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Simple Summary: We report on the correlation between the diffusion-weighted imaging (DWI) and
the metabolic volume parameters derived from a PET scan, to determine the correlation between these
parameters and the tumor cellularity in head and neck primary tumors. Our findings implied that
there was no correlation between the information derived from the DWI and the information derived
from the FDG metabolic parameters. Thus, both imaging techniques might play a complementary
role in HNC diagnosis and assessment. This is significant because the treatment plan of patients
with HNC should be well evaluated by using all the available diagnosis techniques, for a better
understanding of how the tumor will react.

Abstract: Background: This study aimed to assess the association of 18F-Fluorodeoxyglucose positron-
emission-tomography (18F-FDG/PET) and DWI imaging parameters from a primary tumor and their
correlations with clinicopathological factors. Methods: We retrospectively analyzed primary tumors
in 71 patients with proven HNC. Primary tumor radiological parameters: DWI and FDG, as well as
pathological characteristics were analyzed. Spearman correlation coefficient was used to assess the
correlation between DWI and FDG parameters, ANOVA or Kruskal–Wallis, independent sample t-test,
Mann–Whitney test, and multiple regression were performed on the clinicopathological features that
may affect the 18F- FDG and apparent-diffusion coefficient (ADC) of the tumor. Results: No significant
correlations were observed between DWI and any of the 18F-FDG parameters (p > 0.05). SUVmax
correlated with N-stages (p = 0.023), TLG and MTV correlated with T-stages (p = 0.006 and p = 0.001),
and ADC correlated with tumor grades (p = 0.05). SUVmax was able to differentiate between N+
and N− groups (p = 0.004). Conclusions: Our results revealed a non-significant correlation between
the FDG-PET and ADC-MR parameters. FDG-PET-based glucose metabolic and DWI-MR-derived
cellularity data may represent different biological aspects of HNC.

Keywords: diffusion-weighted imaging; apparent diffusion coefficient; head and neck squamous cell
carcinoma; PET/MRI; glucose metabolism; primary tumor
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1. Introduction

Head and neck cancer is the sixth most frequent cancer worldwide, accounting for
around 6% of all cancer diagnoses and approximately 1–2% of all cancer fatalities [1]. HNC
cancers are a diverse collection of malignancies that are anatomically similar but differ in
their origin, histology, diagnostic, and therapy techniques [2]. Squamous cell carcinomas
account for 91% of all HNC cancers, sarcomas for 2%, and adenocarcinomas, melanomas,
and unspecified tumors for the remaining 7% [3].

Recently, 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic
resonance imaging (MRI) has emerged as an effective and accurate imaging modality in
oncology [1]. PET/MRI is expected to be more valuable than PET or CT, alone or combined,
because PET/MRI involves a better contrast in soft tissues and a lower radiation dose from
the MRI system [1]. The advantage of clinical PET/MR is rather to replace PET/CT + MR,
and reduce the radiation dose in comparison with PET/CT. DWI, a widely used technology
for analyzing the motion of water molecules (Brownian motion) as a noninvasive diagnostic
tool of tissue biology [4] by dissecting the texture of a biologic tissue based on the motion of
water molecules at a microscopic level, is also available with PET/MRI [2]. ADC represents
DWI for determining a tumor’s cellularity [3,5]. The higher cellular tumor results in more
restriction to water molecule motion which, as a result, gives lower ADC values and vice
versa [4]. This means that the water molecule’s motion reflects the signal loss on DWI, due
to different water permeabilities through the structures [2,6]. Previous studies have proved
the inversely proportional correlation between ADC and tumor cellularity [7,8]. ADC also
was found to be effective in primary tumor assessment, differentiating between benign and
malignant neoplasms, staging, and monitoring at post-treatment follow-up [9,10]. ADC
was also found to be useful in predicting therapy response in head and neck squamous cell
carcinoma (HNSCC) patients [11].

Owing to their ability to quantify glucose metabolism in tumors, FDG uptake values
from PET imaging play an essential role in head and neck imaging, [12,13], which may
also reflect the tumor’s aggressiveness and the risk of metastasis spreading to surrounding
structures [14,15]. SUV is the most used metric to estimate glucose metabolism, and it
has shown promise for predicting the presence of metastatic lymph nodes at the original
assessment, as well as survival and recurrence [16]. The metabolic parameters, TLG and
MTV have emerged as new parameters that can measure the glucose metabolism activity
of tumors and have been found to be more effective than SUV, because tumor contour is
considered when using MTV and TLG [17]. SUVmax does not reflect the metabolic activity
of the entire lesion, but measures the highest glucose metabolism in the target ROI [18].
While, MTV represents the volume of the 18F-FDG activity in the lesion and TLG represents
the sum of the SUV within the lesion. Furthermore, glucose metabolic activity is positively
correlated to tumor cellularity [19,20].

Therefore, our study aimed to investigate the correlation between FDG parameters
and ADC values, and focused, in-depth, on finding out if there is a correlation between
tumor metabolic activity and cellularity, represented by ADC and SUVmax, TLG, and
MTV, as well as assessing the ability of these imaging parameters to determine tumor
aggressiveness, by predicting lymph node involvement.

2. Materials and Methods
2.1. Patients and Demographics

The Clinical Center, Regional and Local Research Ethics Committee (CCRLREC),
University of Pecs Doctoral School of Health Sciences, and Somogy Megyei Kaposi Mor Ed-
ucational Hospital, Pecs, Hungary (Approval Number: IG/04866.000/2020) approved this
retrospective study [11]. The informed consent requirement was waived and confirmed by
the (CCRLREC), and all methods were carried out following the applicable guidelines and
laws (Declaration of Helsinki). From May 2016 to June 2019, 109 patients with confirmed
HNC had their disease staged and assessed by 18F-FDG PET/MRI. (1) Patients had to have
untreated main HNC, (2) they had to have PET/CT and PET/MRI with DWI sequences,
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and (3) they had to be non-smokers, as well as a single tracer injection session. Exclusion
criteria: (1) patients who had non-measurable ADC, or FDG parameters; (2) patients with
motion artefact or bad image quality. Finally, a total of 71 patients were included in our
study, see Table 1. Biopsy was the gold standard method for malignancy confirmation for
all patients after PET/MRI examination.

Table 1. Patient demographics.

Number of Patients 71

Mean Age (y) (61.6 ± 0.8)
Men 49 (69.0%)

Women 22 (31.0%)
Histologic Grade

Grade 1 12 (16.9%)
Grade 2 41 (57.7%)
Grade 3 18 (20.4%)

Localization
Pharyngeal 32 (45.1%)
Laryngeal 15 (21.1%)

Oral 22 (33.8%)
T category

T1 4 (5.6%)
T2 19 (26.8%)
T3 26 (36.6%)
T4 22 (31.0%)

N category
N0 10 (14.1%)
N1 9 (12.7%)
N2 45(63.4%)
N3 7 (9.9%)

M Category
M0 63 (88.7%)
M1 8 (11.3%)

N groups
N+ 61 (85.9%)
N− 10 (14.1%)

2.2. PET/MRI Imaging

The work strategy and procedure have been published elsewhere [11,12,21]. In brief,
the examinations were conducted in a dedicated PET/MRI (3 T) equipment (Biograph
mMR, Siemens AG, Erlangen, Germany). Patients were instructed to fast for at least 6 h
and had their blood sugar levels checked to guarantee euglycemia before receiving the
18F-FDG injection intravenously. PET/MRI was conducted in the supine posture, images
were captured with head and neck coils. PET/MRI parameters were also included (ADC,
SUV, TLG, and MTV). MRI sequences were T2-weighted TSE turbo inversion recovery
magnitude (TIRM) (TR/TE/TI 3300/37/220 ms, FOV: 240 mm, slice thickness: 3 mm,
224 × 320) coronal plan, T1-weighted turbo spin-echo (TSE) (TR/TE 800/12 ms, FOV:
200 mm, slice thickness: 4 mm, 224 × 320), and T1-weighted TSE Dixon fat suppression
(FS) (TR/TE 6500/85 ms, FOV: 200 mm, slice thickness: 4 mm, 256 × 320) transversal and
were acquired without an intravenous contrast agent [11,12,21].

2.3. Image Analysis

All methods of image analysis were previously published [11,12,21]. In short, a fixed
2.5 threshold of SUV was used for tumor SUVmax for both MTV and TLG, as proposed by
Pak et al. [13]. DWI measurements were previously mentioned [12,21]. ‘Avg’ represents
the average ADC values for all voxels within the ROI and ‘Dev’ Represents the standard
deviation, see Figure 1.
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Figure 1. (A–D) and 18F-FDG measurements of 67 male patients with Oropharyngeal carcinoma.
(A) T2-PET_tirm coronal MRI shows the intensive FDG accumulation (arrow). (B) T1-TSE-sagittal
shows the extent of the tumor, lateral pharyngeal wall into the tongue root to the left tongue body
(arrows). (C) T1-PET fused image shows the ROI within the tumor (arrows), and (D) DWI/ADC map
showing the average and standard deviation of the ADC value.

2.4. Statistical Analysis

SPSS 25 was used to conduct a statistical analysis (IBM SPSS Statistics, Armonk, NY,
USA). For variables with a normal distribution, descriptive statistics (mean and standard
deviation) were used; whereas, for variables with a non-normal distribution, median and
interquartile ranges were used. The Spearman rank correlation (r) was used to estimate
the association between 18F-FDG parameters and ADC values and tumor size (continuous
variable). ANOVA or a Kruskal–Wallis test were performed on the clinicopathological
features that may affect the 18F- FDG and ADC of the tumor. By combining variables with p
< 0.1 in a univariate analysis, a multiple linear regression analysis was used to find those that
were independently linked with imaging parameters. To transform statistically significant
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differences in the univariate analysis into the multivariate linear regression model, we used
a transforming function to convert variables with non-normal distribution into a normal
distribution, then the factors were added one by one (Stepwise). A Mann–Whitney test and
independent-sample T-test were applied to the imaging parameters after the patients were
grouped based on lymph node involvement into positive (N+) and negative lymph nodes
(N−). A p-value <0.05 indicated a statistically significant result.

3. Results

A summary of the measurements can be found in Supplementary file (Table S1).
Spearman’s correlation coefficient was applied on 18F-FDG parameters and ADC values;
the results show that 18F-FDG parameters (SUVmax, TLG and, MTV) were not correlated
with ADC values (r = −0.184, p = 0.125, r = −0.182, p = 0.248, and r = −0.037, p = 0.756),
respectively. A summary of correlations is shown in Table 2 and Figure 2A–C.

Table 2. Summary of correlations between FDG and DWI imaging parameters.

Parameter ADC SUVmax TLG MTV Tumor Size

ADC
Spearman (rho) −0.184 −0.182 −0.037 −0.088
Sig. (2-tailed) −0.125 0.129 0.756 0.464

SUVmax
Spearman (rho) 0.456 *
Sig. (2-tailed) 0.000

TLG
Spearman (rho) 0.794 *
Sig. (2-tailed) 0.000

MTV
Spearman (rho) 0.739 *
Sig. (2-tailed) 0.000

* Significant at a level of 0.05, significant result in bold.

Moreover, the Spearman correlation coefficient was used to assess the correlation
between 18F-FDG and tumor size (tumor size was measured as the maximum diameter
of the tumor in pathologic results, mean size was 49.8 ± 2.5 mm). The results show that
18F-FDG parameters (SUVmax, TLG and MTV) were significantly and positively correlated
with tumor size (r = 0.456, p = 0.001; r = 0.794, p = 0.001; and r = 0.739, p = 0.001), respectively.
ADC, on the other hand, showed no significant correlation with tumor size (r = −0.088, p =
0.464), see Table 2.

For a clinicopathological comparison, we compared primary tumor FDG (SUVmax,
MTV, and TLG) and ADC parameters with sex, T stages, N stages, M stages (7th Edition
American Joint Committee on Cancer pathological staging criteria), [14] localization, and
the degree of differentiation (grades). The results show that N stages were correlated
with higher SUVmax, (p = 0.023). T stages and N stages were correlated with TLG values
(p = 0.006 and p = 0.033, respectively). T stages were correlated with MTV values (p =
0.001). Lower ADC, on the other hand, was found to be correlated with the degree of
differentiation (p = 0.05), with a tendency for ADC to correlate with N stages, (p = 0.092).
No other significant correlations were observed, (p > 0.05) for all parameters, see Table 3.
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Figure 2. Scatter diagram showing the correlation between the ADCmean and (A) SUVmax, (B) TLG
and (C) MTV. No significant linear correlation was observed between ADCmean and any of the
18F-FDG parameters, p > 0.05.

Table 3. Clinicopathological comparison with FDG and DWI imaging parameters.

Grouping SUVmax TLG MTV ADC

SEX p = 0.314 p = 0.522 p = 0.784 p = 0.897
T stages p = 0.267 p = 0.006 p = 0.001 p = 0.880
N stages p = 0.023 p = 0.033 p = 0.605 p = 0.092
M stages p = 0.283 p = 0.785 p = 0.913 p = 0.347
Grades p = 0.233 p = 0.310 p = 0.713 p = 0.050

Localization p = 0.389 p = 0.128 p = 0.367 p = 0.270
Kruskal–Wallis for multi-categorical variables (T stages, N stages, localization, and tumor grades) and Mann–
Whitney test for two categorical variables (sex, M stages) were used with (SUVmax, TLG and MTV). ANOVA and
independent sample t-test were used with ADC values. Significant results are highlighted in bold.
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Multiple regression was recruited for factors that showed a statistically significant
correlation in univariate analysis, to investigate the factor that influences the change in
(SUVmax, TLG, MTV, and ADC). The results showed that tumor size and N stage were
independent factors influencing SUVmax, (p = 0.001 and p = 0.008, respectively). Tumor size
was an independent factor influencing TLG and MTV (p = 0.001 and p = 0.001, respectively).
Tumor grade was found to be an independent influencing factor of ADC (p = 0.05). Table 4.

Table 4. Multiple Regression Analysis Showing the Effects of Prognostic Factors on 18f-FDG
parameters.

Prognostic Factors B T p Value

SUVmax
Tumor size 0.409 3.333 0.001 *

T stages N/A N/A N/A
N stages 0.227 1.995 0.022 *

TLG
Tumor size 0.767 8.988 0.000 *

T stages −0.050 −0.598 0.552
N stages 0.119 1.500 0.138

MTV
Tumor size 0.662 6.857 0.000 *

T stages 0.140 1.473 0.146
N stages N/A N/A N/A

ADC
N stages 0.043 2.042 0.069

Tumor grades −0.021 −1.846 0.045 *
* Significant result; N/A: Not assessed. Significant results are highlighted in bold.

When removing the effect of the tumor size, SUVmax was correlated with N stages
(p = 0.011), but not with T stages (p = 0.838); TLG was significantly correlated with both T
stage and N stages (p = 0.018 and p = 0.034); and MTV was correlated to T stages (p = 0.001).

To investigate the ability of FDG and ADC parameters to predict lymph node in-
volvement, we classified the patients based on lymph node involvement into negative and
positive groups (N− and N+) and compared them using these parameters. Our results
show that SUVmax revealed statistically significant differences (p = 0.004); while TLG, MTV
and ADC did not (p > 0.05). Figure 3A–D.
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Figure 3. Boxplots displaying the distribution of SUVmax, TLG, ADC and MTV (A–D) according to
lymph nodes status. (A) SUVmax values of positive lymph nodes tumors were significantly higher
than those lymph nodes negative tumors (p = 0.004). (B) TLG show no significant difference between
positive and negative lymph node (p = 0.084). (C) ADC values of positive lymph nodes tumors were
not significantly between positive and negative lymph nodes (p = 0.074) and finally, (D) MTV positive
lymph nodes tumors and negative lymph nodes tumors were not statistically significant difference
(p = 0.342).

4. Discussion

The present study demonstrated that PET/MR provides valuable imaging data for
HNC patients. Various pathological factors were associated with PET/MR results and
may have a role in the evaluation of the prognosis of patients with HNC. PET/MRI
offers different imaging data for studying tumor microstructure environments. Previous
data demonstrated an inverse correlation between ADC value, derived from DWI, and
cellularity [3–5,8]. FDG imaging parameters, on the other hand, were found to be positively
correlated with cellularity [15,19,20]. Although the glucose metabolism and cellularity of
tissue are two different biological biomarkers of a tumor, an inverse correlation between
18F-FDG and DWI has been suggested [15]. This hypothesis was proposed because both
18F-FDG and ADC were correlated with tumor cellularity [16].

In our study, the results showed that FDG uptake parameters (SUVmax, TLG, and
MTV) were not significantly correlated with the ADC values. Similarly to Min et al., who
found no significant correlation between ADCmean with SUVmax and SUVmean, no
significant correlation was found between ADCmean and both MTV and TLG [22]. Surov
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et al., in a recent study, reported no significant correlation between ADCmean and SUVmax
or SUVmean [23], and others [24–27].

On the other hand, contrarily to our results, Nunez et al. observed, in their study
of HNSCC, a significant inverse correlation between the SUV and the ADC [27]. Nakajo
et al. also observed that SUVmax was correlated inversely with ADCmean [28]. Han et al.
reported a slightly significant inverse correlation between SUV and ADC. They also found
a negative significant correlation between ADC and TLG [29].

Our explanation for the lack of correlation is the fact that both imaging parameters
explain different tissue microstructures characteristics, where DWI assesses the water
molecule motion in the tissue and is affected by the cellularity, proliferation rate, and
cell counts, which in clinical use are affected by ROI size placement and interobserver
variability [30]. On the other hand, metabolic activity was found to be independent of
tumor size and shape, because the tumor is segmented by adaptive thresholding [16].

Furthermore, the tumor’s clinicopathological characteristics were correlated to the
imaging parameters, and the results reveal different correlations, as such; the primary
tumor SUVmax was significantly correlated with the N stages; higher values of SUVmax
were found in patients with a higher N stage. According to Zheng et al., there was a
positive significant correlation between lymph nodes status and SUVmax; a higher SUVmax
resulted in more lymph node metastasis, which means that SUVmax has a predictive role
in lymph node diagnosis [31]. Micco et al. reported a significant correlation between
lymph node occurrence and SUVmax and TLG [32]. Morand et al. observed similar results,
where higher lymph node involvement was found in patients with higher primary tumor
SUVmax [33]. In the same study, the authors reported that TLG did not correlate with
lymph node status [33]. In our study, no significant correlation was observed between
MTV and lymph node status, a similar result was reported by Morand et al. [33] and Chan
et al. [34]. In summary, N stages and tumor size were independent factors influencing
SUVmax. Tumor size and tumor T stages were independent factors influencing TLG
and MTV. Thus, SUVmax might be a promising imaging biomarker to predict tumor
aggressiveness.

ADC, on the other hand, shows a significant correlation with the tumor degree of
differentiation, this results from the fact that a higher-grade tumor (G3) shows more
restriction to water molecules, which as a result decreases the ADC value. Additionally,
ADC did not show any significant correlation with T stages, N stages, or tumor size.
Similar results were found by Nakajo et al. [28]. Moreover, other authors revealed the
same findings [35,36]. In contrast, Abdel Razek et al., in their study of Nasopharyngeal
carcinoma have reported a statistically significant difference between primary tumor ADC
and nodal involvement [4]. While in our study, the explanation of different results was
due to the heterogeneity of the patient’s sample, which contained multiple primary tumor
localization, and, thus, different anatomical and histological components were involved.

Although several studies have investigated the diagnostical role of 18F-FDG and
ADC for determining tumor aggressiveness in different cancers [32,37–42], none of the
studies have compared the efficacy of different PET/MRI imaging biomarkers in HNC
tumor aggressiveness prediction. Thus, to our knowledge, this is the first study to compare
PET/MRI system-derived imaging parameters in lymph node involvement in HNC. Our
results show that SUVmax was found to be able to differentiate between the two lymph
node groups (N+ and N−) based on the primary tumor measurements, which as a result
might help to predict tumor development and prognosis. The importance of the successful
prediction of tumor aggressiveness and lymph node involvement might help in daily
practice, to increase the effectiveness of the therapy.

Based on our study results and findings, there were several correlations between
PET/MRI imaging parameters and clinical tumor characteristics, and we suggest that
glucose metabolism assessed by 18F-FDG and cellularity assessed by ADC have different
roles in cancer evaluation; therefore, we recommend PET/MRI as a combined examination,
rather than PET or MRI alone.
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As for this study’s limitations, first is the heterogeneity of the tumor localization.
Second, our study focused on the search for a correlation between 18F-FDG, ADC, and
histopathological features only in HNC. Third, associations with other functional tumor
parameters such as apoptosis factors were not analyzed. Fourth, the design of the study
was retrospective.

5. Conclusions

Our results revealed no linear correlation between FDG PET and ADC MR parameters.
FDG PET-based glucose metabolic and DWI MR derived cellularity data may represent
different biological aspects of HNC tumors, and simultaneous PET/MR imaging could
provide complementary diagnostic information. SUVmax showed a higher accuracy in
predicting tumor aggressiveness than DWI.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14030847/s1, Table S1: Summary of measurements.
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