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Clonal reconstruction from co-occurrence of vector
integration sites accurately quantifies expanding
clones in vivo
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High transduction rates of viral vectors in gene therapies (GT) and experimental hemato-

poiesis ensure a high frequency of gene delivery, although multiple integration events can

occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification

of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations

between repeated measurements of IS abundances to estimate their mutual similarity and

identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the

performance, robustness and specificity of our methodology using clonal simulations. The

reconstruction methods, implemented and provided as an R-package, are further applied to

experimental clonal mixes and preclinical models of hematopoietic GT. Our results demon-

strate that clonal reconstruction from IS data allows to overcome systematic biases in the

clonal quantification as an essential prerequisite for the assessment of safety and long-term

efficacy of GT involving integrative vectors.
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Gene therapy (GT) approaches aim to compensate the
missing functionality of a mutated gene by the insertion of
one or more corrected copies of the same gene into the

genome of patients’ cells. Integrative viral vectors, such as gamma
retro viral and lentiviral vectors (LV), are clinically important
vehicles to realize the permanent integration of a therapeutic
transgene into the genome of hematopoietic stem and progenitors
cells (HSPC) to establish the expression of the defective gene in all
the cells of the hematopoietic systems1. The semi-random integra-
tion site (IS) of the target sequence within the host genome repre-
sents an inheritable “fingerprint” allowing to track the progeny of
the targeted cells over time and in different locations. However, the
permanent gene transfer confers the risk of disturbing a cell’s genetic
program potentially leading to uncontrolled proliferation2. Since the
first reports about insertional mutagenesis events in early clinical GT
trials3, the continuous monitoring of IS abundances has become a
standard method to detect aberrant and potentially malignant clonal
expansion4. Therefore, corresponding protocols for the assessment
of safety and efficacy are routinely implemented in GT trials.

The availability of molecular approaches for IS retrieval5 uti-
lizing next generation sequencing (NGS) has greatly improved the
efficiency to identify and quantify the abundance of multiple IS
within one sample6. Recent advances in PCR methods allowed a
reliable quantification of IS abundance with a detection limit in
the order of 0.1%7. However, the achievement of a better and
reproducible correlation between input material and the number
of identified IS is still challenging and relies on many factors such
as the overall level of gene marking, the amount of available
DNA, or the methodology for IS calling and quantification8,9.
Nevertheless, it is generally accepted that the IS abundance also
corresponds to the clonal abundance, although this interpretation
is only valid if each clone is solely marked by a single IS10. Aiming
towards high transduction rates among initially transplanted
cells, target cells commonly integrate more than one virally
transduced genetic sequence. The incorporation of multiple IS
within individual cells strongly affects the interpretation of
quantitative IS analysis. For the example in Fig. 1, we consider
three clones with two, four, or six IS. The clonal ground truth in
Fig. 1a indicates that one clone is clearly dominating. From the
measurement side, only time courses of IS abundance are avail-
able (Fig. 1b), while it is a priori not clear whether and how they
belong to distinct clones. The example illustrates that naïvely

assuming that each IS represents a unique clone misinterprets the
true level of clonality and misses the substantial dominance of
one of the clones. Unfortunately, this missing association between
IS and clones is a fundamental challenge in GT applications that
increases the risk of overestimating the overall clonality and
underestimating single clonal abundances. Especially in clinical
settings, in which the safety assessment of GT trials is explicitly
based on relative IS abundances11–16, it is essential to know about
and correct for multiple integrations.

Related questions about the assignment of mutational variants
to the dynamically accumulating clonal structures in genotypi-
cally heterogenous tumors have been raised in the field of cancer
sequencing and evolution17–19. Corresponding reconstruction
methods are based on the independent frequency of variant alleles
and aim to recover the underlying clonal structure. In the context
of gene therapy with viral vectors, one or more integrations may
occur in the same cell at the time of transduction while no new
integrations appear in vivo after transplantation. IS abundance is
only measurable relative to the abundance of all other IS and the
reconstruction of clones aims at correlating all observed IS read
counts without assuming any hierarchical relation. To our
knowledge, no methods are available to address this issue and to
correct clone size quantification in the context of gene therapeutic
applications. Therefore, we here develop a bioinformatic
approach to detect co-occurrent IS within the same clone and
provide an R software package MultIS for the corresponding
analysis. Our approach is based on the idea that two IS of the
same clone appear in a constant relative frequency to each other
while IS from different clones will change their mutual relative
frequency according to the corresponding different clone sizes.
We use a mathematical modeling approach to illustrate how the
identification of mutual correlations between all pairs of IS can be
used to identify sets of IS with high similarity, suggesting the
same clonal origin. We particularly employ mathematical mod-
eling to demonstrate both the potential and limitation of this
approach. We further validate our method using in vitro data
obtained by mixing multiple cell clones with different but known
IS. Finally, we apply our pipeline to a mouse model and to
available primate data reflecting real case scenarios of HSPC-GT.
Hence, we develop and experimentally validate a method that
accurately identifies source clones from observed IS, improving
downstream analyses for preclinical and clinical studies.

Fig. 1 Sketched example of a clonal time course and the corresponding IS measurements. a Artificial example of a time course depicting the relative
abundance of three clones (i.e., clonal ground truth). The insets indicate that each clone is identified by a variable number of up to six IS. b The
corresponding measurement of the IS detects a total of 12 IS. Although the colors indicate the clonal origin, this information is usually not known a priori.
Our suggested pipelines aim to use these relative IS abundances to reconstruct the common clonal origin of the different IS and to estimate the true,
underlying clonal time course as depicted in a.
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Results
Clonal reconstruction for simulated time-series data. We pre-
sent a bioinformatic pipeline to identify IS that belong to the
same clone. Our suggested method is based on the idea that
multiple IS of the same clone appears with similar relative
abundances. If the source clone is small, all its IS should present
with low abundance, while IS of a dominant clone should all
appear more frequent. Following an initial filtering step we cal-
culate pairwise similarities among all IS which are fed into a
clustering algorithm that identifies co-occurring, clonally related
IS (Fig. 2, Methods and Supplementary Note 1).

In order to demonstrate the general feasibility of our approach
and to learn about its limitation, we implemented a scalable
mathematical model mimicking time series of clonal development
(Methods and Supplementary Note 1). In brief, our model
describes the proliferation and the differentiation of a stem cell
population. Implementing this approach as a stochastic, single
cell-based model allows to follow the progeny of each individual
cell and thereby track clonal developments20. Depending on the
choice of model parameters we can influence how fast the system
will converge towards clonal dominance. In particular, if we
increase the heterogeneity of the initialized cell clones with
respect to their tendency for differentiation (encoded by the
standard deviation δ of the mean differentiation rate) we
accelerate the process of clonal dominance (Fig. 3a–c, “equal

clones” vs. “pronounced clonal advantage”). On top of those
clonal time series we superimpose several IS per clone.
Technically, we sample the number of IS per clone from a
Poisson distribution with mean λ. In GT applications, this
parameter λ can be easily obtained using the vector copy number
(VCN) of the analyzed population, which is an experimentally
accessible quantity reflecting the average number of IS per cell.
Examples of this superposition for λ ¼ 5 are shown in Fig. 3d–f.

From these simulated clonal developments, we obtain time
series of the relative IS abundance Î i tð Þ which are scalable for their
clonal heterogeneity (δ), the average VCN λ, but also for the
number of measurement time points and the level of measure-
ment noise σ. It is the central advantage of the simulation model,
that the ground truth, i.e., the true assignment of IS to clones is
intrinsically known and can be used as a benchmark to evaluate
the performance of the reconstruction process.

The bioinformatic reconstruction is solely based on the IS time
series Îi tð Þ, which has been generated from the raw number of
sequence reads per IS (see Methods). Briefly, the reconstruction
pipeline is initiated by a filtering step to minimize the detection of
spurious correlations and to focus on the clones with higher
abundance. For the particular example, we are considering the 50
most abundant IS at the final time point of the analysis (Fig. 3g±i).
As the second step, we calculated a similarity measure (i.e., the
coefficient of determination R2) for all pairs of IS that remained

Fig. 2 Overview of the reconstruction pipeline. a Example of a time series of IS abundance after applying a filtering step (IS > 1% at the last time point).
Gray colors indicate IS that did not pass the filtering. b Two examples for the calculation of the similarity score R2 between two pairs of IS. The smaller
residuals between triangles and the black line indicate a higher similarity between IS 16536 and 16537 (R2= 0.99) as compared to IS 1533 and 16537
(R2= 0.46), which are shown in gray and present with larger residuals. c Network representations of the corresponding similarity matrix S in which the
shading of the edges indicates the mutual correlation between the IS. We show four different clusterings for increasing values of clusters k= 2 to 5, for
which the coloring of the nodes represents the obtained clustering. Using the silhouette score sil (provided in red) we compare the overall clustering quality
between these results, indicating that for the particular data set, k= 2 clusters optimally reflect the structure of the similarity matrix S. d The clonal time
series which has been reconstructed by assigning IS of one cluster to the same clone. IS that did not pass the filtering, are still shown in gray.
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after the filtering step. This mutual similarity is subsequently used
to identify clusters of IS with highly correlated behaviors. Those
clusters are interpreted as single clones with potentially multiple
IS. In a final step, we recalculated the clonal abundances as an
average of the IS abundance per clone and for each measurement
(Supplementary Note 1, Supplementary Figs. S1 and S2).

We quantify the reconstruction quality using the adjusted Rand
index (ARI), which compares the true association of IS to clones
with the corresponding assignment obtained from the recon-
struction pipeline. Figure 3j, k indicates that the median of the
reconstruction quality increases as a function of the number of
equally spaced measurement time points, suggesting that a
reliable reconstruction can be obtained for most values of the
clonal heterogeneity δ (ranging from no to pronounced clonal
advantage) given that at least five independent measurements are
available.

Delineating the individual clonal time series according to their
assigned clusters indicates that the IS in the same cluster indeed
shows highly correlated behavior (Supplementary Figs. S1 and
S2). Using this assignment of IS to clones, a reconstructed clonal
time series can be obtained which mimics the general behavior

already known as the ground truth. Minor IS that did not pass the
filtering step were corrected for the average number of IS per
clone and are indicated as background. Supplementary Figs. S3
and S4 further confirm that the reconstruction is unaffected if
more but smaller clones are initialized and that even the unlikely
case of indistinguishable IS in different clones does not distinctly
affect the results.

We further analyzed the influence of the average VCN λ and
the level of measurement noise σ on the reconstruction quality
(Fig. 4a–i). We observe that the reconstruction algorithm
performs worse for smaller VCN, especially if the average value
is as low as λ= 2 or smaller. In those cases, the majority of clones
harbor one IS. As the clustering approach has a tendency to
combine weakly correlated IS into one clone, the overall
reconstruction quality is diminished. For increased average
VCN λ a high reconstruction quality is achieved while for very
high values (λ > 10) only few clones remain after the filtering. In
an orthogonal dimension, we study the influence of technical
noise σ on the quantification of each individual IS. Figure 4a–i
indicates a robust reconstruction even for increasing levels of
measurements noise σ (herein, a value of σ= 0.04 corresponds to

Fig. 3 Time series of clonal development and their reconstruction based on IS measurements. a, b, c Clonal time series (100 initial clones, 100 cells
each) for increasing values of the standard deviation δ of the differentiation rate with an increasing tendency for clonal conversion (left: “equal clones” vs.
right: “pronounced clonal advantage”). Insets focus on the three largest clones only. d, e, f Corresponding time series for IS, which are superimposed in
each clone. The insets represent the IS substructure of the three largest clones. g, h, i Remaining time series after the filtering step, which limits the analysis
to the 50 largest IS being present at the final time point. j, k, l Quality of the clonal reconstruction process as a function of the number of available, equally
spaced time points for IS measurements. Reconstruction quality is measured by calculating the adjusted Rand index (ARI) between the known ground truth
and the reconstructed clustering (ARI→ 1 indicating perfect reconstruction; quantitative analysis is based on 20 independent simulations each; points
indicate the median; whiskers correspond to the first and third quartile).
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a 95% confidence interval of about 8% around the true value).
The simulations also indicate that the reconstructions fail for
large values of σ as true correlations between IS can no longer be
detected. A closely similar pattern was obtained when analyzing
the number of reconstructed clones compared to the true number
of clones that remained after the filtering step (Supplementary
Fig. S3). While there is a general tendency to underestimate the
true number of clones, this discrepancy diminishes with
increasing number of measurements and lower technical noise.

Our results indicate that a correlation-based assessment of IS
abundances is indeed suited to identify multiple IS co-occurring
in the same clone.

Assessment of IS abundance in different hematopoietic linea-
ges improves the reconstruction process. Various studies of the
hematopoietic system have shown that HSPC clones obey the
tendency to preferentially contribute to one or another hemato-
poietic lineage21–23. For example, some clones preferentially dif-
ferentiate to T cells while other clones contribute more to
granulocytes. For the first case, we would expect to see a pro-
minent contribution of all the clonal IS to the T cells, while the
same IS should rarely be seen for the granulocytes. As the analysis
of correlations between different IS benefits from varying clone
sizes, we hypothesize that the assessment of IS abundance in
different hematopoietic lineages can further improve the

Fig. 4 Dependencies of the reconstruction quality. a–i Reconstruction quality with respect to the average number of IS λ and levels of measurement noise
σ for standard deviation of the differentiation rate δ= 0.0025. Rows refer to the average number of IS λ= 2 (a, b, c), λ= 5 (d, e, f) and λ= 10 (g, h, i). The
column represents increasing levels of the measurement noise σ = 0.025 (a, d, g), σ = 0.04 (b, e, h) and σ = 0.08 (c, f, i). Each data point is based on 20
independent simulation runs (points indicate the median adjusted Rand index (ARI); whiskers correspond to the first and third quartile). j, k, l
Reconstruction quality depends on clonal variability ν. Median ARI is shown as a function of the number of measurements for increasing levels of
measurement noise σ = 0.025 (j), σ = 0.04 (k) and σ = 0.08 (l). The coloring corresponds to different levels of the clonal variability ν, which approximates
the diversity of available compartments. Each data point is based on 20 independent simulation runs.
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reconstruction process. In this notion, measurements of the IS
abundance in different lineages are considered as independent
samples closely similar to measurements at different time points.

To account for the fact that clones do not equally contribute to
different lineages, we introduced an artificial clonal variability in
the model simulation, quantified by parameter ν. For ν ¼ 0, the
final clone sizes correspond to the clonal time courses (i.e.,
I�i tð Þ=Ii tð Þ), while for values of ν> 0 clone sizes for each
measurement point are randomly and moderately varied, thereby
affecting the abundance of all IS for each particular clone.

Clonal reconstruction based on the resulting model simulation
for ν> 0 confirms our hypothesis. Figure 4j–l indicates that
especially for higher values of the measurement noise σ there is a
consistent improvement in the reconstruction quality for
increasing values of the clonal variability ν. This additional level
of variability, which compares to clonal measurements in distinct
hematopoietic compartments, appears as a key factor to
strengthen the identification of mutually correlated IS and their
clonal origin. We explicitly point out, that those measurements
do not necessarily require temporal separation, but can be
achieved by subfractioning primary samples according to lineage
identity prior to sequencing.

We conclude that IS measurements in different hematopoietic
sub-compartments can improve the clonal reconstruction process.

In vitro validation assays confirm the validity of clonal
reconstruction. We validated our reconstruction method using
an in vitro experimental assay. To this end we used four K562 cell
clones having different and known IS of a self-inactivating len-
tivirus (SINLV): ID#27 (1 IS), ID#30 (4 IS), ID#37 (6 IS), ID#46
(10 IS) (see Supplementary Note 1, Supplementary Tables S1, S2).
The genomic position of each clone-specific IS was previously
identified using a well-established Sonication Linker-mediated
(SLiM)—PCR. In order to replicate a potential in vivo situation
and to challenge our clonal reconstruction model, we designed an
in vitro assay where the four-cell clones were mixed at different
ratios, such that each clone-specific IS was present at a predefined
level of abundances (Supplementary Table S1). A second cell line
transduced in bulk with a SINLV and having an average
VCN= 1.8 was added to all these mixes to generate the back-
ground signal of small clones that could be present in a real case
scenario and interfere with the detection of emerging clones. True
clone abundances within the different mixed populations were
confirmed using droplet digital PCR assay and probe-based assays
designed for clone-specific IS.

Figure 5a illustrates the measured relative abundance of the
prominent IS for the seven different mixes (left bar with black
contour). Spurious IS derived from the transduced background
(ranging from 7% to 60% for the different mixes) were already
removed by filtering for IS with a relative abundance >1% in any
sample.

By applying our suggested reconstruction pipeline, we obtained
clusters of IS which correlated and are interpreted as clones
(Fig. 5a, second bar). Figure 5b illustrates the strong inner-cluster
similarity (dark green edges), which allows us to correctly identify
the IS belonging to three of the four clones. This correct
assignment of IS to clones is already achievable if fewer mixes are
used for the reconstruction pipeline, indicated by the high level of
precision and recall reported for the clones ID#30, ID#37, and
ID#46 harboring more than one IS (Fig. 5c). The slightly lower
precision for clone ID#46 results from the false assignment of
clone ID#27 (which is only characterized by a single IS), also
detectable in the network graph in Fig. 5b. It appears as an
intrinsic limitation of the clustering approaches that singular IS
are preferentially joined to one of the other clusters. Although

heuristic methods (such as the detection of bimodal similarity
scores within clusters) can be implemented to detect weakly
assigned IS, we recommend a prior visual inspection to identify
and compensate for this shortcoming. Correcting for the obvious
misclassification in the given case, the in vitro assay confirms that
the estimated clonal abundance obtained from the reconstruction
pipeline (Fig. 5a, third bar) closely recapitulates the respective
ground truth (Fig. 5a, right bar, Supplementary Table S3). The
resulting approximation of the true clonal mixture outperforms a
sole assessment of the IS which largely overestimates the true
number of dominant clones.

Based on these results, we concluded that our method is indeed
suited to reconstruct clones from IS using their abundances over
different observations.

Clonal reconstruction for a mouse experiment. To further
confirm the potential of our reconstruction method for the detection
of expanding cell clones harboring multiple IS in a polyclonal setting,
we took advantage of a preclinical model of HSC gene therapy (GT)
based on tumor-prone Cdkn2a-/- Lineage- (Lin-) cells. In this model,
eight-week-old lethally irradiated wild-type C57BL6/J female mice
(n= 8) are transplanted with Lin- cells collected from eight-week old
C57BL6/J-Cdkn2a-/- mice (n= 12, half male and half female) and
transduced at multiple copies by a SINLV expressing GFP
(SINLV.PGK.GFP)24–26. Due to the tumor-prone background of the
Lin- cells, the transplanted animals develop hematopoietic malig-
nancies with a specific kinetic25 and the transduction with a neutral
SINLV allowed the specific marking of the neoplastic expansion and
the tracking of its growth by means of IS analyses.

We obtain measurements of IS abundance in different blood
lineages (B-lymphocytes (CD19+), T-lymphocytes (CD3+), and
myeloid cells (CD11b+)) collected over time at three to five
different time points starting from week 4 post-transplantation.
Those data are complemented by IS analyses performed on tissue
samples obtained at autopsy, where bone marrow, blood, spleen,
thymus, and lymph nodes were collected. Following the same
reconstruction pipeline as for the simulation scenario, we started
off by filtering the most abundant clones having a relative
abundance of more than 1% in the final blood or tissue samples
(Fig. 6a). Analyzing the mutual similarities between those
dominant IS, we identified those with a closely correlated behavior,
which appear as strongly connected clusters in corresponding
network maps (Fig. 6b). We interpret this pronounced, visual
separation of clusters as a strong indicator of common clonal
origin. For the particular example, our analysis suggests that 53 IS
that remained after filtering can be optimally mapped to eight
different clones. Representations of the clustered time series
confirm the high inner-cluster similarity (Fig. 6c).

Based on this assignment of IS to a much smaller number of
clones we can now translate the IS time series into a corresponding
clonal time series. Figure 6d indicates a less polyclonal pattern as
suggested by just accounting for the IS. Figure 6e further acknowl-
edges less abundant IS that did not pass the initial filtering step
(indicated in gray), leading to a quantitative description of
dominating clonal dynamics over the full experimental period.
Further examples from the same experimental setting are provided
in Supplementary Figs. S6–S9.

Our analysis of an experimental, polyclonal GT setting with
known integration of multiple vectors per cell clone illustrates the
applicability of our method in an application-relevant context.

Clonal reconstruction for a nonhuman primate data set.
Macaques are important animal models to study safety aspects of
GT and to assess long-term effects of transduced HSPCs8,27,28.
Recently, a report was published documenting the rare case of
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abnormal, fatal clonal hematopoiesis detected in one of these ani-
mals previously transplanted with lentivirally transduced stem
cells29. We assessed the respective data set reporting IS abundances
in four different hematopoietic compartments (T-lymphocytes, B-
lymphocytes, granulocytes, monocytes) and at nine different time
points post transplantation.

Filtering for IS with a relative abundance of more than 1% in any
of the final samples we identify 14 larger IS which our suggested
algorithm clusters in three distinct clones (Fig. 7a–c). Clearly, there is
one clone (Fig. 7d, shown in red) that progressively dominates the
time course and finally accounts for almost 100% of the granulocytes
and monocytes (Fig. 7e). Our findings confirm the primary results29,
in which the same six continuously detectable integrations could be
assigned to this dominating clone. Furthermore, we also observe that
the other two clones appeared with a fluctuating abundance over
time, and primarily contributed to T-lymphocytes. The observation
that the three clones contribute differently to the different
hematopoietic sub-compartments further supports our earlier
findings that IS measurements in different compartments can
improve the clonal reconstruction process. Technically, it is equally
interesting that the (almost) correct association of the six “red” IS to
the same clone could have already been drawn much earlier.
Supplementary Figs. S10, S11 indicate that already at day 187 and
day 266 this association would have been feasible. This analysis
illustrates the potential of our suggested method for the early
detection of expanding clones.

R implementation: the MultIS package at CRAN. In order to
facilitate the application and further development of our analysis
pipeline we provide a corresponding R package named MultIS via
CRAN (https://cran.r-project.org/package=MultIS). Starting out
from a list of IS abundances I(t) for multiple measurements, the
package provides all individual functions for the analysis pipeline
along with graphical representations (Supplementary Note 4). We
provide a corresponding R-script file to reproduce our analysis
and figures for this manuscript in a separate repository (https://
gitlab.com/imb-dev/clonal-reconstruction-figures).

Discussion
The unbiased assessment of temporal clonal contributions to
different hematopoietic compartments is limited by the co-
occurrence of several IS within the same clone which is difficult to
resolve experimentally. In this work, we propose a bioinformatic
pipeline that overcomes this limitation and leverages intrinsic
correlations between IS abundances derived from the same clone
to recover the true clonal structure. Our approach relies on the
idea that IS from the same clone appear in the same relative
frequency across time-series measurements and among different
hematopoietic cell types, while this correlation is missing for IS
resulting from different clones. This concept is translated into a
corresponding analysis pipeline, which we provide as a publicly
available R package MultIS.

Fig. 5 Analysis of in vitro mixes of the validation assay. a For each of the seven analyzed samples (mixes 1 to 7) four stacked bar plots display from left to
right: the relative proportion of measured IS after filtering (black contour, highlighting the available data in an experimental/clinical context, although the
assignment to one of the four clones (i.e., the coloring) is generally unknown), the relative proportion of the different clones after applying the
reconstruction routine, the relative proportion of the different clones after manual correction (see text), and the relative proportion of the four original
clones. b Network map indicating the clustering of mutually similar IS. Shading of the edges indicates the mutual similarity R2. The inner color of each node
represents the true assignment to one of the four clones, while the outer ring corresponds to the result of the reconstruction process. c Precision (true
positives/(true positives + false positives)) and recall (true positives/(true positives + false negatives)) for the three clones ID#30, ID#37 and ID#46
containing 4, 6 and 10 IS, respectively. All available permutations for the different number of mixes (ranging from 3 mixes to the maximum number of 7
mixes, filtering for IS with a relative abundance > 0.5% in any of the selected mixes) were used to evaluate the benchmark parameters for the individual
clones. Whiskers indicate the minimum and maximum values observed.
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We first optimized and validated our method using mathematical
simulations of clonal dynamics. We demonstrated that the method
is broadly applicable for settings with VCN ≥ 2 in the dominating
clones. Systematic variation of central model parameters identified
fewer measurements and increasing measurement noise as limiting
factors of the reconstruction process, as pairwise correlations of IS
abundance are harder to detect. In practical terms, we observed
reliable clonal reconstruction using eight or more measurements.
While an increasing measurement error limits the reconstruction
quality, this effect can be compensated by considering different
hematopoietic sub-compartments with varying clonal contributions,
even if they are measured at the same time point. Our simulation
studies confirmed that the central source of information for the

reconstruction process is based on the variability in IS abundances
re-captured at different measurements. Intuitively, if all clones are
always present with a highly reproducible proportion, also the IS of
these clones is more or less constant over repeated measures.
However, a reliable correlation can only be obtained if IS of the same
clone vary in a synchronized manner, namely due to their changing
clonal abundance. This observation indicates that not only tempo-
rally separated measurements but also IS analyses in different
hematopoietic lineages with distinct clonal contributions at the same
time point are very valuable to reconstruct the IS affiliation with
good precision.

Applying the reconstruction pipeline to a set of in vitro assays
in which cell clones with different numbers of IS are mixed in

Fig. 6 Experimental data and clonal reconstruction for mouse pool E4C. a Relative abundances of IS as a function of time for subsets of CD11b, CD19,
CD3, and mononuclear cells, for which multiple measurements are available. b The network map depicts the similarity between each pair of IS (indicated
by edge brightness) superimposed by the optimal clustering obtained from the reconstruction pipeline (indicated by color of the nodes). c Time series of all
IS assigned to the same clusters for all available compartments and time points (preserving the color scheme). d Corrected clonal time series for the eight
identified clones. e Corrected clonal time series together with the IS that did not pass the initial filtering step (indicated in gray).
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predefined ratios confirms the feasibility of the approach. Solely
based on the quantification of IS abundance we can identify
which of the IS belongs to which clone. These experiments also
point towards a limitation of the automated clustering approach,
as it has a tendency to misinterpret clones with single IS. The
clustering has a higher tendency to join such IS to other clusters
instead of labeling them as unique. Wrong assignment of a few
unique IS to identified clusters will only moderately affect the
overall interpretation of the clonal reconstruction, although we
strongly recommend a visual inspection of the clustering results

to identify obvious misclassifications. Threshold-based correc-
tions (using e.g., the detection of a bimodal distribution of
similarity scores within one cluster) can heuristically target this
problem, while critical cases might need to be resolved by an
experimental validation based on the sequencing of single-cell
colonies.

We further used the reconstruction pipeline to estimate clonal
expansion in an in vivo model for malignant hematopoiesis. Our
results confirm the hypothesis from the simulation results,
namely that the assessment of different hematopoietic lineages

Fig. 7 Experimental data and clonal reconstruction for a rhesus macaque. The animal received an autologous transplant in which the HSPCs were
transduced with a lentiviral vector containing a strong constitutive promoter-enhancer. The respective data for IS abundance in different compartments and
at different time points is available from ref. 29. a Relative abundances of IS as a function of time for subsets of cells (T-lymphocytes, B-lymphocytes,
granulocytes, monocytes), for which multiple measurements are available. b After filtering for all IS with a relative abundance >1% at the final time point
(553 d), 16 IS were further analyzed. The network map depicts the similarity between each pair of IS (indicated by edge brightness) superimposed by the
optimal clustering obtained from the reconstruction pipeline (indicated by color of the nodes). c Time series of all IS assigned to the same clusters
(preserving the color scheme). d Corrected clonal time series for the three identified clones. e Corrected clonal time series together with the IS that did not
pass the initial filtering step (indicated in gray).
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improves the clonal reconstruction process. Although the true
assignment of IS to clones is unknown for these experiments, the
overall similarity and consistency of the clustered time series
reinforce our primary intention that the reconstruction process
can also be applied to in vivo settings with rather stable poly-
clonal configurations. These approaches have been com-
plemented by applying the reconstruction pipeline to time-course
data from a non-human primate model in which the expansion of
a clone with multiple IS was observed29. Our suggested method
successfully revealed the correct association between the IS of the
dominating clone, thereby demonstrating the reliability and
precision of our approach. Moreover, our results showed that this
association is already feasible at a much earlier time point in a
continuous monitoring process, highlighting the potential of our
method for applications in GT.

We acknowledge that the suggested and necessary filtering step
may lead to incomplete assignments of IS to clones. However,
rather than identifying all IS within one clone, we focus on the
identification of how much-unaccounted co-occurrence of IS in
the same clone biases the overall assessment of clonality. Trying
to detect early signs of a developing clonal dominance, it is
plausible to control how much the largest detected IS are truly
independent clones or whether correlations in their abundance
may indicate a common clonal origin. Inclusion of additional,
minor IS that were neglected in the filtering step does not sub-
stantially change these conclusions, even if the IS would add to
the already identified clones. The same applies for the unlikely
case that the same IS occurs independently in two clones as the
larger contribution would prevail and be correctly correlated to
the dominating clone.

Current studies of clonal dynamics only quantify IS abun-
dances relative to the total observed IS and interpret those time
series as independent clones. We showed that this approach can
clearly lead to an overestimation of the number of clones and an
underestimation of their relative contribution. However, the
quantitative assessment of clonal behaviors is crucial for the
evaluation of the safety of GT as well as for the interpretation of
experimental studies to understand physiological hematopoiesis
and related malignancies or to study hematopoietic reconstitution
in vivo. The availability of repeated IS measurements at different
time points as well as in different hematopoietic cell types,
especially in a clinical context, represents the optimal data basis
necessary for the successful application of our suggested metho-
dology and to reach a more thorough understanding of temporal
clonal developments.

Methods
Ethical approval. All experimental procedures were performed according to
protocols approved by the Animal Care and Use Committee of the San Raffaele
Institute (IACUC 859) and communicated to the Ministry of Health and local
authorities according to Italian law.

Reconstruction pipeline. The reconstruction pipeline provides a method to
identify clones based on the tracking of IS over time and/or in different hemato-
poietic compartments. An initial filtering step (Fig. 2a) restricts the analysis to
prevent potential biases from under-represented clones. For the filtering of the
simulated time series, we obtain interpretable results over a broad range of para-
meter settings if we consistently consider the 50 largest remaining IS at the final
time point. For the biological data, we filter IS with an abundance above 1% at the
final measurements to account for conservative detection thresholds of the quan-
tification methods. Next, we use a regression approach to calculate the coefficient of
determination R2 quantifying the pairwise similarities among all IS (Fig. 2b), which
are represented as a similarity matrix S. The resulting similarities feed into the
subsequent clustering algorithm (partition around medoids (“PAM”)) that identi-
fies co-occurrent IS by their abundance under the hypothesis that different IS
generated by the same cell clones share the same quantification (Fig. 2c). Since the
real number of clones to be detected is unknown, we apply the similarity clustering
algorithm for all sensible number of clusters k and select the best solution by
comparing the cluster qualities (using a silhouette score30 accounting for high

inner-cluster similarity and low outer-cluster similarity). In a final step, clonal
abundances are reconstructed by accounting for the average number of IS identified
per clone (Fig. 2d). To quantify the similarity of two clusterings, especially when
comparing a known ground truth with the results of the reconstruction pipeline,
we use the ARI31,32.

In the context of the suggested filtering step, there are no relevant
computational constraints for the suggested pipeline (computation time in the
range of seconds, compare Supplementary Fig. S12). Further technical details are
provided in Supplementary Note 1.

Simulation data. In order to test and validate the clonal reconstruction pipeline
within a scalable context, we generated in silico data based on a corresponding and
published mathematical modeling approach to describe clonal tracking data20. It is
the advantage of this simulation model that the true association of IS to clones
(”ground truth”) is intrinsically known. Technically, the time courses are generated
from a stochastic, single cell-based model of clonal dynamics in which cells of
different clones proliferate and differentiate at rates that are kept fixed for each
clone. The differentiation rate for each clone c is initialized from a normal dis-
tribution N d; δ2

� �
, while the proliferation rate is dynamically regulated by a

logistic growth function with overall carrying capacity K and maximal proliferation
rate pmax (which is identical for all clones, see Supplementary Table S4 for para-
meter values). Clone sizes Nraw

c tð Þ are given by the absolute number of cells
belonging to a clone c at time point t.

On top of the clonal dynamics, we initially assign a certain number of unique IS
for each clone c according to a Poisson distribution Pois λð Þ in which λ reflects the
average number of IS for the particular transduction setting. The raw abundance
Iraw (i.e., without any measurement noise) of each individual IS i belonging to a
clone c at time t is given as

Irawi tð Þ ¼ Nraw
c tð Þ ð1Þ

In order to account for the measurement noise of the detection process, we add
a multiplicative noise gi tð Þ � N 1; σ2

� �
to the readout of every IS measurement

Ii tð Þ ¼ gi tð Þ � Irawi tð Þ ð2Þ
to obtain the time courses I(t) for all IS.
In order to mimic changing clonal contributions to different hematopoietic cell

types, we introduce an additional inter-clonal shift, termed clonal variability ν that
superimposes a random factor f c tð Þ � N 1; ν2

� �
at each time point of

measurement t, such that the abundance of simulated IS I*(t) is given as

I�i tð Þ ¼ f c tð Þ � gi tð Þ � Nraw
c tð Þ: ð3Þ

Herein, the first factor is clone specific and affects all IS of the same clone, while
the second factor accounts for an individual measurement error for each IS.
Following the above motivation, the temporal dimension t in the simulated data
reflects both time and cell type in an in vivo study. The relative IS abundance is
calculated as

I�reli tð Þ :¼ I�i tð Þ
∑l I

�
l tð Þ ð4Þ

We varied the average VCN λ, the clonal variability v, the measurement noise σ, as
well as the number of measurements to generate a range of different model
realizations for which the reconstruction process has been tested. Further technical
details are provided in Supplementary Note 2.

Experimental data
SLiM-PCR for IS quantification. Genomic DNA containing respective vector
integrations was sheared by sonication, end-repaired and adenylated, then ligated
to a barcoded linker cassette and subjected to two different rounds of PCRs
allowing the amplification of the cellular genome close to the vector IS. PCR
amplicons are then assembled, sequenced, and processed by dedicated bioinfor-
matic pipelines VISPA233 to identify the different IS for each sample7 (see Sup-
plementary Table S2, Supplementary Notes 3 and 6). The sensitivity and precision
of the SLiM-PCR approach have recently been described in an in vitro limiting
dilution assay, benchmarking the limit of detection at 0.1% for a single IS and
measuring the signal-to-noise ratio7.

Validation assay. The validation assay uses cell clones from the K562 cell line
(derived from a chronic myelogenous leukemia patient in blast crisis) and the Jy
cell line as background (an Epstein–Barr virus immortalized B cell lymphoblastoid
cell line) that were available in the lab. We prepared a set of seven samples con-
taining variable proportions of four different cell clones (see Supplementary
Table S1) mixed into the background of transduced cells. Each of the four clones is
characterized by a different number of IS (ID#27 (1 IS), ID#30 (4 IS), ID#37 (6 IS),
ID#46 (10 IS)), while for the background only the average number of IS was
determined to be ~1.8 copies. The prepared mixtures were primarily intended to
address issues of sensitivity and reproducibility, while the variable abundance of
four different clones serve as a suitable sample to verify whether the suggested
bioinformatical pipeline correctly assigns the IS to their respective clones. For all
samples, LV/genomic junctions were retrieved by SLiM-PCR, sequenced using
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NGS technologies, and mapped on the human genome to identify the nearest
RefSeq gene. The relative amount of each clone in the mix was quantified and
confirmed by droplet digital PCR (ddPCR) assay where primers and probes were
specifically designed for at least one of the LV/genome junctions of each clone. As a
filtering step, we are only considering IS that present with a relative abundance of
>1% in any sample, thereby excluding IS from the background of other
transduced cells.

Clonal tracing in mice. We used data from a set of mouse experiments in which wild-
type recipient mice were transplanted with Cdkn2a-/- BM-derived lineage-negative cells
(lin-, HSPCs equivalent) carrying multiple vector integrations (average VCN λ> 10,
Supplementary Table S5). The transduction and transplantation strategy used for these
experiments replicates the procedure reported earlier24,25. Briefly, Lin- cells were
collected from eight-week-old C57BL6/J-Cdkn2a-/- mice (n= 12) and transduced at a
Multiplicity of Infection 100 with the previously described self-inactivating lentiviral
vector (SINLV) expressing GFP (SINLV.PGK.GFP). Transduction efficiency was
evaluated by FACS analyses at 6 days post infection and reached 90% GFP-expressing
cells. The day after transduction, eight-week-old lethally irradiated wild-type C57BL6/J
mice (n= 8) were transplanted with vector-transduced cells (5–7.5 × 105 cells/mouse)
by intravenous tail vein injection. Blood samples were taken at three to five different
time points post transplantation, pooled from two to three animals and FACS sorted
according to the phenotype of B- (CD19+), T- (CD3+), mononuclear, and myeloid
(CD11b+) cells (Supplementary Fig. S13). Furthermore, at autopsy, the bone marrow,
blood, spleen, thymus, and lymph nodes from each mouse were collected for IS site
retrieval, providing the IS of the dominant/tumoral clone infiltrating the different
tissues. In all these samples, LV/genomic junctions were retrieved from DNA samples
by SLiM PCR, sequenced, and mapped on the mouse genome to identify the nearest
RefSeq gene. VCN was measured by ddPCR for most assays and correlate well with the
number of IS obtained from MultIS (Supplementary Table S5). Further experimental
details are provided in the Supplementary Note 3.

Statistics and reproducibility. Statistical analysis was limited to deriving point
estimates (mean, median) and corresponding variances using R version 4.0.5. The
coefficient of determination R2 between pairs of IS was calculated using the
function “summary.lm” from the same R version. No sample size estimates were
required for the development of the analysis method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets analyzed within the current study are available from the clonal-
reconstruction-figures repository at https://gitlab.com/imb-dev/clonal-reconstruction-
figures/-/tree/master/data. The macaque data set29 can be obtained from the GEO
database, accession number GSE153130. Further details are provided in Supplementary
Note 5.

Code availability
The code to reproduce all figures and analyses in this manuscript is available from the
clonal-reconstruction-figures repository, https://gitlab.com/imb-dev/clonal-
reconstruction-figures. The corresponding scripts in the repository use our R package
MultIS, which is available via CRAN, https://cran.r-project.org/package=MultIS.
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