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Longitudinal data analysis for rare 
variants detection with penalized 
quadratic inference function
Hongyan Cao1, Zhi Li2, Haitao Yang3, Yuehua Cui1,4 & Yanbo Zhang1

Longitudinal genetic data provide more information regarding genetic effects over time compared 
with cross-sectional data. Coupled with next-generation sequencing technologies, it becomes reality 
to identify important genes containing both rare and common variants in a longitudinal design. In this 
work, we adopted a weighted sum statistic (WSS) to collapse multiple variants in a gene region to form 
a gene score. When multiple genes in a pathway were considered together, a penalized longitudinal 
model under the quadratic inference function (QIF) framework was applied for efficient gene selection. 
We evaluated the estimation accuracy and model selection performance under different model settings, 
then applied the method to a real dataset from the Genetic Analysis Workshop 18 (GAW18). Compared 
with the unpenalized QIF method, the penalized QIF (pQIF) method achieved better estimation 
accuracy and higher selection efficiency. The pQIF remained optimal even when the working correlation 
structure was mis-specified. The real data analysis identified one important gene, angiotensin II 
receptor type 1 (AGTR1), in the Ca2+/AT-IIR/α-AR signaling pathway. The estimated effect implied 
that AGTR1 may have a protective effect for hypertension. Our pQIF method provides a general tool for 
longitudinal sequencing studies involving large numbers of genetic variants.

Longitudinal data are often observed in biomedical studies with repeated measures of the same subject over 
time. Coupled with the recent development of genome-wide SNP genotyping and next-generation sequencing 
technologies, longitudinal designs are becoming popular in genetic association studies because of their increased 
power over cross-sectional designs to detect genetic associations. Most longitudinal genetic association analyses 
have focused on the evaluation of associations at common variants1–3, which only explained a part of disease 
heritability4. Next-generation sequencing technologies provide the opportunity to study the role of rare variants 
in complex diseases, as evidenced by reports in the literature5, 6.

Because of the extremely low minor allele frequency (MAF) of rare variants (defined as variants with a 
MAF < 5%), the commonly-used single-variant association analysis is underpowered7, 8. Methods for detecting 
rare variants have been developed and can be broadly classified into three categories: (1) burden tests, for exam-
ple, the weighted sum statistic (WSS) methods9; (2) variance component-based tests represented by the sequence 
kernel association test (SKAT)10; and (3) dimension-reduction based tests such as functional principal compo-
nents analysis (FPCA)11 and the adaptive ridge regression method12. For a comprehensive review of the design 
and analysis of rare variants in association studies, please refer to Lee et al.8.

All the rare variants association tests methods described above are available for phenotypes measured at a 
single time point. Very few methods have been developed or extended to detect rare variants associated with lon-
gitudinal disease traits13–16. Yan et al.15 extended the kernel machine method to handle longitudinal continuous 
trait from family samples in the linear mixed model (LM) framework. Chien et al.16 extended burden test and 
kernel association tests to genetic longitudinal studies in the generalized estimating equations (GEE) framework. 
Wu et al.14 and Chiu et al.13 summarized the rare variants longitudinal studies, where most of the statistical mod-
els were based on GEE and LM models. These methods face computational challenges with limited sample size 
and missing data. Furthermore, large numbers of gene variables increase the complexity of modeling, especially 
because most genes have no association with the studied disease trait. The challenge particularly increases when 
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the number of genes or SNP markers becomes larger than the number of samples. As such, the classical methods 
faces estimation instability issues when the number of variants is large. This motivates us to adopt a penalized 
regression method for better parameter estimation, and achieving gene selection in the mean time.

When a large number of gene variables are modelled simultaneously in a regression model, high-dimensional 
variable selection strategies become essential for a genetic association study. Variable selection methods with a 
univariate response in linear and generalized linear regression analyses have been studied extensively17–19. Various 
penalty functions have been developed for different purposes, such as the group LASSO for selecting a group of 
variables20 and the network-constrained penalty for selecting variables with a graph structure21. In fact, penal-
ized regression methods have been applied to rare variants association analysis when a univariate disease trait is 
considered22–24.

For multivariate responses in a longitudinal study, variable selection methods have also been developed. 
Under the population-averaged (marginal) model framework, several variable selection methods have been 
developed for a diverging number of parameters. For example, the penalized generalized estimating equations 
(pGEE) method developed by Wang et al.25 can handle cases where the number of covariates have the same order 
as the number of individuals. Cho and Qu26 proposed the penalized quadratic inference function (pQIF) method 
for a diverging number of regression parameters, and showed that pQIF outperformed pGEE in various settings. 
Given the improved performance of a longitudinal design in identifying genetic variants, it is essential to develop 
a variable selection strategy to improve estimation accuracy and gene selection efficiency in a longitudinal study. 
In this work, we extended the pQIF method to a longitudinal genetic association study with rare variants and 
evaluated its performance with extensive simulation studies. Practical suggestions were obtained for real appli-
cations. We further applied the pQIF method to a hypertension dataset from the Genetic Analysis Workshop 
18 (GAW18)27 and focused on the Ca2+/AT-IIR/α-AR signaling pathway to identify genes associated with the 
development of hypertension.

In statistical methods section, we briefly describe the quadratic inference function (QIF) method for longitu-
dinal data, then describe the pQIF method. We then review the methods used for rare variants detection, focusing 
on the collapsing method that was applied in this work. The simulation studies are reported in simulation study 
section. In real data analysis section, we describe the application of the pQIF method to a real dataset focusing on 
the Ca2+/AT-IIR/α-AR signaling pathway, followed by a discussion section.

Statistical Methods
QIF in longitudinal data analysis.  For repeated outcome or exposure measurements under a longitudinal 
design, the model can be expressed as:

µ µ β= = ′E Y g X( ) and ( ) , (1)it i i it

where Yit is the phenotype measured for subject i(i = 1, …, n) at time t(t = 1, …, T); g(·) is a known link function 
(i.e., identity link for continuous Y and logistic link for binary Y); Xit contains both time-varying covariates and 
time-invariant genetic variants; and β represents unknown coefficients. In this study, we focused our analysis on 
a longitudinal binary disease trait.

It is generally difficult to specify a full likelihood function for the correlated responses Yit. GEE is a classic 
population-averaged (marginal) model that requires only a working correlation for Yit to be specified in order 
to obtain consistent estimates for the mean parameters, even when the correlation structure is mis-specified28. 
However, the estimator of the regression parameter is inefficient under mis-specification of the correlation struc-
ture29. The quasi-score equation in GEE is defined as:
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2  with Ai being a diagonal matrix of marginal variances for Yi, and R(ρ) being a common 

working correlation with nuisance parameter, the intra-class correlation coefficient ρ, µ µ β= ∂ ∂ /i i j. The equation 
can be simplified by specifying a specific correlation structure for Ri, such as independent, exchangeable, or 
AR(1).

The GEE method has the advantage that the estimators of the regression coefficients are consistent even when 
the correlation structure is mis-specified, given that ρ is consistently estimated. When such a consistent estimator 
does not exist, Qu et al.29 suggested that the inverse of R(ρ) can be represented by a linear combination of a class 
of basis matrices such as R−1(ρ) ≈ a0I + a1M1+, …+aSMS, where I is an identify matrix and M1, …, MS are known 
symmetric matrices. Under the QIF framework of Qu et al.29, we defined the score functions as:
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and the mean vector as ψ β ψ β= ∑ =( ) ( )n n i
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1 . Then, the estimate β̂  can be obtained by minimizing the QIF as
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1  is a consistent estimator for Ω = var (ψi), i.e.,
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β β= .β
ˆ Qargmin ( ) (5)n

Under certain conditions, the estimation consistency of the estimator β̂  as well as the asymptotic normality 
can be established.

pQIF method.  QIF was extended to a high-dimensional regression setup where the number of predictors can 
be large. The pQIF is based on the non-convex SCAD penalty given by:
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for some a > 2 and θ > 2. The SCAD penalty function can select variables and estimate coefficients simultane-
ously, and possesses an “oracle property”18. For pQIF, the penalized score function is defined as:
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Because the SCAD penalty function is non-convex, the penalized score function in equation (7) can be 
approximated by the local quadratic approximation as follows:
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The Newton-Raphson algorithm can be applied to get β +
s

k( 1), the (k + 1)th iteration of the non-zero compo-
nent β +

s
k( 1).

The performance of model selection in pQIF relies on the appropriate selection of the tuning parameters. The 
tuning parameters were chosen with the Bayesian information QIF criterion (BIQIF) which is analogous to the 
Bayesian information criterion and is based on QIF as the objective function. The BIQIF is defined as:

β= +λ λ λ
ˆBIQIF Q df n( ) log( ), (10)nn n n

where βλ
ˆ

n
 is the marginal regression parameters estimated by minimizing Un(β) in equation (7) for a given λn, 

and dfλn is the number of non-zero coefficients in βλ
ˆ

n
. We chose the optimal tuning parameter λn which mini-

mizes λBIQIF
n
 in equation (10).

Statistical methods for rare variants analysis.  Rare variants association studies typically focus on 
multiple variants in a specific genomic region (e.g., a gene) rather than on individual variants separately. The 
gene- or region-based methods can be broadly categorized into three classes: (1) burden tests, (2) variance 
component-based tests, and (3) dimension-reduction based tests. Burden tests simply collapse multiple variants 
into a single genetic score30. For example, the cohort allelic sum test (CAST)31 collapses multiple rare variants into 
one binary variable, which indicates whether there are any rare variants. Morris and Zeggini32 extended CAST by 
counting the total number of minor alleles. The combined multivariate and collapsing method33 first collapses the 
variants into several subgroups based on some predefined criteria (e.g., allele frequencies), and then performs a 
multivariate test. The WSS method weights all variants differently when determining the genetic load of an indi-
vidual. So, by weighting the signals from each variant, the WSS accentuates variants that are rare in an individual9. 
The variable threshold method34 selects the optimal rare frequency threshold on a grid of points, and estimates 
the p-value by a permutation procedure. All these burden tests assume all the variants share the same effect direc-
tion and magnitude (after incorporating weights). Thus, any violation of this assumption can result in a loss of 
power8, 10, 35. To overcome the limitations of the burden tests, the data-adaptive sum test (aSum) was proposed36. 
Specifically, the aSum method first estimates the direction of effect for each variant using a marginal regression 
model, then it changes the coding of variants accordingly, and finally uses the same method as the burden test to 
test for any association. However, aSum is computationally intensive because it obtains the p-value via permuta-
tions. Moreover, the estimation of regression coefficients for single rare variants is typically difficult and unstable8.

Variance-component based methods (e.g., SKAT10) assume the effect sizes of rare variants follow a normal 
distribution, and then test for the variance components. It has been demonstrated that burden tests were more 
powerful than SKAT when most of the rare variants were causal and had the same directions, whereas SKAT out-
performed burden tests when the effects of rare variants were heterogeneous37. This motivated the development of 
some hybrid methods such as SKAT-O38 and MiST39, which combined the benefits of the burden tests and SKAT. 
These hybrid methods were more robust across a range of scenarios, but were less powerful than either one of 
these tests on their self-underlying assumptions8, 30.
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Other dimension-reduction techniques are available for rare variants analysis, such as FPCA11 and the 
adaptive ridge regression method12. Luo et al.11 compared FPCA with seven alternative methods (including 
multivariate principal component analysis, WSS, and variable threshold) and concluded that, among them, 
FPCA was the most powerful. However, the performance of the dimension reduction techniques and variance 
components-based tests is not clearly known. Borrowing the idea of the WSS, we proposed to adopt the collaps-
ing idea to collapse both rare and common variants over a gene or region into a single genetic score for further 
estimation and gene selection.

WSS method with pQIF.  The WSS method jointly analyses a group of SNP variants in a gene or region. 
Without loss of generality, here we focused on a gene to describe the method. Suppose J is the total number of 
variants in a gene. Let Gij be the number of disease alleles for variant j in individual i, and Gij = 0, 1, 2 under an 
additive genetic model. Then, each individual is scored by a single weighted average of the number of alleles in a 
given gene as:

∑=
=

C w G ,
(11)

i
j

J

j ij
1

where wj is the weight given as the inverse of the standard deviation for the minor allele, i.e., = −w p p1/ (1 )j j j
 

where pj is the MAF of variant j. This weighting function assumes that rare variants have larger effect sizes than 
common variants9. A weighted gene score can be obtained for each gene. The gene-based scores are then fitted 
into the pQIF model to select the genes associated with a longitudinal disease trait.

After collapsing multiple (common and rare) variants in each gene with the weighted sum, the longitudinal 
model can be defined as:
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where Ekt is the kth time-varying or time-invariant environmental variable and Cj(j = 1, …, pn) is the weighted 
sum score for the jth gene, which is time-invariant. This mean model is then fitted with the pQIF method for 
further estimation and gene selection.

Unbalanced data implementation for pQIF.  In a real longitudinal study, unbalanced data, which are 
featured as cluster sizes that vary for different individuals, are commonplace because of missing data. In such 
cases, a transformation matrix Hi can be applied for each subject to fit the pQIF model26. For each fully observed 
individual without missing data, Hi is expressed as an m × m identity matrix for the ith subject, where m is the 
total repeated time point. For the ith subject with missing measurements, Hi is generated by deleting the columns 
that correspond to the missing measurements. Consider a study with a total of three time points. For an individ-

ual i with the 3rd time point missing, the transformation matrix Hi can be expressed as =
















H
1 0
0 1
0 0

i . Otherwise 

Hi = I3×3 if no measurements are missing. Then ψi(β) in equation (3) can be replaced by:
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i1  for further pQIF estimation with unbalanced data.

Simulation Study.  We performed extensive simulations to examine the performance of the pQIF for longi-
tudinal sequencing association studies. We examined the pQIF under different sample sizes and different variable 
dimensions. The performance of the pQIF under mis-specified correlation structures was also evaluated, based 
on three different working correlations (independent, AR(1), and exchangeable).

The simulation was based on the GAW18 real sequencing data. The GAW18 dataset was based on a longitudi-
nal study design consisting of whole-genome sequencing of 1043 individuals in the San Antonio Family studies 
with pedigrees. Among the 1043 individuals, 142 are unrelated and had both real phenotype data and imputed 
sequence data. The sequencing data for GAW18 were provided only for markers on odd-numbered autosomes. 
Two phenotype datasets were provided: one was the real phenotype data including systolic blood pressure and 
diastolic blood pressure along with other covariates such as current use of antihypertensive medications, sex, age, 
and smoking status up to four time points; the other was the simulated longitudinal phenotype data that were 
based on the real genotype data. Along with both datasets, a list of “functional loci” associated with the simulated 
phenotypes were also provided, thus the true functional mechanism is known for the simulated data.

Here we focused on the 142 unrelated individuals in both the simulation and real data analyses. In the simu-
lations, we chose the top five influential genes provided in the GAW18 dataset, MAP4, TNN, NRF1, LEPR, and 
FLT3, as the true effect genes in our simulation studies. Because the sample size (142) was not large enough to 
demonstrate the performance of the pQIF, we bootstrapped additional samples assuming that the 142 individuals 
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represented the population. For each bootstrapped sample, we fixed the original sequencing data, but simulated 
new binary longitudinal responses Yit based on the following model:

∑µ β β β β= + + + = …
=

it age smoke C tlog ( ) , 1, , 3,
(14)

it age it smoke it
j

p

j ij0
1

n

where Cij is the weighted score for gene j, chosen from the above five genes. We also simulated noisy gene vari-
ants with no genetic effect. Each noisy gene consists of 10 SNP variants with the proportion of rare and common 
variants set as 6:4. An additive coding {0, 1, 2} for each SNP variant was used. Both the rare and common variants 
were collapsed over genes as a weighted score using the WSS method. Ages were taking from the original dataset, 
and missing age values at exams were filled in by adding or subtracting 3.9 years between exam 1 and exam 2 
and 6.9 years between exam 1 and exam 3. Tobacco smoking was generated as follows: 22.9% of individuals were 
selected randomly to be smokers at exam 1, and 1.45% were deemed to have quit smoking during each exam. This 
follows the same quitting rate as in the real dataset. All the variables were standardized to have mean zero and 
standard deviation one before further analysis. The R package mvtBinaryEP was used to generate the longitudinal 
binary responses. Under each scenario, 200 simulation runs were conducted.

To evaluate the estimation accuracy, we calculated the total mean squared error (TMSE) as

∑ β β= −
=
 

^TMSE p1
200

/ ,
(15)j

j

1

200 ( ) 2

where p is the dimension of β and β̂
j( )
 is the estimated value for β in the jth simulation run. We also calculated the 

mean squared error (MSE) for noisy gene variants (NMSE) in the same way as we calculated TMSE. True positive 
(TP) and false positive (FP) rates were calculated to evaluate the model selection performance.

Selection and estimation performance under the true correlation structure.  We compared the 
model performance under three different sample sizes: n = 142 unrelated samples from the GAW18 dataset, and 
n = 250 and n = 500 based on the bootstrapped samples. The total number of covariates (p) including environ-
mental variables and genes (both effective and noisy ones) were assumed to be 20 and 40, and the number of 
effective variables was assumed to be q = 4 and 6. Data were simulated assuming an AR(1) correlation structure 
and were subsequently analyzed by applying an AR(1) correlation structure (assuming the true correlation struc-
ture was known). In the first simulation scenario, the true coefficients were assumed to be β = (0.9, −0.7, −0.6, 
0.5, 0, …, 0)T, where the nonzero coefficients corresponded to covariates age and three genes (MAP4, TNN, 
and NRF1). In the second scenario, β = (0.9, −0.7, −0.7, −0.6, −0.6, 0.5, 0, …, 0)T, where nonzero coefficients 
corresponded to covariate age and five genes (MAP4, TNN, LEPR, FLT3, and NRF1). Two intra-class correlation 
coefficients were considered with ρ = 0.4 in scenario 1 and ρ = 0.7 in scenario 2. The optimal tuning parameter λ 
was chosen by a grid search based on a sequence of 100 values of equal interval in [0.01, λmax], where λmax is the 
value for which all coefficients were shrunk to zero. λmax was set differently under different sample sizes. Here we 
set λmax = 0.35, 0.25, 0.2 for sample sizes n = 142, 250, and 500, respectively. We set the tolerance level tol = 10−12 
in the QIF method, and tol = 10−10 in the pQIF method (the tol of pQIF has to be larger than QIF) to control the 
FP rates in the simulation studies.

Figure 1 shows the performance of the pQIF for different sample sizes and different dimensions. When p = 20, 
the pQIF chose most of the TP variables, even when n = 142, and the FP selection rate was very low under dif-
ferent model conditions. For the increased sample sizes, the TP selection rate also increased. The TP selection 
rate for ρ = 0.4 was higher than for ρ = 0.7 for n = 142 but the difference in the TP selection rate between the two 
ρ values diminished as the sample size increased. The detailed estimation accuracy of the pQIF under different 
model setups is listed in Table 1. We did not list the results for n = 142 when p = 40 because the pQIF did not con-
verge well for the larger p value in many simulations runs. Thus, in real applications, when the gene dimension is 
large, the pQIF may not be useful because of computational limitations, especially when the sample size is small.

Compared to the unpenalized method, the TMSE of the penalized approach was much smaller (Table 1). As 
the sample size increases, the TMSE of the penalized results gets closer to the oracle one which assumes the true 
regression model is known. Although the correlation had little effect on selection, we found that larger error 
correlations led to larger TMSE and NMSE. The difference became smaller when the sample size was larger. In 
addition, we did not see a clear impact of variable dimension on MSE; the TMSE and NMSE were quite similar in 
both cases (p = 20 and p = 40).

In a short summary, when data were analyzed assuming the true covariance structure was known, the pQIF 
performed well with a low FP selection rate. However, if the sample size is small relative to the variable dimension, 
the pQIF may not converge well due to computational issues.

Selection and estimation performance when the covariance is mis-specified.  We next examined 
the performance of the pQIF when the covariance structure was mis-specified, under three different correlation 
structures: independent, AR(1), and exchangeable. Because we had already evaluated its performance with dif-
ferent sample sizes and different data dimensions, here we evaluated it only with n = 300, p = 20, and ρ = 0.5. 
We considered one covariate age and three gene variables, MAP4, TNN, and NRF1. The coefficients for the four 
variables were set as, β = (0.9, −0.7, −0.6, 0.5)T and the rest were set as zero. To choose the best tuning parameter 
λn, we set the sequence as 100 values of equal interval in [0.01, 0.25]. We simulated data under each correlation 
structure and analyzed data separately assuming independent, AR(1), and exchangeable correlations. Our aim 
was to assess the selection performance under a mis-specified working correlation.
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Figure 1.  Performance of the pQIF for different sample sizes and different dimensions. (a) p = 20, (b) p = 40. 
The horizontal axis represents the variables, where 1 represents covariate age, 2–4 represent the three gene 
variables (MAP4, TNN, and NRF1) when p = 20, and 2–6 represent the five gene variables (MAP4, TNN, LEPR, 
FLT3, and NRF1) when p = 40, others represent the noise variables. The true and working correlation structures 
were set as AR(1). The title of each subfigure (e.g., “n = 142” in the top left panel) refers to the sample size. Since 
the pQIF did not converge well for n = 142, p = 40 in some simulations runs, the estimation results were not 
listed in the figure.

Sample Method

p = 20 p = 40

ρ = 0.4 ρ = 0.7 ρ = 0.4 ρ = 0.7

TMSEa NMSEb TMSE NMSE TMSE NMSE TMSE NMSE

n = 142

oQIFc 0.0068 — 0.0093 — — — — —

QIF 0.0711 0.0523 0.2458 0.1837 — — — —

pQIF 0.0191 0.0033 0.0329 0.0056 — — — —

n = 250

oQIF 0.0029 — 0.0043 — 0.0029 — 0.0035 —

QIF 0.0211 0.0191 0.0305 0.0277 0.0659 0.0462 0.301 0.2033

pQIF 0.0062 0.0022 0.0098 0.0041 0.0067 0.0020 0.0123 0.0028

n = 500

oQIF 0.0015 — 0.0022 — 0.0012 — 0.0017 —

QIF 0.0076 0.0069 0.0110 0.0099 0.0123 0.0102 0.018 0.0149

pQIF 0.0023 0.0009 0.0035 0.0015 0.0021 0.0010 0.0036 0.0020

Table 1.  Estimation accuracy of parameters for the QIF and pQIF under different model conditions. Since the 
pQIF did not converge well for n = 142, p = 40 in some simulations runs, the estimation results were not listed 
in the table. The notation “—” indicates that the results were not available for n = 142, p = 40, and so does for the 
NMSE of oQIF. aTMSE = total mean squared error for all the variables in the model. bNMSE = mean squared 
error for all the noisy gene variants in the model. coQIF = Oracle QIF.
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Figure 2 displays the model selection performance of the pQIF under different working correlation structures. 
It shows that the pQIF was robust to the model mis-specification, in the sense that the selection rates for different 
coefficients were similar when the data were fitted assuming different covariance structures. The detailed MSEs 
of the pQIF under the three correlation structures are listed in Table 2. No significant differences were observed 
among the MSEs for different correlation structures.

In summary, the pQIF remained optimal even when the working correlation structure was mis-specified. 
No significant differences in the MSEs were found when the data were analyzed assuming different correlation 
structures, which implies the pQIF method was robust even when the correlation structure was mis-specified.

Real data analysis.  We applied the pQIF method to the GAW18 real dataset to identify important genes 
associated with hypertension. We focused on the binary hypertension trait (yes = 1/no = 0) of 142 unrelated 
individuals, measured over four time point (133 individuals attended the 1st exam, 89 attended the 2nd exam, 92 
attended the 3rd exam, and 37 attended the 4th exam). Because the 4th time point had a large number of missing 
values, imputation would be unreliable. Thus, we focused our analysis on the first three time points. The hyper-
tension diagnosis was based on the criteria of systolic blood pressure >140 and diastolic blood pressure >90, or 

Figure 2.  Model selection performance of the pQIF under three different working correlation structures. The 
true correlation structures are assumed as (a) AR(1) structure, (b) EXCH (exchangeable) structure, (c) INDEP 
(independent) structure. AR(1), EXCH (exchangeable), and INDEP (independent) in each sub-part are the 
working correlation structures. The bootstrapped sample size is 300, p=20, and ρ=0.5. The horizontal axis 
represents the variables, where 1 represents covariate age and 2–4 represent the three gene variables (MAP4, 
TNN, and NRF1).

True 
correlation

Working 
correlation MSE1a NMSEb TMSEc

AR(1)

AR(1) 0.0182 0.002 0.0052

EXCH 0.0225 0.0027 0.0067

INDEP 0.0164 0.0018 0.0047

EXCH

AR(1) 0.0215 0.0025 0.0063

EXCH 0.0260 0.0029 0.0075

INDEP 0.0183 0.0019 0.0052

INDEP

AR(1) 0.0090 0.0002 0.0020

EXCH 0.0097 0.0003 0.0022

INDEP 0.0078 0.0001 0.0017

Table 2.  Estimation accuracy of the pQIF method under three types of working correlations, AR(1), EXCH 
(exchangeable), INDEP (independent). aMSE1 = mean squared error of the four nonzero coefficients for 
age, MAP4, TNN, and NRF1. bNMSE = mean squared error for all the noisy gene variants in the model. 
cTMSE = total mean squared error for all the variables in the model.
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on antihypertensive medications being taken at the time of diagnosis. A description of the related phenotype data 
is summarized in Table 3.

The adrenergic signaling pathway has been related to hypertension and studies have shown that large genetic 
variations exist in the genes involved in this pathway40–42. Thus, we focused our analysis on this pathway and 
evaluated the relationship between the involved genes and hypertension. Adrenergic signaling in cardiomyo-
cytes was chosen from the KEGG pathway database43 (http://www.kegg.jp/kegg/kegg1.html). Part of the adren-
ergic signaling in cardiomyocytes pathway, which we defined as the Ca2+/AT-IIR/α-AR signaling pathway (see 
Supplementary Fig. S1). This pathway contains the three initial signals, Ca2+, AT-IIR, and α-AR, that are present 
on the cell membrane.

There are 16 proteins in the Ca2+/AT-IIR/α-AR signaling pathway. Different genes can encode the same 
proteins, for example, phospholipase C is coded by PLCB1, PLCB2, PLCB3, and PLCB4, which are located on 
chromosomes 20, 15, 11, and 20 respectively. Because the genetic information for even numbered chromosomes 
is not available in the GAW18 dataset, we excluded the genes in even numbered chromosomes in our study. We 
then chose one gene randomly from the remaining coding genes for each protein. Finally, we selected 11 genes 
in the Ca2+/AT-IIR/α-AR signaling pathway: AGTR1, ADRA1B, GNAQ, PLCB3, PRKCA, PPP1CA, CAMK2A, 
CALM3, RYR2, PPP2CA, and CREB3L2. Other covariates in the analysis were age, gender, and tobacco smoking. 
Imputation for missing ages was performed as described for the simulation study. We filled the missing smoking 
values with the adjacent values, or with the sample smoking probability at the corresponding time point if no 
smoking was recorded for that subject.

The unbalanced longitudinal binary hypertension responses were analyzed with the “transformation matrix” 
method for the pQIF described in unbalanced data implementation for pQIF section. The intercept was not 
penalized in this analysis. All the predictors were standardized to have a mean of zero and standard deviation of 
one.

We applied an AR(1) working correlation structure in the analysis. The gene score for each gene was collapsed 
with multiple rare and common variants using the WSS method. Table 4 shows the estimation of the QIF and 
pQIF. The pQIF selected age and AGTR1, but not tobacco smoking and gender; the other 10 genes with coeffi-
cients shrunk to zero are indicated by “—”. The QIF without penalty did not achieve sparsity, and hence did not 
serve the purpose of variable selection. Although one can test individual effect based on the estimated standard 
errors, such a test only assesses the partial effect of an individual variable while held the others constant in the 

Variables values Exam 1 Exam 2 Exam 3

Age (years) (20.3~96.72) 53.30 ± 15.91a 56.38 ± 12.96 58.24 ± 11.89

Sex 1 = Male, 2 = Female 61:81b 61:81 61:81

Smoking 1 = Smoking, 0 = Non-
smoking 33:98 14:67 14:78

Hypertension 1 = Hypertension, 
0 = Non-Hypertension 41:92 49:40 50:42

Table 3.  Distribution of age, sex, smoking, and hypertension in the GAW18 real dataset at different exam 
stages. a ±X S( ) for age in each exam, where X  is the average and S is the standard deviation. bRatios for male: 
female, smoking: non-smoking, and hypertension: non-hypotension.

Variables QIF (S.E)a pQIF

Intercept 3.438 (1.458) 0.054

Age 6.903 (2.391) 2.199

Gender 2.829 (1.082) —

Smoking 1.170 (0.861) —

AGTR1 −4.546 (1.697) −0.889

ADRA1B −0.916 (0.627) —

GNAQ −3.311 (1.335) —

PLCB3 −0.008 (0.611) —

PRKCA −1.598 (0.953) —

PPP1CA 1.906 (0.857) —

CAMK2A −0.535 (0.532) —

CALM3 −1.593 (0.690) —

RYR2 −0.883 (0.645) —

PPP2CA 4.688 (1.826) —

CREB3L2 −0.240 (0.367) —

Table 4.  The coefficients estimated by the QIF and pQIF methods. AGTR1, ADRA1B, GNAQ, PLCB3, PRKCA, 
PPP1CA, CAMK2A, CALM3, RYR2, PPP2CA, and CREB3L2 were genes in the Ca2+/AT-IIR/α-AR signaling 
pathway. Other covariates in the analysis were age, gender, and tobacco smoking. The notation “—” indicates 
that the coefficient of the related variable was penalized to 0. aS.E = standard error of the coefficient estimate.

http://www.kegg.jp/kegg/kegg1.html
http://S1
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model. When there exists correlation among the variables, such a test for partial effect cannot reveal the impor-
tant role of a variable. However, the penalized method can fit and estimate multiple variables simultaneously in a 
regression model. The selection consistency and oracle property of the penalized method guarantee the impor-
tance of the selected variables with non-zero coefficients.

AGTR1 has 80 common variants and 215 rare variants. Because the WSS approach emphasized rare variants, 
the pQIF result implies that rare variants in AGTR1 may play important roles for hypertension. The negative coef-
ficient obtained for AGTR1 indicates that the synergistic effects of multiple variants on AGTR1 are protective for 
hypertension by preventing elevated blood pressure due to angiotensin II. Adjusting for age, gender, and smoking 
effect in the pQIF model, every one unit increase in gene score of the risk variants in this gene will result in 41% 
decrease in the risk of hypertension. Because we analyzed only genes in odd numbered autosomes in the Ca2+/
AT-IIR/α-AR signaling pathway and because we chose only one gene encoding each protein, we could have 
missed other important genes in this pathway. Nevertheless, our gene-based longitudinal association analysis 
indicates the important protective role of AGTR1 on hypertension.

Discussion
Next-generation sequencing data are generated routinely in many laboratories in order to identify common and 
rare variants associated with complex diseases. With longitudinally collected disease traits, it is possible to under-
stand disease progression as well as the underlying dynamic genetic mechanisms. However, very few studies have 
reported the association of rare variants with longitudinal traits, especially in a high-dimensional regression 
setup. In this work, we explored gene-based association studies for next-generation sequencing data with longi-
tudinal measures of binary phenotypic traits using the pQIF method. We evaluated the performance of the pQIF 
method based on extensive simulation studies. The results indicated that the pQIF worked well when the sample 
size was relatively large but the method had convergence issues with a small sample size. The pQIF model is pro-
posed for diverging numbers of covariates and holds for p = o(n1/4). This might explain the poor convergence rates 
of the pQIF in the simulation studies when p = 40 and n = 142. Compared to the poor convergence when p = 40, 
n = 142 and ρ = 0.4 in the simulation studies, when the sample size n increases from 142 to 200, nearly all the 
200 runs can converge. The convergence of ρ = 0.4 performs better than ρ = 0.7, indicating that the convergence 
is better when the intracluster correlation is low. Computation using the pQIF method is fast. For example, for 
p = 20, n = 142, and ρ = 0.4, the average running time for the pQIF in each simulation run was about 3 mins. In 
addition, the total MSE of the pQIF method was much smaller compared with the unpenalized QIF methods, 
indicating the relative gain of fitting a penalized model.

In this paper, we focused on next-generation sequencing longitudinal binary data analysis, with the spe-
cial feature of dealing with rare variants, intracluster correlations, and high dimensions. Although longitudinal 
genetic data analyses have been reported previously, only a few of these reports focused on rare variants13–16. The 
kernel machine method based on the LM framework15 was extended to rare variants in longitudinal data for a 
family-based study, but only applicable to continuous traits. The SKAT method proposed by Chien et al.16 was 
built under the GEE framework and was applicable to longitudinal binary data. However, the SKAT approach fits 
genes one at a time, and can be computationally expensive15. Analyzing multiple genes simultaneously in a regres-
sion framework can greatly enhance the association study performance involving rare variants7, 44. With a limited 
sample size and a large number of genes in sequencing data, we approached the problem based on the pQIF 
method to conduct gene selection and estimation simultaneously for a diverging number of regression parame-
ters. Our simulation studies provide a practical guidance to implement the method for longitudinal sequencing 
association studies with sequencing data.

In the real data analysis, the pQIF identified one important gene in the Ca2+/AT-IIR/α-AR signaling pathway, 
which further confirmed that the angiotensin II receptor protein AGTR1 had important physiological functions 
such as vasoconstriction, cellular proliferation, and growth45, 46. Hypertension is a complex and multifactorial 
polygenic disease. The risk loci that have been discovered so far are very limited and explain only a small part of 
hypertension heritability47, 48. Polymorphisms in AGTR1 associated with hypertension have been studied, but 
the results were inconsistent and conflicting49–51. Mottl et al.47 concluded that analyses that focused on single 
variants were fruitless and multiple variants analysis was needed. Our analysis improves the current approaches 
by integrating multiple common and rare variants in a gene (or region). However, further biological experiments 
are needed to verify the real biological function of the identified gene.

Although the pQIF method provides a powerful tool for analyzing longitudinal sequencing data, there are 
some limitations in this work. First, we describe our strategies using the WSS to collapse multiple variants in a 
gene region for simplicity. The WSS collapsing method, which gives a single weighted score incorporated by col-
lapsing rare and common variants in a gene, could suffer from power loss if the assumption of same effect direc-
tion and magnitude for all variants is violated8. This collapsing method can be improved further by adopting more 
powerful strategies to detect heterogeneous effects such as the aSum statistic method. Second, given the large 
numbers of genetic variants in a pathway or in genome-wide data, the pQIF may be limited by the amount of data 
it can handle. Other methods such as the penalized participant-specific (conditional) model could be alternatives 
to the pQIF for longitudinal binary data. For example, Groll and Tutz52 proposed generalized linear mixed models 
by L1-penalized using a gradient ascent algorithm to maximize the penalized log-likelihood. Schelldorfer et al.53 
proposed GLMMLasso, which can handle problems where the number of variables is in the thousand using an 
efficient coordinate gradient descent algorithm. Third, to further evaluate the robustness of the pQIF approach, 
independent longitudinal sequencing data sets should be included and tested. In addition, we did not allow the 
coefficients of time-invariant covariates in the pQIF to vary over time, thus changing patterns of genetic effects 
over time could not be captured. This can be improved by adopting a penalized varying-coefficient model under 
the QIF framework54, and will be investigated in our future work.
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In conclusion, our research sheds light on the analysis of next-generation sequencing longitudinal binary 
data. We found that the penalized models were more efficient than the unpenalized models with interpretable 
regression coefficients by achieving variable selection and estimation simultaneously. The pQIF together with the 
collapsing methods provides a powerful tool to evaluate the synergistic effects of both rare and common variants 
in a gene or a genetic region with next-generation sequencing data in a longitudinal design.
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