
ARTICLE

Machine-learning reprogrammable metasurface
imager
Lianlin Li 1, Hengxin Ruan1, Che Liu 2, Ying Li3, Ya Shuang1, Andrea Alù 4,5,6, Cheng-Wei Qiu3 &

Tie Jun Cui2

Conventional microwave imagers usually require either time-consuming data acquisition, or

complicated reconstruction algorithms for data post-processing, making them largely inef-

fective for complex in-situ sensing and monitoring. Here, we experimentally report a real-time

digital-metasurface imager that can be trained in-situ to generate the radiation patterns

required by machine-learning optimized measurement modes. This imager is electronically

reprogrammed in real time to access the optimized solution for an entire data set, realizing

storage and transfer of full-resolution raw data in dynamically varying scenes. High-accuracy

image coding and recognition are demonstrated in situ for various image sets, including hand-

written digits and through-wall body gestures, using a single physical hardware imager,

reprogrammed in real time. Our electronically controlled metasurface imager opens new

venues for intelligent surveillance, fast data acquisition and processing, imaging at various

frequencies, and beyond.

https://doi.org/10.1038/s41467-019-09103-2 OPEN

1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, 100871 Beijing, China.
2 State Key Laboratory of Millimeter Waves, Southeast University, 210096 Nanjing, China. 3 Department of Electrical and Computer Engineering, National
University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore. 4 Photonics Initiative, Advanced Science Research Center, City University of New
York, 85 St. Nicholas Terrace, New York, NY 10031, USA. 5 Physics Program, The Graduate Center, City University of New York, 365 Fifth Avenue, New York,
NY 10016, USA. 6Department of Electrical Engineering, City College of New York, New York, NY 10031, USA. These authors contributed equally: Lianlin Li,
Hengxin Ruan, Che Liu, Ying Li. Correspondence and requests for materials should be addressed to L.L. (email: lianlin.li@pku.edu.cn)
or to A.Aù. (email: aalu@gc.cuny.edu) or to C.-W.Q. (email: chengwei.qiu@nus.edu.sg) or to T.J.C. (email: tjcui@seu.edu.cn)

NATURE COMMUNICATIONS |         (2019) 10:1082 | https://doi.org/10.1038/s41467-019-09103-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9394-3638
http://orcid.org/0000-0001-9394-3638
http://orcid.org/0000-0001-9394-3638
http://orcid.org/0000-0001-9394-3638
http://orcid.org/0000-0001-9394-3638
http://orcid.org/0000-0002-9917-8487
http://orcid.org/0000-0002-9917-8487
http://orcid.org/0000-0002-9917-8487
http://orcid.org/0000-0002-9917-8487
http://orcid.org/0000-0002-9917-8487
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
mailto:lianlin.li@pku.edu.cn
mailto:aalu@gc.cuny.edu
mailto:chengwei.qiu@nus.edu.sg
mailto:tjcui@seu.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Efficient microwave imaging systems are becoming increas-
ingly important in modern society, however, rapid proces-
sing of information and data poses new challenges for

current imaging techniques1–7. In many cases, such as for security
screening or pipeline monitoring, the flux of data is so large that
full-resolution imaging is inefficient and unmanageable, and
represents a huge waste of resources and energy, since only a few
properties of the images are actually of interest, such as the
position of an object, or its dynamic changes8–13. These situations
require an imaging device that can instantly reconstruct scenes in
an intelligent and efficient way, i.e., rendering the important
feature extraction with high speed, fidelity, and compression
ratio, as it commonly happens in biological systems, such as our
brain. In the past decade, a wide variety of computational ima-
gers1–10 have been introduced to perform image compression at
the physical level, thereby eliminating the need for storage,
transfer and processing of the full-pixel original scenes. In this
case, just a few relevant data are recorded to reconstruct the scene
without losing the information of interest, which is particularly
useful for microwave or millimeter-wave radars.

However, microwave imagers to date always have to compro-
mise between speed and image quality (fidelity and compression
ratio)1–7. Recently, compressive sensing inspired computational
imagers1–5 have been proposed to reduce remarkably hardware
cost and speed data acquisition, which are at the cost of iterative
reconstruction algorithms. The optimization solves a time and
resource consuming inverse problem for each individual scene. In
this sense, it is typically required to solve the inverse scattering
problem again and again when the scene changes, making them
largely ineffective for complex in-situ sensing and monitoring.

To properly process a large data flux of high complexity, it is
necessary to study and extract the common features across the
data set. Such a challenge has been remarkably tackled in recent
times by emerging techniques in machine learning9–16. Recent
advances in optics show that the machine learning can be utilized
to conduct the measurements such that the high-quality imaging
and high-accuracy object recognition with a few measurements
can be realized9–13. However, a gap exists between machine-
learning techniques and their direct employment in physical-level
microwave imaging, due to the restricted configurations of the
imagers mentioned above. Specifically, almost all microwave
imagers cannot produce the radiation patterns corresponding to
the machine-learning optimized measurement modes in real-time
and cost-efficient way. Moreover, these imagers are primarily
designed to accomplish imaging functions for a specified theme,
which cannot be altered after fabrication1–3. It would be of great
benefit to develop a single imaging device that can achieve all
machine-learning-desired radiation patterns and that can switch
its functional theme simply by training with samples of a new
target group. Inspired by recently introduced digital coding and
programmable metamaterials and metasurfaces17–20, we propose
and experimentally realize a microwave reprogrammable digital
metasurface that enables optimal imaging quality processing
based on machine-learning, and reconfigure itself for a wide
variety of scenes.

The machine-learning imaging metasurface heavily relies on
the opportunities opened by the flexible and dynamic manip-
ulations of EM waves in real time. Metasurfaces, ultrathin planar
devices composed of subwavelength metallic or dielectric meta-
atoms (resonators), have shown remarkable opportunities to
arbitrarily tailor the propagation and scattering of EM wave-
fronts21–30. Metasurfaces have been recently proposed to
realize versatile functions, including spin-Hall effect on light21,
ultrathin planar lenses22–24, metasurface-based holograms25,26,
imaging1–5,27, and optical vortex beam generators28,29. Most
recently, reprogrammable digital coding metamaterials have been

proposed to dynamic holography18, compressive imaging19, beam
scan20, and other related operations20, in which the coding
sequence of the meta-atoms with digitized states have been used
to manipulate the impinging microwave waves in an efficient and
controllable fashion.

In this article, we propose microwave reprogrammable imager
by combing machine learning techniques with 2-bit coding
metasurface, which are confirmed by proof-of-concept experi-
ments. The proposed microwave imager, after a period of train-
ing, can produce high-quality imaging and high-accuracy object
recognition operating on the compressed measurements that are
obtained directly from the imager, without the need for costly
computationally image reconstruction. Our real-time imaging
will pave the way for compressed imaging applications in the
microwave, millimeter-wave, and terahertz frequencies, and
beyond.

Results
Principle of machine-learning imager. Typically, microwave
imaging can be used to recognize a scene from measurements of
the scattered fields. Solving this inverse problem requires to
establish a model bridging the measured return signal and the
scene1, which is typically expressed as y=Hx+ n, where y 2 C

M

denotes the measurements, H characterizes the measurement (or
sensing) matrix, x 2 C

N denotes the scene under investigation,
and n is the measurement noise. Each row of H corresponds to
one measurement mode, and the number of rows equals the
number of measurements. This problem can be viewed as linear
embedding in machine learning14–16, as discussed in Methods. In
light of the established theory of machine learning, the mea-
surement modes may be efficiently learned from the training
samples relevant to the scene of interest, if they are available, such
that they can provide as much information of the scene as pos-
sible, see Fig. 1a. In this way, well-trained measurement modes
are responsible for producing high-quality images or/and high-
accuracy classification from a remarkably reduced number of
measurements, i.e., M � N .

Design of real-time digital-metasurface imager. The proposed
reprogrammable imager heavily relies on a dynamic wavefield
spatial modulator. In order to manipulate arbitrarily the mea-
surement modes needed by machine learning with high accuracy
in real time, we propose an electrically modulated 2-bit repro-
grammable coding metasurface. In order to illustrate the opera-
tional principle, the 2-bit coding metasurface is designed to work
at the frequency around 3 GHz. We designed and fabricated a
reprogrammable metasurface composed of a two-dimensional
array of electrically controllable meta-atoms (see Supplementary
Figs. 1, 2). Each macro meta-atom can be independently tuned,
and an incident illumination on metasurface with different cod-
ing sequences will result in different backward scattered
fields. Supplementary Fig. 2d depicts the designed meta-atom,
with a size of 15 × 15 × 5.2 mm, which is composed of three
subwavelength-scale square metallic patches printed on a
dielectric substrate (Rogers 3010) with dielectric constant of 10.2.
Any two adjacent patches are connected via a PIN diode (BAR
65–02L), and each PIN diode has two operation states controlled
by the applied bias voltage. Illuminating by an x-polarized plane
wave, such a meta-atom supports four different phase responses,
denoted as “00” (state 0), “01” (state 1), “10” (state 2), “11” (state
3), and determined by controlling the ON/OFF states of the three
PIN diodes in a suitable combination, corresponding to four
digitized phase levels 0, π/2, π, and 3π/2. The diode is at the state
ON (or OFF) with an applied external bias voltage of 3.3V (or
0V). To isolate the DC feeding port and microwave signal, three
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choke inductors of 30nH are used in each meta-atom. When the
PIN diode is in the ON state, it is equivalent to a series circuit
with parasitic inductance and resistance; while in the OFF state it
is equivalent to a series circuit with parasitic inductance, capa-
citance, and resistance.

Supplementary Fig. 2e, f show the phase and amplitude responses
as a function of frequency when the meta-atom works in four
different states, as calculated by commercial software, CST
Microwave Studio, Transient Simulation Package. It can be observed
that the phase difference between two neighboring states falls in the
range (90°−15°, 90°+15°) around the frequency of 3.2 GHz. As a
consequence, these meta-atoms can be treated as unit cells of a 2-bit
digital coding metasurface, mimicking “00”, “01”, “10” and “11”. We
further observe from Supplementary Fig. 2f that the simulated
reflection can reach a high efficiency above 85% for all digital states
around 3.2GHz.

The proposed reprogrammable imager is trainable in the sense
that the reprogrammable coding metasurface can be controlled by
the field programmable gate array (FPGA) such that the desirable
radiation patterns (i.e., the measurement modes) are matched
with that required by machine learning. To that end, we explored
a straightforward two-step strategy: 1) the desirable radiation
patterns are firstly trained by using the machine learning
technique; 2) the corresponding coding patterns of metasurface
are designed from the obtained radiation patterns. To design the
2-bit coding patterns generating the desirable radiation patterns,
which is a NP-hard combinatorial optimization problem, we
apply the modified Gerchberg-Saxton (GS) algorithm designed
for the discrete-valued optimization problem26. Critically, the
four-phase quantization of the metasurface is performed in each
iteration of forward/backward propagation. In addition, an
effective induced current is introduced to characterize the realistic
response of each meta-atom to address the accuracy issue arising
from the point-like dipole model, which can be obtained by
applying the Huygens principle or the source inversion technique
(see Methods). Machine-learning guided imaging for the first
proof-of-concept demonstration, we use the developed imager to
realize machine-learning-guided imaging. Throughout the article,
two popular linear embedding techniques, i.e., the random
projection13,15 and the principal component analysis (PCA)12, are
applied to train our machine-learning imager. Apparently, it is
trivial to conceive a random projection matrix by independently

and randomly setting the status of PIN diodes of the
reprogrammable metasurface. However, for PCA measurements,
the status of PIN diodes needs to be carefully manipulated to
achieve the desired measurement modes.

We experimentally examine the performance of the developed
machine-learning imager by monitoring the movement of a
person in front of the metasurface. In our study, we use a moving
person to train our machine-learning imager, and use another
moving person to test it. The training person, armed with and
without glass scissors, is recoded in Supplementary Videos 1 and
2, respectively. The whole training time is less than 20 min with
the proposed proof-of-concept system; however, such time could
be remarkably reduced with a specialized receiver, as discussed
below. After being trained, the machine-learning imager can
produce the measurement modes required by PCA. The 16 PCA
leading measurement modes (i.e., the radiation patterns of the
reprogrammable metasurface) and the corresponding metasur-
face coding patterns are reported in Fig. 2b, c, respectively.
Additionally, the corresponding theoretical PCA bases are
reported in Fig. 2a as well. Here, the radiation patterns, at the
distance of 1 m away from the metasurface, are experimentally
obtained by performing the near-field scanning technique in
combination with the near-to-far field transform (see Methods).
Figure 2a–c demonstrate that the machine-learning imager is
capable of generating the measurement modes required by PCA,
which establishes a solid foundation for the machine-learning-
driven imaging with significantly reduced measurements.

Next, the trained machine-learning imager was used to
monitor another moving person. The series of reconstructions
of the test person with and without the glass scissor are recorded
in Supplementary Videos 3 and 4, respectively. This set of videos
shows that not only the gestures of the test person can be
recovered by the machine-learning imager, but also the armed
glass scissor can be clearly reconstructed. In order to show the
“see-through-the-wall” ability of the proposed machine-learning
imager, Supplementary Video 5 shows that the proposed
machine-learning imager can clearly detect the continuous
movement of the test person behind a 3cm-thickness paper wall.
In all results, 400 PCA-measurements are used. Supplementary
Video 6 provides the evolution of the images with the growth of
measurements. This video demonstrates that the machine-
learning imager, trained with PCA, can produce high-quality
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Fig. 1 Working principle of the real-time digital-metasurface imager. a The proposed machine-learning metasurface imager can be optimized for different
kinds of scenes. The optimization is performed by training the manifold representing the metasurface configuration (the surfaces) to be close to the
training data (scatters). b The illustration of training the reprogrammable imager by using the PCA method (see Supplementary Note 2), in which the
training person is Hengxin Ruan (coauthor). c The map of coding metasurface and the unit cell (see Supplementary Fig. 1, 2). d The illustration of real-time
reprogrammable metasurface imager imaging a moving person behind a wall. Two reconstructions are displayed at right (more experimental results in
Supplementary Videos 3, 4 and 5)
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images with only 400 measurements, far fewer than the number
of 8000 unknown pixels. Selected reconstructions from Supple-
mentary Videos 3–6 are plotted in Figs. 2, 3. In order to show the
benefit gained by the machine-learning metasurface imager
trained with PCA over the random projection, Figs. 2, 3 provide
corresponding results when the reprogrammable metasurface is
encoded in a random manner, i.e., the measurement modes H
behave as a random matrix. This set of figures clearly
demonstrates that the reconstructions by PCA have overwhelm-
ing advantages over those by the random projection in cases of
small amount of measurements, since a large amount of relevant
training samples are incorporated in PCA. Note that both the
head and feet cannot be clearly identified due to the limited FOV,

which probably arises from two reasons: 1) the use of a directive
receiver (horn antenna); and 2) the limited size of the metasurface
with respect to the person under consideration. Nonetheless, it
can be faithfully deduced from the previous results that the
machine-learning imager, after being well trained, can be used to
implement the real-time and high-quality imaging from the
considerably reduced measurements.

Object recognition in compressed domain. As a second proof-
of-concept demonstration, we consider object recognition in the
compressed domain using the machine-learning metasurface
imager, which avoids the computational burden of costly image
reconstructions. Here, a simple nearest-neighbor algorithm11,12 is
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Fig. 2 Configurations and results for human body imaging. (a) and (b) report 16 leading modes of theoretical PCA and the corresponding experimental
patterns radiated by the machine-learning imager, respectively. c shows the coding patterns of 2-bit coding metasurface corresponding to b. d shows four
images of a testing person (Ya Shuang, coauthor), where the top two images are armed with glass scissors, as shown in red. e and f are the reconstructed
images corresponding to d using the machine-learning imagers trained with PCA and random projection, respectively, where 400 measurements are used.
Note that the image results have been normalized by their own maximums
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used to recognize the input image. In contrast to the conventional
machine learning techniques consisting of fully digital sampling
followed by data post-processing, our technique for object
recognition is directly implemented at the physical level by using
our reprogrammable metasurface.

Assume that there are K classes of labeled samples, and the
center of the k-th class is ~yk ¼ 1

Ck

PCk
t¼1 Hxtk; k ¼ 1; 2; ¼ ;K ,

where Ck is the total number of samples in the k-th class. For a
given image x and its reduced measurements y � Hx, the object
recognition consists of comparing y with the stored vectors
~yk k ¼ 1; 2; ¼ ;Kð Þ and selecting the one with the closest match,
which is classified mathematically with the minimum Euclidean

distance c ¼ argmink y � ~yk
�
�

�
�2
2

� �
11,12. This concept is imple-

mented in the proposed machine-learning metasurface imager,
from which a real-time object recognition system is developed.
Once again, the two aforementioned machine-learning techni-
ques (random projection and PCA) are applied to train the
proposed machine-learning imager.

Figure 4a investigates the classification performance of the
machine-learning imager versus the number of measurements, as
the imager is trained by the random projection (green dashed
line) and PCA (red line with plus). For comparison, the
theoretical PCA (blue straight line) result is also provided. Here,
the classification rate is calculated by taking the average over
three human-body gestures (standing, bending and raising arms),

in which each human-body gesture has over 1000 test samples.
Fig. 4b compares specific classification results for the random
projection, PCA, and theoretical PCA, where 25 measurements
are used. Note that each period of data acquisition is about
0.016 s, and thus the whole data acquisition of 25 measurements
is around 0.4 s. The classification performance of PCA is much
better than the random projection, and it quickly approaches to
the ideal result with more measurements. In particular, 25
measurements are enough to get objection recognition of the
three human body actions, when the machine-learning imager is
trained with PCA. This set of figures clearly indicates that
the machine-learning imager trained by PCA can achieve the
theoretical upper limit of classification. Moreover, when
the machine-learning imager is trained by PCA, acceptable
classification results can be obtained with around 60 measure-
ments, corresponding to a compression rate of only 7.6%.

Discussion
In this article, we have presented the concept and realization of a
reprogrammable imager based on a 2-bit reprogrammable coding
metasurface. We have shown that our device, when trained with
machine-learning techniques at the physical level, can be utilized
to monitor and recognize the movement of human in a real-time
manner with remarkably reduced measurements. In order to
validate the performance of our imager, we have experimentally
tested our machine-learning imager with a benchmark dataset,
the MNIST dataset, widely used in the community of machine
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Fig. 3 Machine-learning-driven imaging results of four different cases in Fig. 2d. Different numbers of measurements, 100, 200, 400, and 600, were
performed with linear embedding techniques of random projection and PCA. More detailed results are recorded in Supplementary Videos 3 and 4. This set
of panels clearly demonstrates that the reconstructions by PCA have overwhelming advantages over those obtained by the random projection for small
number of measurements, since a large amount of relevant training samples are incorporated in PCA
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learning14–16, which consists of ten handwritten digits from 0 to
9. We fabricated 5000 digit-like PEC objects according to the
profiles of digits in the MNIST dataset, which has 28 × 28 pixels,
with resolution of 3 × 3cm. As in the previous examples, we
consider the linear embedding techniques of PCA and random
projection. The theoretical PCA measurement modes and the
corresponding experimental radiation patterns of our machine-
learning imager are shown in Supplementary Fig. 3a, b respec-
tively. Supplementary Fig. 3f illustrates the recovered images for
ten digit-like objects by the proposed machine-learning imager
trained with PCA and random projection with varying numbers
of measurements. To quantitatively evaluate the reconstruction
with different training mechanisms (PCA or random projection),
signal-to-noise-ratios (SNRs)31 of reconstructions as functions of
measurements are plotted in Supplementary Fig. 3g-i. We clearly
observe that the quality of image turns better with the increasing
measurements, and PCA behaves better than the random pro-
jection, especially in low measurement cases. Moreover, when the
machine-learning imager is trained by PCA, the acceptable results
can be achieved with just 100 measurements, corresponding to a
compression rate of 12.8%. Here, the compression rate is defined
as the number of measurements over that of imaging pixels.

Supplementary Fig. 4a reports the average classification rate
of the ten digit-like objects with varying measurements, in which
the theoretical classification results of PCA operating on the
ground truths are provided, referred to theoretical PCA. The
experimental classification results for the ten digits for two
aforementioned machine learning techniques are detailed in
Supplementary Fig. 4b, c with 60 measurements, respectively.

This set of figures clearly indicates that the machine-learning
imager trained by PCA can achieve the theoretical upper limits of
classification. In addition, they are remarkably higher than that of
the random projection and, when the machine-learning imager is
trained by PCA, acceptable classification results can be obtained
with around 60 measurements, corresponding to a compression
rate of 7.6%.

In summary, a 2-bit programmable coding metasurface was
proposed and experimentally realized, which can generate the
radiation patterns required by machine learning techniques to
realize a groundbreaking imaging hardware platform. A proto-
type of the machine-learning imager was fabricated to realize the
real-time machine-learning-guided imaging and compressed-
domain object recognition. The proof-of-concept experimental
results agree very well with the numerical simulations, validating
the programmable metasurface as a viable means for creating
sophisticated images and high-accuracy object classification with
significantly reduced measurements. In our experiments, the
switching speed of the PIN diode is 3 ns, and the FPGA clock rate
is 300MHz. We use a vector-network analyzer (VNA) for data
acquisition, and the whole data acquisition time is almost entirely
taken by the VNA itself, i.e., around 0.016 s each operation cycle.
If a specialized receiver were employed, the data acquisition time
would be significantly reduced. For instance, taking the com-
mercial continuous-wave radar technique as an example, the
sampling frequency is usually about 1MHz, corresponding to
about 0.1 milliseconds for sampling 100 data points. In this way,
the data acquisition can be significantly speeded up by a factor of
100 and beyond.
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Dynamic/active metamaterials30–36 using tunable or switchable
materials have been proposed to realize various functionalities in
the terahertz frequency30,32, near-infrared33,34, and beyond31,35,36,
such as thermal-sensitive phase-change materials (i.e., Ge2Sb2Te5)31,
gated graphene30, and mechanical actuation35. Hence, in combina-
tion with switchable materials30–36, we envision that our approach
can be extended to millimeter-wave, terahertz frequency, and
beyond to realize the next generation of efficient imagers.

Methods
Design of the 2-bit metasurface unit. Supplementary Fig. 1 shows a sketch of the
designed 2-bit digital coding meta-atom, and more detailed parameters are provided
in Supplementary Fig. 2. The 2-bit digital coding metasurface is designed to operate
around 3 GHz. Three PIN diodes (BAR 65–02L) are loaded to control the reflection
phase of metasurface, and the equivalent circuits of the diode for the ON and OFF
states are reported in Supplementary Fig. 2. Finite-element simulations in commercial
software (CST Microwave Studio) were used to design the meta-atom. The reflection
response of the meta-atom was investigated under different operation states of the
PIN diodes. A Floquet port is used to produce an x-polarized wave incident on the
metasurface and monitor the reflected wave. Periodic boundary conditions are set to
the four sides to model an infinite array. 3 × 3 units with the same state are grouped
into a macro meta-atom so that mutual coupling can be reduced.

Inverse problem model. As shown in Supplementary Note 1, the radiated elec-
trical field E is linearly related to the current J induced over the metasurface by
plane waves26. The source inversion method is employed to calibrate the current
distributions of J(00), J(01), J(10), and J(11). Then the metasurface particle either at
the state of ‘00’, or ‘01’, or ‘10’, or ‘11’ is illuminated by the plane wave, and the
resulting co-polarized electric field is collected at one wavelength away from the
metasurface particle. The calibration measurements are organized into a column
vector e. To characterize the inhomogeneous current induced on metasurface
particle, the particle is regarded as an array of 3 × 3 point-like dipoles, stacked in a
9-length column vector of p. Apparently, the calibration vector e is linearly related
to the vector p through e=Gp, where the entries of G come from the three-
dimensional Green’s function in free space. Hence the complex-valued amplitude
of p can be readily retrieved by solving the least-square problem of e=Gp.

Linear machine learning techniques. From the perspective of machine learning,
the reduced measurements can be regarded as linear embedding of the probed
scene in the low-dimensional space. Given a sample x 2 X , where X is a cloud of Q
points in an N-dimensional Euclidean space R

N , the low-dimensional linear
embedding method consists of finding a projection matrix H such that the M-
dimensional projection y=Hx has as small loss of intrinsic information as possible
compared to x, where M<<N. The random projection has attracted intensive
attention in the past decade, in which the entries of H are drawn from independent
random numbers. Our random approach imposes no restrictions on the nature of
the object to be reconstructed. On the contrary, PCA is a prior data-aware linear
embedding technique, where each row of H (i.e., the measurement mode) is trained
over many training samples available. In this way, when a set of prior knowledge
on the scene under investigation are available, the PCA approach enables the
design of efficient measurement matrices, allowing the number of measurements to
be limited compared to a purely random system.

Imaging modeling. The Born approximation assumes that the field scattered from
a point in the scene is simply proportional to the incident field at that point. Based
on this approximation1–7, the entry of the measurement matrix (Hij) is simply
proportional to the fields radiated by the transmitter and receiver antennas at a
given point in the scene rj: Hij / ET

i ðrjÞ � ER
i ðrjÞ, where ET

i ðrjÞ and ER
i ðrjÞ represent

the radiation and receiving patterns related to the coding metasurface, respectively.
Each row of the measurement matrix corresponds to a measurement mode, and
hence the number of rows equals the number of measurements, and the number of
columns equals the number of voxels in the scene to be reconstructed. Specifically,
the number of measurement modes is determined by the coding patterns of the
reprogrammable digital metasurface. The imaging solution reads x̂ ¼ Hþy, where
H+ is the pseudo-inverse matrix of H.

Measurement system. This subsection discusses the system configuration of the
proposed programmable imager. The schematic overview is given in Supplemen-
tary Fig. 1, and is detailed below. The system configuration consists of four main
blocks: host computer, FPGA microcontroller, digital coding metasurface, and
vector network analyzer (VNA). The whole metasurface is designed and fabricated
using printed circuit board (PCB) technology, which consists of 3 × 4 metasurface
panels, and each panel consists of 8 × 8 macro meta units. More details about meta
unit can be found in Methods and Supplementary Fig. 2. The metasurface is
controlled by a Cycone-4 FPGA with the clock frequency of 300MHz. To reduce
the complexity of writing command and controlling system, three SN74LV595A 8-

bit shift registers (https://www.ti.com/lit/ds/symlink/sn74lv595a.pdf?HQS=TI-
null-null-alldatasheets-df-pf-SEP-wwe) are utilized to control the rest of PIN
diodes sequentially. Moreover, when the PIN diodes are controlled in parallel by a
FPGA, three operation cycles are needed after compiling, and thus the total image
switching time is around tens of nanoseconds. The SPI (Serial Programming
Interface Bus)-controlled command and data between the host computer and
FPGA, and VNA are communicated via Ethernet (IEEE 488.2). In addition, the
high-level system control code is written in Visual Basic (VB) and Matlab.

To calibrate the measurement system and measure the normalized images, an
experimental set up consisting of an anechoic chamber with the size of 2 × 2 × 2m3,
including a transmitting (Tx) horn antenna, a waveguide probe receiver, and a
vector network analyzer (VNA, Agilent E5071C), was used. In our imaging
experiments, VNA is used to acquire the response data by measuring the
transmission coefficients (S21). To suppress the measurement noise level, the
intermediate bandwidth in VNA is set to 10 kHz, respectively. The radio is capable
of 70 frequency sweeps per second for 100 points between 3 GHz and 3.4 GHz. As
for the data acquisition time, it takes around 0.016 s on average per period. Both the
feeding antenna and sample are coaxially mounted on a board at a distance of 1.8 m,
since the feeding antenna should be placed in the Fraunhofer region of the coding
metasurface. We remark that the aforementioned distance of far-field was obtained
from the assumption of point source excitation. In the experiments, however, the
incident wave generated from the horn antenna is relatively flat, and thus the
corresponding distance may be reduced accordingly.

Received: 29 July 2018 Accepted: 18 February 2019

References
1. Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339,

310 (2013).
2. Wang, L., Li, L., Li, Y., Zhang, H. & Cui, T. J. Single-shot and single-sensor

high/super-resolution microwave imaging based on metasurface. Sci. Rep. 6,
26959 (2016).

3. Gollub, J. N. et al. Large metasurface aperture for millimeter wave
computational imaging at the human-scale. Sci. Rep. 7, 42650 (2016).

4. Marks, D. L., Gollub, J. & Smith, D. R. Spatially resolving antenna arrays using
frequency diversity. JOSA A 33, 899–912 (2016).

5. Fromenteze, T. et al. Computational polarimetric microwave imaging. Opt.
Express 25, 27488–27505 (2017).

6. Redo-Sanchez, A. et al. Terahertz time-gated spectral imaging for content
extraction through layered structures. Nat. Commun. 7, 12665 (2016).

7. Patel, V. M., Mait, J. N., Prather, D. W. & Hedden, A. S. Computational
millimeter wave imaging. IEEE Sig. Proc. Mag. 1053, 5888 (2016).

8. Chan, W., Charan, K., Takhar, D. & Kelly, K. A single-pixel terahertz imaging
system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008).

9. Sankaranarayanan, A. C., Turaga, P., Herman, M. A. & Kelly, K. F. Enhanced
compressive imaging using model-based acquisition. IEEE Sig. Proc. Mag.
1053, 5888 (2016).

10. Neifeld, M. A. & Shankar, P. Feature-specific imaging. Appl. Opt. 42,
3379–3389 (2003).

11. Pal, H. S., Ganotra, D. & Neifeld, M. A. Face recognition by using feature-
specific imaging. Appl. Opt. 44, 3378–3794 (2005).

12. Kulkarni, K. & Turaga, P. Reconstruction-free action inference from
compressive imagers. IEEE Trans. Pattern Anal. Mach. Intell. 38, 772–784
(2016).

13. Nayar, S. K. & Branzoi, V. Programmable imaging: toward a flexible camera.
Int. J. Comput. Vision. 20, 7–22 (2006).

14. Jolliffe, I. T. Principal Component Analysis. (Springer, New York, 2002).
15. Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. J.

R. Stat. Soc. 61, 611–622 (1999).
16. Halko, N., Martinsson, P. G. & Tropp, J. A. Finding structure randomness:

probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53, 217–288 (2011).

17. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials,
digital metamaterials and programmable metamaterials. Light Sci. Appl. 3,
e218 (2014).

18. Li, L. et al. Electromagnetic reprogrammable coding metasurface holograms.
Nat. Commun. 8, 197 (2017).

19. Li, Y. B. et al. Transmission-type 2-bit programmable metasurface for single-
sensor and single-frequency microwave imaging. Sci. Rep. 6, 23731 (2016).

20. Yang, H. et al. A programmable metasurface with dynamic polarization,
scattering and focusing control. Sci. Rep. 6, 35692 (2016).

21. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics.
Science 340, 724–726 (2013).

22. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible
light. Nat. Commun. 4, 3807 (2013).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09103-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1082 | https://doi.org/10.1038/s41467-019-09103-2 | www.nature.com/naturecommunications 7

https://www.ti.com/lit/ds/symlink/sn74lv595a.pdf?HQS=TI-null-null-alldatasheets-df-pf-SEP-wwe
https://www.ti.com/lit/ds/symlink/sn74lv595a.pdf?HQS=TI-null-null-alldatasheets-df-pf-SEP-wwe
www.nature.com/naturecommunications
www.nature.com/naturecommunications


23. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat.
Nanotechnol. 10, 308–312 (2015).

24. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of
reflection and refraction. Science 334, 333–337 (2011).

25. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband
light bending with plasmonic nanoantennas. Science 335, 427–427 (2012).

26. Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared
metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

27. Liu, H. C. et al. Single-pixel computational ghost imaging with helicity-
dependent metasurface hologram. Sci. Adv. 3, e1701477 (2017).

28. Walther, B. et al. Spatial and spectral light shaping with metamaterials. Adv.
Mater. 24, 6300–6304 (2012).

29. Genevet, P., Lin, J., Kats, M. A. & Capasso, F. Holographic detection of the
orbital angular momentum of light with plasmonic photodiodes. Nat.
Commun. 3, 1278 (2012).

30. Dicken, M. J. et al. Frequency tunable near-infrared metamaterials based on
VO2 phase transition. Opt. Express 17, 18330 (2009).

31. Yao, Y. et al. Broad electrical tuning of graphene-loaded plasmonic antennas.
Nano Lett. 13, 1257–1264 (2013).

32. Ou, J.-Y., Plum, E., Zhang, J. & Zheludev, N. I. An electromechanically
reconfigurable plasmonic metamaterial operating in the near-infrared. Nat.
Nanotechnol. 8, 252–255 (2013).

33. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices
based on phase change materials. Nat. Photonics 10, 60–65 (2015).

34. Kaplan, G., Aydin, K. & Scheuer, J. Dynamically controlled plasmonic nano-
antenna phased array utilizing vanadium dioxide. Opt. Mater. Express 5, 2513
(2015).

35. Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett.
16, 5319–5325 (2016).

36. Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic
metamaterials. Nano Lett. 11, 2142–2144 (2011).

Acknowledgements
This work was supported in part by the National Key Research and Development Pro-
gram of China (2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), in part by
the National Natural Science Foundation of China (61471006, 61631007, 61571117, and
61731010), in part by the National Science Foundation, and in part by the 111 Project
(111–2–05).

Author contributions
L.L. conceived the idea, conducted the numerical simulations and theoretical analysis.
T.J.C. proposed the concept of digital coding and programmable metasurfaces, and L.L.,
T.J.C., C.W.Q., A.A., and Y.L. wrote the manuscript. All authors participated in the
experiments, data analysis, and read the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09103-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks Thomas Fromenteze
and the other anonymous reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09103-2

8 NATURE COMMUNICATIONS |         (2019) 10:1082 | https://doi.org/10.1038/s41467-019-09103-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-09103-2
https://doi.org/10.1038/s41467-019-09103-2
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Machine-learning reprogrammable metasurface imager
	Results
	Principle of machine-learning imager
	Design of real-time digital-metasurface imager
	Object recognition in compressed domain

	Discussion
	Methods
	Design of the 2-bit metasurface unit
	Inverse problem model
	Linear machine learning techniques
	Imaging modeling
	Measurement system

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




