotype of ss715635425
(chr19: 45,204,441) Dt1/dt1 haplotype TM [25].

All Synthetic phenotypes used in this work are available
at https://github.com/nad7wf/AccuTool/tree/master/publication_
files.

GWAS

In this work, we performed genome association studies that
were either genome-wide or genome-localized, but irrespective
of the type of association, we conducted all the analyses employing
a mixed linear model (MLM) [34] using the Genome Association
and Prediction Integrated Tool (GAPIT) software implemented in
R as previously described [35] and Trait Analysis by aSSociation,
Evolution and Linkage (TASSEL) [36]. We used the default GAPIT
setup for MLM except GWAS for pod shattering, where we per-
formed the association with population structure correction for
the first three principal components, in contrast to previously pub-
lished Bayesian Information Criterion test [26]. For GLAS, we
applied a limit-to-known-associated-one-chromosome-region
approach where we performed the association on a 3 M bp wide
region covering the W1-associated region for flower color and a
2 M bp wide region covering the Dt1-associated region for stem
termination. All GWAS files generated within this work are avail-
able at https://github.com/nad7wf/AccuTool/tree/master/
publication_files.

Accuracy calculation

Accuracy is an essential component of this work and therefore
is calculated for every association study here. We implemented
several comprehensive descriptors as additional post-GWAS selec-
tion criteria. The two key descriptors are Average accuracy and
Combined accuracy pessimistic that were described previously
[37].

For Accuracy calculations, correct association indicates an exact
match between the genotype and phenotype case. Average accu-
racy (the balanced accuracy) combines WT accuracy (substitutes
original Sensitivity or True Positive Rate) and MUT accuracy (sub-
stitutes original Specificity or True Negative Rate) into the follow-
ing equation:

Average accuracy ð%Þ ¼ WT AccuracyþMUT Accuracy
2

� �
� 100

where WT accuracy is given by:

WT accuracy ð%Þ

¼ Number of accessions with correct WT association
Number of accessions with correct and incorrect WT associations

� �

� 100

and MUT accuracy is given by:
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MUT accuracy ð%Þ

¼ Number of accessions with correct MUT association
Number of accessions with correct and incorrect MUT associations

� �
�100

We derived an equation for calculation of combined accuracy
(binary classification accuracy) from the concept of combined sen-
sitivity and specificity [37] according to the standard equation:

Combined accuracy realistic ð%Þ

¼ Number of true positivesþnumber of true negatives
Sum of true positivesþ true negativesþ false negativesþ false positives

� �
�100

where true positives are accessions with MUT phenotype corre-
sponding with MUT genotype, true negatives are accessions with
WT phenotype corresponding with WT genotype, false positives
are accessions with WT phenotype corresponding with MUT geno-
type and false negatives are accessions with MUT phenotype corre-
sponding with WT genotype. Unlike Average accuracy, the
Combined accuracy calculation produces imbalanced values based
on the frequency of WT and MUT cases.

To better understand missing data values in Combined accuracy
realistic, we calculate Combined accuracy pessimistic that repre-
sents a ‘‘worst-case scenario” that also incorporates associations
where phenotype and/or genotype information is unknown. The
worst-case scenario accuracy is therefore calculated based on a
3x3 contingency table (WT, MUT, unknown phenotype and/or
genotype) where all unknown genotypes or phenotypes are con-
sidered as mismatches (false positives and false negatives) accord-
ing to the following equation [37]:

Combined accuracy pessimistic ð%Þ

¼ Sum of accessions with correct WT associationþ correct MUT association
total number of accessions

� �
�100

In this work, we use Average accuracy and Combined accuracy
pessimistic (displayed in parentheses in all plots).

AccuTool construction

The AccuTool (https://soykb.org/AccuTool/index.php) is a web
application written in R v3.5.1 using the R Shiny v1.3.2 package
[38] and Perl v5.16.3. Specifically, R Shiny was used to create the
interactive, front-facing website graphical user interface (GUI)
and server communication, while Perl scripting was used to
manipulate the underlying data and calculate Accuracy values.
The AccuTool uses the soybean Williams 82 a2.v1 reference gen-
ome and the Soy775 accession panel to calculate accuracies for
variants present in a user-defined genomic region. The tool enables
upload of a phenotype file and a GWAS statistics file or to input a
variant position as a Synthetic phenotype. The full description of
the AccuTool with demo files is available at https://github.com/-
nad7wf/AccuTool. The AccuTool functionalities that we used in this
work include filtering by SoySNP50K marker, p-value, and sorting
Accuracy by descent. To calculate Accuracy for a genomic position
(either a CM or a TM, specified earlier) the position was selected in
the tool as a phenotype as described in the AccuTool. The AccuTool
input and output files are available at https://github.com/nad7wf/
AccuTool/tree/master/publication_files.

AccuTool streamlined SP2CM for a novel gene identification

To identify a CM for the novel pod shatter gene NST1A with a
streamlined SP2CM strategy, we performed an Accuracy analysis
with the AccuTool using the genomic position of the TM
ss715598106 [26] at chromosome 07 (chr07: 4,277,666) as Syn-
thetic phenotype (tagging variant). We analyzed a 4 M bp land-
scape around the TM associated genomic region where we
focused on modifying variants by selecting ‘‘Return only amino
acid-modifying variants”. The full AccuTool output for the land-
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scape of ss715598106 is available at https://github.com/nad7wf/
AccuTool/tree/master/publication_files.
Proxy markers

The AccuTool was used to identify the five highest Accuracy
SoySNP50K markers for each of the three study cases as well as
for the novel gene CM identification and other important cloned
soybean genes. The CM position was determined from the report
of gene cloning, and it was used as the Synthetic phenotype in
Inverse GWAS, where the reference genotype Williams 82 was
set as WT or MUT genotype (depending on the ancestral pheno-
type) with an arbitrary range of plus and minus 2 M bp with filter-
ing for 70–100% Average accuracy and return of SoySNP50K
positions only. The results were sorted by descending Average
accuracy, and the first five markers were extracted along with
the marker name and position, Average accuracy, and Combined
accuracy pessimistic.
Data visualization

For GWAS data visualization, the R packages Sushi [39] and
ggplot2 [40] were used.
Data availability

All data generated or analyzed during this study are included in
this published article, its supplementary information files and at
https://github.com/nad7wf/AccuTool/tree/master/publica-
tion_files. The Zhou11x(293) data set remapped to Glycine max
Williams 82.a2.v1 as well as the aggregated Soy775 accession
panel are publicly available at https://soykb.org/public_data.php.

The code for the AccuTool analysis as well as all the analyses
outputs and supporting data used in this work are available at
https://github.com/nad7wf/AccuTool.
Results

The Synthetic phenotype, Inverse GWAS, and Accuracy analysis
concepts

We developed an alternative association strategy to link pheno-
types with genotypes and explore LD relationships independent of
the frequencies of alleles. The Synthetic phenotype is a genomic
position that can be converted into a phenotype by simple transpo-
sition of the base at the defined position into the reference or alter-
nate case (WT or MUT phenotypes) (Fig. 1a). Every genomic variant
position can be transformed into a Synthetic phenotype. For exam-
ple, the soybean stem termination CM was readily transformed
into a Synthetic phenotype (Fig. 1a).

The concept of Inverse GWAS uses a genomic position of a
known CM (from a published cloned gene) as a Synthetic pheno-
type and enables deeper exploration of directly associated variant
positions in the genome (the landscape of association) when
applied to resequenced genotype data without the burden of
mis-phenotyped artifacts or pleiotropic/epistatic effects of other
genes. Fig. 1b illustrates the difference between standard (forward)
GWAS where a real phenotype is used for the association, and our
Inverse (backward) GWAS where a CM is used as the Synthetic
phenotype. In contrast to standard GWAS, where one or more
TMs in LD with the CM controlling the phenotype are identified,
Inverse GWAS identifies Proxy markers – the most highly associ-
ated markers to a CM. Inverse GWAS outcomes are an LD landscape
for corresponding positions and Proxy markers for the CM.

https://soykb.org/AccuTool/index.php
https://github.com/nad7wf/AccuTool
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Fig. 1. Scheme that highlights key points of the Inverse GWAS approach: GWAS and Inverse GWAS, shows how a Synthetic phenotype can be utilized and created, and defines
Accuracy. a, Representative table that shows the difference between real and Synthetic phenotype. Synthetic phenotype can be created by transforming the genotype of a
variant position into a numerical binary phenotype (reference variant as 1 and alternate variant as 2). b, GWAS on low-density genotype data associates a real/observed
phenotype with markers where those with the highest p-value are recognized as TMs. Inverse GWAS uses a known CM as a Synthetic phenotype and therefore highlights CM-
associated markers – Proxy markers. Accuracy calculation enables identification of the most accurate TM based on direct correspondence to a phenotype. c, Accuracy
calculation scheme. NA: not analyzed; unknown variable - phenotype or genotype.

Mária Škrabišová, N. Dietz, S. Zeng et al. Journal of Advanced Research 42 (2022) 117–133
We adopted an ‘‘Accuracy analysis” as post-GWAS or stand-
alone mathematical evaluation criteria that assesses how well a
genomic variant corresponds to a real or Synthetic phenotype.
The two key Accuracy calculations are Average accuracy and Com-
bined accuracy pessimistic (Fig. 1c). Average accuracy is a strict
measure of correspondence that ignores missing data and frequen-
cies (phenotype or genotype) and is defined as the mean percent-
age of the accessions with a match between the user-selected
genomic position or phenotype and each of the resequenced
data-derived variant positions in a selected range where the phe-
notype and genotype of the reference genome and alternate case
are used for comparison (Fig. 1c). Combined accuracy pessimistic
takes missing data into account and thus, enables comparison of
various data set sizes and missing data percentages. Any accession
with either missing genotype or missing phenotype data is consid-
ered a mismatch and therefore penalized in the Combined accu-
racy pessimistic calculations (Fig. 1c). When Accuracy is
calculated for GWAS, the highest Accuracy markers among the
associated markers can be selected (the Proxy markers of Inverse
GWAS, the intersection in Fig. 1b). For soybean, we added power
to our Accuracy calculations by aggregating a curated panel of
775 resequenced soybean accessions (the Soy775 accession panel,
Fig. S1a, b). We implemented the Accuracy analysis to every GWAS
in this work by coupling GWAS outputs with our automated Accu-
racy calculation tool, the AccuTool (described below).
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Coalescing these new concepts, tools, and resources, we devised
the SP2CM strategy that aims to identify CM (Fig. 2). SP2CM con-
sists of two parts that each employ an association step and an
Accuracy analysis. Part 1 associates a real phenotype with low-
density genotype data of a panel of accessions in GWAS with all
chromosomes, whereas Part 2 associates a Synthetic phenotype
with localized genotype data of a resequenced data set (GLAS), fur-
ther delineating the associated region as part of a broader strategy.
Both parts include the Accuracy calculation step. In Part 1, Accu-
racy enables selection of the highest correspondence marker
among the associated markers (TM). In Part 2, Accuracy identifies
candidate genes and putative CMs.

To enable automated Accuracy analysis, we created the Accu-
Tool (https://soykb.org/AccuTool/index.php) to calculate and
explore the mathematical correspondence (Accuracy) between
resequenced data-derived variant positions in the genome and
user-defined positions or phenotypes. AccuTool results enable
exploration of the LD landscape in a focused region, identification
of Proxy markers for CMs, and accentuation of GWAS visuals of
the three demonstrative example cases and one example of the
novel gene. For soybean, the AccuTool calculates Accuracy against
a single genomic position or phenotype in a selected genomic
range for each position in the resequenced data curated from our
analysis of 775 soybean accessions. The Soy775 accession panel
currently consists of 110 wild (G. soja) soybean accessions, 475

https://soykb.org/AccuTool/index.php


Fig. 2. The Synthetic phenotype to CM (SP2CM) strategy. The pipeline illustrates the SP2CM process that consists of two parts: Part 1 and Part 2 (grey boxes). In Part 1, GWAS
is performed on low-density genotype data of accessions with a known real phenotype. GWAS-identified associated markers are then tested for Accuracy where the highest
Accuracy/-log10p-value marker is the TM. Part 2 starts with transformation of the genotype of the TM variant position present in a resequenced data set into a Synthetic
phenotype (yellow box). In Part 2, GLAS identifies the TM-associated genomic variants, where those with the highest Accuracy are candidates for CM (red box). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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soybean (G. max) landraces, and 190 improved (G. max) soybean
accessions, with � 35.7 M variant positions derived from indepen-
dent resequencing projects that encompasses 5 individual data sets
(Fig. S2a, b) [6,7].
Inverse GWAS illuminates multiple near-perfect TM for a pod
shattering CM

In soybean, seed dispersal susceptibility is an ancestral trait,
whereas pod shattering resistance is caused (among others) by dis-
function of a dirigent-like protein Pdh1 that otherwise controls pod
wall torsion after dehiscence [41]. Quantitative traits present chal-
lenges that make it difficult to identify the associated genes in part
because each associated region controls an unknown portion of the
phenotype. The non-functional pdh1 allele contributing to pod
shatter resistance is caused by a nonsense mutation on chromo-
some 16 at position 29,944,393 G. maxWilliams 82.a2.v1 that leads
to a premature stop codon in the Pdh1 protein [41]. Besides the
SoySNP50K low-density marker ss715624199 Proxy that we
described previously from our Inverse GWAS analysis [16], the
ss715624201 marker was recently also associated with Pdh1 in
GWAS on an independent panel of soybean accessions [26]. Since
both studies were performed on a limited number of accessions
in the data sets (�500 and � 800), we maximized the power of
the GWAS by including all accessions with available pod shattering
phenotypes (n = 12,195). Genome-wide evidence for association to
the pod shattering phenotype is documented in Fig. 3a where the
ss715624199 marker was identified as an isolated TM with the
highest -log10(p). To compare the landscape of association for the
real pod shattering score phenotype and for the pdh1 CM genomic
variant as a Synthetic phenotype, we conducted an Inverse GWAS
analysis using the pdh1 CM genotype from the Soy775 accession
panel as a Synthetic phenotype on SoySNP50k genotype data. We
identified three Proxy markers to the pdh1 CM with nearly identi-
cal maximized -log10(p) values in the landscape of other associated
markers (Fig. 3b). To understand why the Zhang & Singh [26] TM
for Pdh1 was different from our Pdh1 Proxy marker identified in
GWAS here and in our previous study [16], we zoomed into the
Inverse GWAS pdh1 CM-associated region (Fig. 3c) and accentuated
the plot with Accuracy values to the pdh1 CM for every SoySNP50K
marker in the region calculated by the AccuTool (Fig. 3d). Based on
the accentuated Accuracy information, we determined that in the
SoySNP50K marker case of Pdh1, there were several markers that
exposed the CM with very high Accuracy (five markers with > 95%
Accuracy to the CM), along with a few SNPs in close physical prox-
imity to the CM that had lower -log10 p-values as well as low Accu-
racy. To assess direct correspondence between a real phenotype
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and a CM (or any other genomic position), the AccuTool enables
upload of a user-defined phenotype for the Soy775 accession
panel. Here, to ascertain the direct correspondence between the
pdh1 CM and the pod shattering score, we used this AccuTool
option for the quantitative pod shatter trait and revealed that even
though the most highly associated markers with the pdh1 CM have
Accuracy values close to 100%, the correspondence with the
observed pod shattering score phenotype is only 87.5%, reflecting
the power of determining the landscape of association in an iso-
lated genomic region, which can be very meaningful in dissecting
multi-genic traits. Although this pod shatter result revealed multi-
ple near-perfect Proxy markers for the pdh1 CM, that result is not
typical for GWAS on low-density genotype data (data not shown).
Accuracy analysis can serve as a component for prioritizing tagging
variants

When Inverse GWAS is performed on resequenced data, it
reveals the whole landscape of association for the CM where the
low-density markers are interspersed with the other genomic vari-
ants present in the resequenced data set. Thus, Inverse GWAS with
a resequenced data set provides a more accurate view of the low-
density markers within the context of associated genomic variants.

Soybean flower pigmentation is a qualitative trait that is con-
trolled by the W1 locus [42]. The W1 allele is a gene for flavonoid
3050-hydroxylase (F3050H) that is essential for completing the
biosynthetic pathway of anthocyanins resulting in purple flower
color in wild soybeans (Glycine soja [Siebold & Zucc.]). The non-
functional w1 allele is caused by a small insertion and substitution
leading to a premature stop codon in the F3050H gene (Gly-
ma.13G072100) and white flowers [33]. In our curated Soy775
accession panel resequenced data, the complicated genomic rear-
rangement resulted in five w1 CM InDel variant positions on chro-
mosome 13 between 17,316,723 and 17,316,758 as well as a SNP
that mapped to position 17,316,756 in the rearrangement and
was in nearly perfect association with flower color phenotype
(99.4% Accuracy, See Data availability) and the other functional
InDels (Table S1). We utilized the SNP position as thew1 CM in this
work due to the complexity of the InDel w1 positions in the rese-
quence data. There were five other modifying variants in the tran-
script region of Glyma.13G072100 with low Accuracy to flower
pigmentation (Table S1).

For this analysis, we utilized the USB15x(302) resequenced data
set containing 302 soybean accessions at 15x average depth to
illustrate the relative effectiveness of smaller data sets with high-
density information [11]. The GWAS for flower color phenotype
with SoySNP50K marker genotype on the USB15x(302) accessions



Fig. 3. GWAS and Inverse GWAS for the pod shattering phenotype demonstrating example of multiple near-perfect TMs for the pod shattering CM.Manhattan plot depicting
the evidence of association (-log10p-value) across soybean GRIN accessions genotyped by low-density SoySNP50K bead chip for pod shattering score phenotype in GWAS (a)
and an Inverse GWAS using the pdh1 CM as Synthetic phenotype with the SoySNP50K marker subset from the AccuTool Soy775 accession panel (b). c, Zoomed Inverse GWAS
Pdh1-CM associated 2.32 M bp region of (b). d, Accentuation of Inverse GWAS results in (c) using the AccuTool to generate Accuracy values for the markers against the Pdh1/
pdh1 CM allele status (color scale bar). The most highly associated markers are labeled with their corresponding ss code and Accuracy values, with the value in parentheses
indicating the Combined accuracy pessimistic output that accounts for allele frequency and penalizes missing data. Dashed line intercept on x axis indicates the pdh1 CM
position at chr16: 29,944,393 Wm82.a2.v1. The insert pie chart indicates the count of Pdh1/pdh1 CM alleles in the Soy775 accession panel.
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resulted in two highly associated TMs, ss715616657 (reported by
Bandillo et al. [25]) and ss715616658 located 6,787 or 9,493 bp
upstream of the w1 SNP CM, respectively (Fig. 4a). Fig. 4b-c show
the distribution of real flower color phenotype and w1/W1 allele
counts from the Soy775 accession panel that were used for Accu-
racy accentuation. When zoomed in on the GWAS associated
region on chromosome 13 and accentuating with Accuracy values
to thew1 CM from the Soy775 accession panel AccuTool data, there
are several associated variant positions in close proximity to the
w1 CM, but the two SoySNP50K markers that are within 10 kb of
the w1 CM emerge as the most highly associated TMs and those
with the highest Accuracy to the w1 CM (Fig. 4d). It was notable
that ss715616654 was the closest SoySNP50K marker in proximity
to the w1 CM (325 bp). Despite statistically significant association
to the phenotype using the USB15x(302) data set (-log10(p) was
11.96), ss715616654 had low Accuracy to the w1 CM (Fig. 4d).
ss715616654 is the only SoySNP50K marker in Glyma.13G072100
coding sequence, a silent mutation in close vicinity to the func-
tional InDels (Table S1). We performed the Inverse GWAS also on
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the Soy775 accession panel genotyped with SoySNP50K chip to
maximize the GWAS power by doubling the number of accessions
in the data set and observed a very similar pattern (Fig. 4e). We
further investigated the surrounding landscape of association by
performing Inverse GLAS on the USB15x(302) data set. Surpris-
ingly, when Inverse GLAS was conducted using thew1 CM as a Syn-
thetic phenotype with USB15x(302)-derived resequencing
variants, ss715616654 was the highest associated SoySNP50Kmar-
ker (Fig. 4f). Upon dissection of the AccuTool Soy775 Accuracy cal-
culations (filtering for SoySNP50K marker genotypes only, Fig. 4g),
the ss715616654 marker at position chr13: 17,316,431 had near
perfect correspondence with the w1 mutant allele, but low Accu-
racy for the W1 functional allele (Table S1). For the USB15x(302)
data set, the ss715616654 marker would have been identified as
a Proxy marker based on Inverse GWAS. However, accentuated
Accuracy information for the variant positions from the Soy775
data set clearly showed the best Proxy markers to the w1 CM iden-
tified with the AccuTool, regardless of their physical distance to the
w1 functional InDels (Fig. 4f-g).



Fig. 4. GWAS, Inverse GWAS and GLAS forw1 flower color CM shows that Accuracy can serve as a component for prioritizing TMs.a, Manhattan plot from GWAS depicting the
evidence for association (-log10p-value) across the soybean USB15x(302) data set accessions for white or purple flower color phenotype genotyped by low-density SoySNP50K
bead chip. b-c, pie charts representing distribution of white (W), purple (P), and unknown (NA) flower color phenotypes (b) and w1/W1 allele counts (c) of Soy775 accession
panel that were used for Accuracy accentuation in the following plots. d, Zoomed W1-associated region of (a) on chromosome 13 (3 M bp range) where the color coding
represents the AccuTool Soy775 accession panel outputs for Accuracy using the w1/W1 allele status on the associated SoySNP50K markers. Selected markers are labeled with
their identifier and Accuracy values, with the value in parentheses indicating the Combined accuracy pessimistic output that accounts for allele frequency and penalizes
missing data. Dashed line intercept on x axis indicates the w1 CM position at chr13: 17,316,756 Wm82.a2.v1. e, Soy775 accession panel data set Inverse GWAS results with
the w1 CM Synthetic phenotype and SoySNP50K genotypes zoomed to W1-associated region on chromosome 13 (3 M bp range) where the color coding represents the
AccuTool Soy775 accession panel outputs for Accuracy using the w1/W1 allele status on the associated SoySNP50K markers. f, USB15x(302) data set Inverse GLAS results with
thew1 CM Synthetic phenotype across USB15x(302) all resequenced data positions as genotype zoomed on chromosome 13 (3 M bp range) where the color coding represents
the AccuTool Soy775 accession panel outputs for Accuracy using the w1 CM on the associated SoySNP50K markers. g, same as f showing just the SoySNP50K markers. Dashed
line intercept on � axis of d-g highlights w1 CM position at chr13: 17,316,756 Wm82.a2.v1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Marker ss715616627 was an outlier for high Accuracy to thew1
CM with lower statistical significance for association than many
other markers in the region (Fig. 4d). Further investigation
revealed a quality issue with the ss715616627 marker genotype
such that the accessions had very high missing genotype informa-
tion in the data set for that marker position, and missing data was
reflected in the AccuTool Combined accuracy pessimistic value of
23.3%.

The SP2CM strategy discriminates multiple alleles of a candidate gene
for stem termination

In this example, we present our application of the SP2CM strat-
egy on the indeterminate or determinate stem termination trait
conditioned by the Dt1 locus. The Dt1 gene (Glyma.19g194300)
encodes GmTFL1b, a positive regulator of the shoot apical meristem
[43], and the missense R166W allele was responsible for the deter-
minate plant (dt1) type [43,44]; three additional missense alleles
(R62S, P113L, and R130K) were identified in the gene [44]. The
functional and missense alleles of Dt1/dt1 Glyma.19g194300 are
present in the Soy775 accession panel, with the reference and
R166W alleles being the most frequent.

The ultimate prerequisite for amplification of GWAS power on
genotype data is a large number of accessions with a known real
phenotype. For GWAS for the SP2CM Part 1 (Fig. 2), we used stem
termination phenotypes and SoySNP50K marker genotypes on the
GRIN collection of accessions (n = 16,475). This GWAS produced a
relatively isolated highly associated TM, ss715635425 (Fig. 5a). To
zoom into the associated region and to accentuate the variants
with Accuracy, we used stem termination phenotype and dt1/Dt1
allele status: Fig. 5b-c show their distribution in the Soy775 acces-
sion panel. When zoomed in on the associated region and accentu-
ating with the AccuTool Accuracy values using the real/observed
phenotypes (433 available from 775 accessions), the TM with high
statistical significance had only modest Accuracy values (79.0% for
Accuracy and 45.3% for Combined accuracy pessimistic; Fig. 5d).
Replacing the observed phenotype Accuracy values with AccuTool
calculations utilizing the reported dt1 R166W CM
(chr19:45,183,701) as a Synthetic phenotype revealed the relation-
ship between the TM and the most frequent dt1 CM for the stem
termination phenotype (Fig. 5e). The stem termination TM is a
Proxy marker for the dt1 R166W CM, but it is not a Proxy marker
for the other three dt1 missense alleles (data not shown). For GLAS
of the SP2CM Part 2 we used USB15x(302) resequenced accessions
with the ss715635425 TM as the Synthetic phenotype and all
USB15x(302) resequencing variants in the 2 M bp surrounding
region as genotype. The GLAS produced a cluster of associated vari-
ant positions that included the dt1 R166W CM (Fig. 5f). Further
zooming into the ss715635425-associated region and accentuating
with AccuTool Accuracy values using the dt1 R166W CM as pheno-
type revealed the variant positions in LD with the dt1 TM that have
high accuracies to the CM (Fig. 5g, AccuTool outputs are available
at https://github.com/nad7wf/AccuTool/tree/master/publica-
tion_files). High Accuracy values extended throughout most the
250 kb-associated region for a subset of the variant positions,
despite fluctuation in -log10(p) values (Fig. 5g).

The SP2CM strategy assists in identification of a CM for an uncloned
gene contributing to the pod shattering phenotype

The SP2CM strategy utilizes accuracy to identify LD between
variant positions associated with a phenotype and serves as a
bridge between low-density and resequence data sets. In our
GWAS with the quantitative pod shatter phenotype (Fig. 3a) we
identified the previously published low-density ss715598106 as
the NST1A locus TM [26]. The previous study used the TM as a
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Proxy marker for pod shatter in their analysis, because they iden-
tified a modest association for four of 32 additional variant posi-
tions focused on the candidate NST1A gene (Glyma.07g050600)
approximately 55,000 bp downstream from the TM [26]. Therefore,
we followed a streamlined SP2CM strategy, where we directly ana-
lyzed the landscape of the ss715598106 associated genomic region
for the Soy775 accession panel. We selected all modifying variants
in the region and analyzed the positions with the highest Average
Accuracy to the ss715598106 synthetic phenotype position. A posi-
tion with the third highest Accuracy was a SNP (chr07: 4,332,840)
that creates a stop-lost mutation for the alternate allele in Gly-
ma.07g050600, a NAC Secondary wall Thickening Promoting Factor
1 ortholog (NST1A) (Table 1). The high-accuracy modifying variants
in other surrounding genes were in LD with the candidate CM posi-
tion and the TM, while no other modifying variants in NST1A,
including the variants identified in previous work [26] had high
Accuracy (Table 2; data not shown). The direct correspondence
between the TM and the stop-lost mutation in NST1A implicates
that position as the pod shattering CM.
Using the AccuTool to generate a Proxy marker resource for cloned
genes

The SP2CM strategy exploits the overlap in TMs and Proxy
markers (Fig. 1b). Our concepts, tools, and resources assist in con-
necting phenotypes to genotypes, and an additional application of
the AccuTool is to generate viable Proxy markers for cloned genes.
A Proxy marker resource can therefore be used as a first check for
new GWAS results to more confidently assign identified loci to
known genes. For soybean, we used the AccuTool to extract the five
highest Accuracy low density Proxy markers for the CMs for both
pod shatter loci, the flower color pigmentation gene, the stem ter-
mination gene, and the other cloned soybean genes for which a CM
was available (Table 3 [26,33,50–58,41,43–49]). The top five Proxy
markers ranged from 73.8 to 98.8% Accuracy. One notable feature
of Proxy markers is that the absolute physical distance to the CM
was variable.
Discussion

Here we demonstrated that Inverse GWAS with a CM as a Syn-
thetic phenotype associates variants that are in LD with the CM,
and, that Accuracy analysis can illuminate variants with the high-
est direct correspondence to the phenotype among them. Thus,
correlation of SPAS-associated genomic positions with direct corre-
spondence to real or Synthetic phenotypes and vice versa led us to
the following conclusion: The Synthetic phenotype empowers the
researcher to employ this connection of phenotype to genotype
association; a highly accurate low-density marker position associ-
ated to a real phenotype can be used as a Synthetic phenotype in
GWAS with a resequenced data set where it subsidizes otherwise
missing phenotype information. We further showed that the con-
cept of Synthetic phenotype and Accuracy calculation is a key to
further success in genotype-based GWAS discoveries if a panel of
resequenced accessions is available. We demonstrated the utility
of both a 775-member accession panel and a 302-member acces-
sion panel of resequenced data sets. The benefit of this approach
is in creation of critical information that can further assist in iden-
tifying CM.

Each of our three demonstrative cases served a particular pur-
pose and represent the most common GWAS complicating factors
that can be solved by our proposed concepts. These factors are:
GWAS analyses on different sets of limited-number accessions
identify different TMs; CMs can be positionally distant to TMs
and thus, evaluation based on LD can be insufficient or even mis-
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Fig. 5. Identification of the dt1 R166W determinate stem termination CM through the SP2CM strategy, an example of multiple alleles of a candidate gene. a, SP2CM Part 1:
Manhattan plot depicting the evidence for association (-log10p-value) across the soybean GRIN collection of accessions genotyped by low-density SoySNP50K markers for
determinate (D) or indeterminate (I) stem termination phenotype. b-c, pie charts representing distribution of determinate (D), indeterminate (I), and unknown (NA) stem
termination phenotypes (b) and dt1/Dt1 allele counts (c) of Soy775 accession panel that were used for Accuracy accentuation in the following plots. d, Zoomed GWAS of
SP2CM Part 1 Dt1-associated 250 kb region on chromosome 19 with accentuated Accuracy to the stem termination phenotype (based on the AccuTool Soy775 panel with
distribution of the phenotypes described in the pie chart inset). Dashed line intercept on x axis highlights dt1/R166W CM position at chr19: 45,183,701 Wm82.a2.v1. e, The
same as d except with the Accuracy calculated to the highest frequency determinate allele dt1 R166W/Dt1 Synthetic phenotype (pie chart in the inset documents the
distribution of the Synthetic phenotype in the AccuTool Soy775 panel). Section f depicts GLAS results of SP2CM Part 2 on USB15x(302) resequenced data set with the Dt1
haplotype TM ss715635425 as a Synthetic phenotype (2 M bp). g zooms into the 250 kb Dt1 associated region from f and shows the landscape of the associated variants with
their AccuTool-generated Accuracy to the Dt1/dt1(R166W) allele status (distribution of the Synthetic phenotype in the AccuTool Soy775 panel is documented in the inset pie
chart). The values in parentheses document uncertainty expressed as Combined accuracy pessimistic that accounts for allele frequency and penalizes missing data.
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Table 1
AccuTool output for selected modifying variant positions of NST1A associated locus. Accuracy was calculated to the ss715598106 marker position at chr07: 4,277,666 as
Synthetic phenotype with reference allele as WT (n = 476) and alternate as MUT (n = 285). Only 1.8% of Soy775 accessions were with missing genotype. Only positions with
Average accuracy � 90.0% are shown and sorted descendent by Combined accuracy pessimistic. Candidate gene NST1A CM is in bold. (Distance to TM is calulated in base pairs
with upstream locations in paretheses; Avg_Accu, Average accuracy expressed in percentage; Comb_Acc_Pess, Combined accuracy pessimistic expressed in percentage; Effect,
Effect on amino acid change; WT_Accu, Accuracy of accessions with WT allele expressed in percentage; MUT_Accu, Accuracy of accessions with MUT alle expressed in percentage;
Miss_genot_WT, missing genotype of WT accessions expressed in percentage; Miss_genot_MUT, missing genotype of MUT accessions expressed in percentage).

Position at
chr07

Distance to
ss715598106

Avg_Accu Comb_
Accu_Pess

SoySNP50K Gene Effect WT_Accu Miss_
Genot_WT

MUT_
Accu

Miss_
Genot_MUT

42,39,995 37,671 97.0 93.2 . Glyma.07g049800 G>A|G563E 95.1 1.3 98.9 2.5
42,32,393 45,273 97.1 92.9 . Glyma.07g049700 A>C|I191S 94.6 1.9 99.6 2.1
43,32,840 (55,174) 96.1 92.6 . Glyma.07g050600 T>A|stoplost

401R
95.1 1.5 97.1 1.8

42,31,740 45,926 97.2 92.4 . Glyma.07g049700 T>C|T409A 94.7 1.5 99.6 4.2
42,97,714 (20,048) 94.5 92.4 . Glyma.07g050500 G>A|A51V 98.7 0.6 90.2 3.2
42,40,492 37,174 94.7 91.7 . Glyma.07g049800 G>C|V702L 95.1 0.6 94.2 2.8
42,91,502 (13,836) 94.9 91.6 . Glyma.07g050400 C>A|L238I 99.4 1.5 90.4 5.3
42,38,298 39,368 97.2 91.0 . Glyma.07g049800 T>C|L41P 95.4 3.2 98.9 6.0
42,40,329 37,337 93.4 90.2 . Glyma.07g049800 C>A|N647K 96.8 1.9 90.1 3.9
42,38,391 39,275 97.0 89.9 . Glyma.07g049800 T>A|L72Q 95.6 3.8 98.5 7.7
42,38,327 39,339 94.7 89.4 . Glyma.07g049800 T>C|Y51H 95.7 2.5 93.6 6.7
42,32,510 45,156 91.4 89.4 ss715598067 Glyma.07g049700 C>A|G152V 96.4 1.5 86.4 2.1
42,24,511 53,155 91.2 89.4 . Glyma.07g049700 T>A|T1080S 96.2 0.6 86.2 3.2
42,20,519 57,147 92.3 89.3 . Glyma.07g049700 A>T|S1883N 94.5 1.5 90.2 3.2
42,24,562 53,104 91.3 89.0 . Glyma.07g049700 A>T|S1063T 96.4 1.3 86.2 3.5
42,97,080 (19,414) 92.5 88.4 . Glyma.07g050500 C>A|K262N 99.2 0.8 85.8 11.2
42,38,249 39,417 90.1 87.0 . Glyma.07g049800 C>A|L25I 97.4 2.9 82.7 4.9
42,38,751 38,915 95.8 82.7 . Glyma.07g049800 T>C|V192A 95.9 2.3 95.6 28.4
42,96,169 (18,503) 94.2 78.2 . Glyma.07g050500 T>G|N375H 98.7 21 89.7 8.1

Table 2
AccuTool output for all modifying variant positions in NST1A gene. Accuracy was calculated to the ss715598106 marker position at chr07: 4,277,666 as a Synthetic phenotype
with the reference allele as WT (n = 476) and alternate as MUT (n = 285). Only 1.8% of Soy775 accessions were with missing genotype. The candidate CM of NST1A is in bold.
(Distance to TM is calulated in base pairs with upstream locations in paretheses; Avg_Accu, Average accuracy expressed in percentage; Comb_Acc_Pess, Combined accuracy
pessimistic expressed in percentage; Effect, Effect on amino acid change; WT_Accu, Accuracy of accessions with WT allele expressed in percentage; MUT_Accu, Accuracy of
accessions with MUT allele expressed in percentage; Miss_genot_WT, missing genotype of WT accessions expressed in percentage; Miss_genot_MUT, missing genotype of MUT
accessions expressed in percentage).

Position at
chr07

Distance to
ss715598106

Avg_Accu Comb_
Accu_Pess

Gene Effect WT_Accu Miss_
Genot_WT

MUT_Accu Miss_
Genot_MUT

43,32,204 (54,538) 49.9 36.9 Glyma.07g050600 G>A|G189R 99.7 39.7 0 33
43,32,246 (54,580) 49.9 36.9 Glyma.07g050600 G>A|G203R 99.7 39.7 0 33
43,32,444 (54,778) 50.4 61.5 Glyma.07g050600 C>G|H269D 100 0.2 0.7 0
43,32,451 (54,785) 50.2 37.2 Glyma.07g050600 C>CCAA|inframe insertion

275dup
100 39.7 0.5 33

43,32,604 (54,938) 56.6 65.3 Glyma.07g050600 CCAACAA>CCAACAA| inframe
insertion 328dup

99.4 1.1 13.8 3.2

43,32,604 (54,938) 56.6 65.3 Glyma.07g050600 CCAA>C|inframe deletion
328del

99.4 1.1 13.8 3.2

43,32,612 (54,946) 50.2 37.2 Glyma.07g050600 A>G|N325D 100 39.7 0.5 33
43,32,763 (55,097) 50.2 37.2 Glyma.07g050600 T>C|M375T 100 39.7 0.5 33
43,32,784 (55,118) 50.2 37.2 Glyma.07g050600 A>G|H382R 100 39.7 0.5 33
43,32,797 (55,131) 49.8 61.2 Glyma.07g050600 A>T|Q386H 99.6 0.0 0 0.4
43,32,840 (55,174) 96.1 92.6 Glyma.07g050600 T>A|stop lost 401R 95.1 1.5 97.1 1.8
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leading [59]; evolutionary unrelated multiple CMs in one gene/lo-
cus are tagged by a marker corresponding to the most frequent CM
in the context of its specific haplotype. The case study on the pod
shatter Pdh1 gene has shown that Accuracy can be used for TM
evaluation even in cases of multiple near-perfect TMs and demon-
strated that Accuracy can be used to compare TMs gained from dif-
ferent studies. Accuracy can reveal an underpowered GWAS, or
Accuracy analysis can serve as a measure of GWAS analyses perfor-
mance. In the current available literature, there was no alternative
that could be used to describe GWAS performance other than p-
value. Our example on flower pigmentation provides insight as to
why physical distance or genomic vicinity to a TM might be mis-
leading in GWAS-driven discoveries and, we extend this knowl-
edge by listing Proxy markers for cloned genes of major soybean
128
traits (Table 3.) The case study on stem termination has shown that
the SP2CM strategy can be utilized in more complicated cases such
as multiple alleles in the causal gene. Also, results of this example
show that even though the TM is of relatively lower Accuracy to
the real phenotype, that TM can be still utilized in our SP2CM strat-
egy and successfully identify the most prevalent of the multiple
allelic CMs. We performed a streamlined SP2CM strategy to iden-
tify the CM of the novel pod shatter gene NST1A. By this example
we aimed to encourage other soybean researchers that SP2CM
can be performed in a streamlined way where the AccuTool can
calculate Accuracy for the aggregated Soy775 accession panel for
every genomic variant position as the Synthetic phenotype. In this
example, we showed that we were able to evaluate the previously
proposed list of CMs and select the most highly accurate CMwithin



Table 3
Proxy marker analysis for a selection of important soybean genes. The top five Proxy SoySNP50K markers were identified by Inverse GWAS Accuracy from the AccuTool
Soy775 accession panel. Proxy markers of the five highest Accuracy values to the CM using the AccuTool are shown in the table. (Distance to CM, calulated in base pairs with
upstream locations in paretheses; Avg_Accu, Average accuracy expressed in percentage; Comb_Acc_Pess, Combined accuracy pessimistic expressed in percentage; NA, Pdh1 gene
that is annotated as Glyma16g25580 in Wm82.a1.v1 of the Williams 82 soybean genome reference sequence, but it is not annotated in Wm82.a2.v1; Proxy markers in bold
indicate concordance with the TM identified by Bandillo and co-authors [25]).

Trait REF/ALT
allele

Williams 82.a2.
v1

Chromosome CM
position

Reference SoySNP50K
Position

Proxy
marker

Distance
to CM

Avg_
Accu

Comb_
Acc_Pess

Pod shatter pdh1/Pdh1 NA 16 29,944,393 [41] 2,98,70,849 ss715624192 (73,544) 98.8 94.6
3,00,09,486 ss715624201 65,093 98.5 94.8
2,99,40,504 ss715624199 (3,889) 98.1 94.6
2,97,07,327 ss715624181 (2,37,066) 96.8 92.4
2,97,38,349 ss715624185 (2,06,044) 96.4 92.8

Flower color w1 SNP/W1 Glyma.13g072100 13 17,316,756 [33] 1,73,09,969 ss715616657 (6,787) 96.6 88.0
1,73,07,263 ss715616658 (9,493) 96.4 86.6
1,80,46,553 ss715616090 7,29,797 92.0 82.3
1,83,27,972 ss715615785 10,11,216 92.0 84.1
1,85,67,932 ss715615487 12,51,176 91.8 83.1

Stem termination Dt1/dt1
R166W

Glyma.19g194300 19 45,183,701 [43,44] 4,52,04,441 ss715635425 20,740 95.2 88.0

4,52,92,930 ss715635458 1,09,229 95.1 94.5
4,49,37,972 ss715635400 (2,45,729) 94.4 88.5
4,52,73,019 ss715635456 89,318 93.3 87.7
4,52,66,984 ss715635454 83,283 92.5 80.9

Pod shatter nst1a/
NST1A

Glyma.07g050600 7 4,332,840 [26], this
work

42,31,147 ss715598065 (1,01,693) 98.4 93.7

42,37,522 ss715598070 (95,318) 98.2 93.7
42,47,302 ss715598081 (85,538) 96.2 90.7
42,77,666 ss715598106 (55,174) 95.2 92.6
42,65,150 ss715598093 (67,690) 93.9 90.8

Pod shatter nst1b/
SHAT1-5

Glyma.16g019400 16 1,727,642 [45] 17,25,360 ss715623567 (2,282) 94.4 90.8

15,33,772 ss715623488 (1,93,870) 79.5 80.0
19,50,911 ss715623640 2,23,269 78.5 76.4
19,53,870 ss715623642 2,26,228 78.2 67.9
14,98,023 ss715623475 (2,29,619) 77.6 65.8

Green seed coat g/G Glyma.01G198500 1 53,229,579 [46] 5,31,51,056 ss715580344 (78,523) 90.2 85.8
5,31,41,084 ss715580343 (88,495) 88.5 84.3
5,33,78,518 ss715580361 1,48,939 86.8 85.3
5,33,35,309 ss715580358 1,05,730 77.4 79.7
5,42,50,600 ss715580443 10,21,021 75.3 80.0

Hard seed hs1-1/Hs1-
1

Glyma.02g269500 2 45,379,743 [47] 4,49,75,684 ss715583161 (4,04,059) 87.5 83.6

4,68,23,818 ss715583338 14,44,075 84.6 88.9
4,68,73,183 ss715583343 14,93,440 83.8 31.9
4,52,07,651 ss715583177 (1,72,092) 83.2 82.8
4,57,08,763 ss715583227 3,29,020 80.2 68.3

Pubsecence color
light tawny

Td/td Glyma.03G258700 3 45,301,350 [48] 4,52,43,426 ss715586624 (57,924) 88.7 84.1

4,53,85,087 ss715586641 83,737 84.3 67.9
4,55,86,075 ss715586661 2,84,725 77.9 85.0
4,54,62,321 ss715586654 1,60,971 77.8 84.8
4,51,59,972 ss715586611 (1,41,378) 73.8 52.1

flowering
time/maturity

E1la/e1la
K82E

Glyma.04g156400 4 36,758,368 [49] 3,86,17,883 ss715587795 18,59,515 98.5 92.5

3,86,90,809 ss715587797 19,32,441 98.2 92.6
3,73,66,196 ss715587592 6,07,828 97.8 90.7
3,77,50,626 ss715587601 9,92,258 97.8 92.0
3,76,50,714 ss715587599 8,92,346 97.7 90.8

Maturity e1-as/E1 Glyma.06g207800 6 20,207,322 [50] 2,09,66,229 ss715593867 7,58,907 98.0 72.5
1,99,13,355 ss715593833 (2,93,967) 97.9 92
2,06,33,420 ss715593856 4,26,098 97.0 93.9
1,98,58,251 ss715593832 (3,49,071) 96.9 70.8
2,05,96,465 ss715593854 3,89,143 96.7 93.4

Pubsecence color
tawny

T/t Glyma.06g202300 6 18,737,366 [51] 1,83,15,510 ss715593787 (4,21,856) 96.2 94.1

1,84,46,052 ss715593791 (2,91,314) 96.1 94.3
1,89,70,072 ss715593807 2,32,706 93.1 92.5
1,88,96,222 ss715593805 1,58,856 88.4 81.4
1,87,88,512 ss715593801 51,146 86.5 79.2

Black/brown seed
coat

R/r Glyma.09g235100 9 45,759,137 [52] 4,58,15,773 ss715604620 56,636 85.8 72.9

4,57,39,541 ss715604613 (19,596) 84.0 70.1
4,56,94,733 ss715604610 (64,404) 82.7 67.9
4,60,35,289 ss715604640 2,76,152 81.8 82.3
4,57,81,506 ss715604617 22,369 79.9 65.0

(continued on next page)

Mária Škrabišová, N. Dietz, S. Zeng et al. Journal of Advanced Research 42 (2022) 117–133

129



Table 3 (continued)

Trait REF/ALT
allele

Williams 82.a2.
v1

Chromosome CM
position

Reference SoySNP50K
Position

Proxy
marker

Distance
to CM

Avg_
Accu

Comb_
Acc_Pess

Maturity E2/e2 Glyma.10g221500 10 45,310,798 [53] 4,48,52,490 ss715607431 (4,58,308) 90.3 85.7
4,49,20,131 ss715607435 (3,90,667) 87.8 84.8
4,52,69,968 ss715607475 (40,830) 87.3 82.5
4,52,50,482 ss715607471 (60,316) 86.3 78.8
4,46,22,989 ss715607402 (6,87,809) 86.1 78.3

Flowering
time/maturity

tof12-1/
Tof12

Glyma.12g073900 12 5,520,945 [54] 56,77,390 ss715613198 1,56,445 95.1 93.9

54,09,612 ss715613172 (1,11,333) 93.4 33.9
54,00,963 ss715613171 (1,19,982) 92.2 91.7
55,02,184 ss715613180 (18,761) 91.7 89.9
57,24,257 ss715613204 2,03,312 89.2 90.3

Seed coat luster b1/B1 Glyma.13G241700 13 35,163,354 [55] 3,53,01,446 ss715615610 1,38,092 98.2 97.0
3,53,07,166 ss715615611 1,43,812 98.2 97.4
3,50,77,503 ss715615595 (85,851) 97.3 97.8
3,46,20,193 ss715615548 (5,43,161) 89.5 93.8
3,55,84,259 ss715615638 4,20,905 88.5 80.5

Semi-determinate dt2/Dt2 Glyma.18g273600 18 55,642,486 [56] 5,56,22,046 ss715632223 (20,440) 95.7 97.8
5,56,75,146 ss715632229 32,660 88.0 76.4
5,52,79,467 ss715632165 (3,63,019) 77.2 74.5
5,57,00,093 ss715632231 57,607 75.0 49.5
5,56,43,993 ss715632225 1,507 74.4 49.4

Narrow leaves/3
seeded pods

Ln/ln Glyma.20g116200 20 35,828,042 [57] 3,60,74,213 ss715637655 2,46,171 93.5 86.7

3,56,45,532 ss715637614 (1,82,510) 91.8 31.2
3,56,16,323 ss715637607 (2,11,719) 79.8 69.4
3,70,91,712 ss715637807 12,63,670 79.8 73.4
3,60,52,996 ss715637652 2,24,954 79.1 59.7
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the landscape of NST1A ss715598106 TM associated genomic
region.

The most widely used approach for GWAS as a step in CM iden-
tification of various phenotypes in crop species is the practice of
using low-density genotyping data for phenotypes obtained on rel-
atively small sets of accessions and association panels [60,61].
Even though GWAS methodology is being continuously improved
[1], GWAS is rarely perfect and therefore, identification of a sub-
optimal haplotype tagging variant in under-powered GWAS may
lead to the wrong conclusions without any additional GWAS selec-
tion criteria. Here we demonstrated that the Accuracy calculation
for every variant position in a phenotype-associated genomic
region increased efficiency when using low-density genotypes for
GWAS. A key to this approach is access to a quality resequenced
data set. In soybean, there are tremendous resources for phenotype
and genotype data. The publicly available GRIN collection of acces-
sions with SoySNP50K marker data along with resequenced data
sets for an increasing number of accessions, many of which overlap
with the GRIN collection, were utilized here. The approach of lever-
aging resequenced data for low-density marker GWAS is broadly
applicable to other species that have been limited by current
GWAS power. For many species, the decision to invest additional
resources in phenotyping accessions that have already been rese-
quenced or to resequence accessions that have already been phe-
notyped must be seriously considered. In the decision making,
among other factors, the frequency of the targeted phenotypes will
play an important role. And, undoubtedly, both approaches are
laborious resource-intensive undertakings. In plants, other species
that could benefit immediately from our strategy have large acces-
sion panels with low-density genotypes available, a reference gen-
ome sequence along with a set of at least 200 resequenced
accessions that overlap with the phenotyped accession panels,
and broad LD, such as is the case for rice (Oryza sativa L.) [62], sor-
ghum (Sorghum bicolor [L.] Moench) [63,64], and Arabidopsis thali-
ana [65]. Most major crop species now have at least one reference
genome sequence available. Crop species with broad LD (typically
self-pollinating species) with a record of GWAS would require
130
additional investments in generating and analyzing resequenced
data sets as would be the case for most of the crop legumes [66].

Calculating Accuracy enables a direct assessment of correspon-
dence and a novel view of the landscape of LD in focused genomic
regions utilizing our AccuTool. A more visual representation of
haplotype blocks in user-defined regions is possible using our
SNPViz v2.0 tool [12–14]. When phenotypes are available for at
least a subset of resequenced accessions, Accuracy accentuation
of associated variant positions increases the efficiency of selecting
tagging variants with stronger LD to the CM. When setting up a
new GWAS panel of accessions for phenotyping, including acces-
sions that have resequence data will increase the power to leverage
low-density markers for ultimate identification of the CM. Our pro-
posed Accuracy calculation is limited by the binomial distribution
of studied phenotypes that goes hand in hand with the bi-allelic
nature of genetic variants in the vast majority of cases [15]; how-
ever, in the final step of deciding between a functional and a non-
functional gene variant, the binomial concept is valid. Recently, a
binomial categorization of phenotypes was applied in FPCA-
based GWAS on quantitative traits with successful outcome on sor-
ghum [67].

Because CMs have been identified in a multitude of cloned
genes responsible for a variety of traits in soybean, we were able
to investigate the LD landscape in the associated region around
the CM in a modified GWAS approach that we call Inverse GWAS,
the extreme variant of the SPAS. Using the allele status of the CM as
a phenotype and calculating Accuracy with the AccuTool for
SoySNP50K markers in the CM region exposed the low-density
Proxy markers with the best ability to predict the CM status, typi-
cally with Accuracies ranging from 99% to 74% for the top five
Proxy markers for each CM (Table 3 and Table S1). However, the
distance to the CM was quite variable for the Proxy markers; for
17 cloned soybean genes, Proxy markers with > 90% Accuracy aver-
aged over 340,000 bp from the CM, and this could be due to the
density of the SoySNP50K markers in any particular region or evo-
lutionary aspects of the CM. For soybean, the low-density
SoySNP50K markers represent only about 0.1% of the currently
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defined variant positions in the soybean genome. Inverse GWAS
therefore provides evidence that caution should be used when gen-
erating candidate gene lists with speculative CMs from GWAS
based on proximity to highly associated tagging variants. In con-
trast, GWAS tagging variant results that overlap with our Proxy
markers are likely pointing to the CMs of the cloned genes.

Recent advances in post-GWAS methodology, especially cou-
pling with transcriptomics, eQTL or even gene expression in asso-
ciation analyses (TWAS) have shown that this strategy can
complicate the hunt for CMs with false positive associations
[5,68]. Therefore, here we emphasize that our concept of Accuracy
calculation can be used in any GWAS as an additional evaluation
criterion that adds no false positives or negatives and thus, directly
improves every GWAS. This study aimed to reveal the landscapes
of association, and it resulted in the creation of the novel GWAS
to Genes strategy, the SP2CM. However, utilization of the SP2CM
strategy in identification of uncloned genes will need further inves-
tigation that we plan to focus on in our future work.
Conclusion

Our results on SPAS pointed us to direct application of the Syn-
thetic phenotype, Accuracy calculation and the use of aggregated
panels of resequenced accessions in what we call the SP2CM strat-
egy. This strategy can benefit future GWAS to Genes discoveries
across species that are currently limited by insufficient GWAS
power.
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0202) and IGA (MS: Palacký University Internal Grant Agency
#IGA_2020_013) projects. Authors wish to thank the following
contributors to this work from Palacký University in Olomouc, Fac-
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