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ABSTRACT: The binding kinetics of drugs to their targets are
gradually being recognized as a crucial indicator of the efficacy of
drugs in vivo, leading to the development of various computational
methods for predicting the binding kinetics in recent years.
However, compared with the prediction of binding affinity, the
underlying structure and dynamic determinants of binding kinetics
are more complicated. Efficient and accurate methods for
predicting binding kinetics are still lacking. In this study,
quantitative structure−kinetics relationship (QSKR) models were
developed using 132 inhibitors targeting the ATP binding domain
of heat shock protein 90α (HSP90α) to predict the dissociation rate constant (koff), enabling a direct assessment of the drug−target
residence time. These models demonstrated good predictive performance, where hydrophobic and hydrogen bond interactions
significantly influence the koff prediction. In subsequent applications, our models were used to assist in the discovery of new
inhibitors for the N-terminal domain of HSP90α (N-HSP90α), demonstrating predictive capabilities on an experimental validation
set with a new scaffold. In X-ray crystallography experiments, the loop-middle conformation of apo N-HSP90α was observed for the
first time (previously, the loop-middle conformation had only been observed in holo-N-HSP90α structures). Interestingly, we
observed different conformations of apo N-HSP90α simultaneously in an asymmetric unit, which was also observed in a holo-N-
HSP90α structure, suggesting an equilibrium of conformations between different states in solution, which could be one of the
determinants affecting the binding kinetics of the ligand. Different ligands can undergo conformational selection or alter the
equilibrium of conformations, inducing conformational rearrangements and resulting in different effects on binding kinetics. We then
used molecular dynamics simulations to describe conformational changes of apo N-HSP90α in different conformational states. In
summary, the study of the binding kinetics and molecular mechanisms of N-HSP90α provides valuable information for the
development of more targeted therapeutic approaches.
KEYWORDS: machine learning, drug−target binding kinetics, quantitative structure−kinetics relationship (QSKR),
heat shock protein 90 (HSP90), molecular dynamics simulations

■ INTRODUCTION
Improving binding affinity has always been a goal in the drug
development process. However, thermodynamic parameters
measured in closed systems often fail to precisely reflect the
actual effect of a drug in vivo.1,2 Recent studies emphasize the
crucial role of drug−target binding kinetics in determining
efficacy and safety,3−6 with parameters such as the association
rate constant (kon) and dissociation rate constant (koff) being of
fundamental importance. The life cycle of a ligand−receptor
complex, expressed as the residence time (τ = 0.693/koff),
significantly influences the efficacy and duration of biological
action of a drug. This factor is crucial for the clinical success of
drug candidates.4,7−10 For example, the drug tiotropium with a
long-residence time has shown a sustained bronchodilator effect
and improved receptor selectivity.11 Conversely, analogues such
as surgical procedures and analgesics like sufentanil with a short
residence time can increase safety during surgical procedures.12

Predicting and optimizing the binding kinetics of drug
candidates in early phases of drug discovery would be beneficial.

Using artificial intelligence to predict binding kinetics
parameters is more challenging than predicting binding affinity
due to the limited data availability and the complexity involved
in the association and dissociation processes.13−16 Recently
reported methodologies, including molecular dynamics simu-
lations, enhanced sampling techniques, quantitative structure−
kinetics relationship (QSKR) models, and machine learning
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(ML), have been used for this purpose.17 Molecular dynamics
simulations provide a detailed analysis of the dynamic process of
ligand association and dissociation at the atomic level but face a
challenge; residence times are usually orders of magnitude
longer than the feasible simulation times, greatly limited by their
application. Strategies such as metadynamics simula-
tions,16,18−20 weighted ensemble methods,21−24 Markov state
models,16,25,26 scaled-MD simulations,27−29 and random accel-
eration molecular dynamics (RAMD)30,31 have emerged to
expedite the process. Despite their effectiveness, these methods
require significant computational resources, which complicates
their application in lead compound discovery. In addition, the
proper weighting factors, choice of collective variables, and
inherent limitations of the force field and water models can affect
simulation accuracy.32,33 The approach of Bai et al. calculates the
association and dissociation free energies by constructing an
energy landscape, allowing the simultaneous prediction of
binding affinity and kinetic parameters, even in the absence of
experimental structural data.34 The method has recently been
applied to distinguish the differences in the binding kinetics of
different types of inhibitors of acetylcholinesterase (AChE).35

However, its applicability is limited to systems without
significant conformational changes and requires extensive
sampling for accurate prediction. Recently, various molecular
modeling techniques for predicting binding affinity have been
used for the task of predicting binding kinetics between drugs
and targets.36−40 Ganotra et al. used the COMparative BINding
Energy (COMBINE) method and calculated interaction

energies for ligand−receptor complexes in data sets that contain
70 N-HSP90α inhibitors and 36 HIV-1 inhibitors. The QSKR
model constructed using partial least-squares exhibits good
predictive performance, with correlation coefficient of 0.69 and
0.70, and the mean absolute errors (MAEs) were 0.45 and 0.58
on two test data sets, respectively.38 In two recent studies,
predictive models for dissociation rate constant were developed
on large data sets including 85 and 155 different protein types,
respectively.41,42 These models were built using random forests
with features based on 501 or 680 protein−ligand complexes
and protein−ligand atom pairs. The models demonstrated
moderate accuracy on the training set (R2 = 0.6, MAE = 0.59).
However, the predictive performance on the test set was lower
(R2 = −0.76, MAE = 1.34 for 100 N-HSP90α inhibitors),
potentially attributed to the heterogeneity in experimental data
conditions and methods or the complexity of binding and
dissociation processes across different protein types and ligands.
In summary, the prediction and methodological study of drug−
target binding kinetics is an important research focus in
computer-aided drug design. Compared to other methods, the
QSKR model offers a computationally efficient option for large-
scale screening that significantly reduces computational costs.
However, due to the limited data availability and the complexity
of binding and dissociation processes across different protein
types, the practical predictive and applicative capabilities of
current methods remain unclear. Efficient and accurate binding
kinetics prediction methods await further advancement.

Figure 1. Structure and binding kinetic properties of the 132 N-HSP90α inhibitors. (A) Distribution of binding kinetic parameters for the N-HSP90α
inhibitor data set. (B) Similarity matrix of the 132 N-HSP90α inhibitors generated by the Canvas Similarity and Clustering module of Maestro
(Schrödinger, 2023). The figure shows the four major scaffold types of compounds, ① hydroxy-indazole, ② resorcinol, ③ quinazoline, and ④ 7-
azazindole derivative; The R1 substituent is located near the hydrophilic ATP pocket, and the R2 substituent points to the hydrophobic pocket. (C)
The alignment of complex structures of N-HSP90α featuring four different conformations in the data set (PDB IDs: 1OSF, blue; 5J20, cyan; 5NYH,
magenta; 3TUH, orange) (the number of compounds is in parentheses). (D) Statistical distribution of dissociation rate constant of inhibitors with
loop-in conformation and helical conformation. (E) Correlation analysis between the molecular weight of various inhibitors and the dissociation rate
constant.
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Heat shock protein 90 (HSP90) is an attractive target for the
prediction of binding kinetics properties and has already
reported certain numbers of binding kinetics data. This provides
an opportunity to explore the application of artificial intelligence
algorithms in the task of binding kinetics prediction for ligands
against this target. As an ATP-dependent molecular chaperone,
HSP90 plays a critical role in fundamental cellular processes and
regulatory pathways, making it an attractive target for cancer
therapy.43−48 The ATP binding site in the N-terminal domain of
HSP90α (N-HSP90α) is a primary focus for drug development,
as the inhibition of HSP90′s ATPase activity leads to the
degradation of client proteins.49 The ATP pocket comprises a
highly flexible lid region (residues 102−137) that undergoes
remarkable conformational changes during the functional cycle
of the chaperone, characterized by the opening and closing of
the lid. Importantly, this conformational change is not
exclusively determined by client protein and nucleotide
binding.50,51 Using solution nuclear magnetic resonance spec-
troscopy, Henot et al. identified the closed conformation of apo
N-HSP90α.52 The residues 104−114 of the ATP-lid are highly
plastic and exhibit different “loop-out” and “loop-in” con-
formations in the absence of a bound ligand.53 When a ligand is
bound, new “loop-middle” and “helical” conformations are
formed. Inhibitors not only competitively bind to ATP but also
induce local changes in N-HSP90α, which are crucial for the
chaperone functional cycle.

As briefly illustrated in Figure S1, this study used machine
learning methods to construct a quantitative structure−kinetics
relationship (QSKR) model for the dissociation rate constants
of HSP90 inhibitors. The QSKR model demonstrated excellent
predictive performance (R2 = 0.93, MAE = 0.18, determination
coefficient and mean absolute error) on the test set. To further
evaluate the practical predictive ability of the model and its
application in the discovery of new N-HSP90α inhibitors, we
designed a hit molecule identification strategy by combining the
binding affinity-based virtual screening method and the binding
kinetics-based filtering module. This combined approach
successfully identified 16 previously unreported N-HSP90α
inhibitors. Validation and application of these methods
underscored their efficacy in predicting binding kinetics.
Furthermore, using X-ray techniques and complemented by
molecular dynamics simulations, we elucidated the landscape of
conformational changes of apoN-HSP90α in different states and
revealed the relationships between the conformational shifts and
the binding kinetics triggered by ligand binding. In summary, a
more detailed understanding of the binding kinetics and the
interactions between N-HSP90α and inhibitors paves the way
for the development of more targeted therapeutic approaches.

■ MATERIALS AND METHODS

Processing and Analysis of the Data Set
There are 142 N-HSP90α ATP inhibitors collected on the KBbox54

web server (https://kbbox.h-its.org/). The information includes the
structures of the compounds and the binding kinetics values
determined by surface plasmon resonance (SPR) measurements as
part of the K4DD8 project. After excluding data with 10 replicates and
outliers (data where kon and koff are precisely the same or exceed the
sensitivity threshold of SPR measurements) from the data set, the
remaining 132 exhibit a broad distribution of binding kinetics spanning
different orders of magnitude (Figure 1A). These inhibitors have
different scaffold types, and cluster analysis reveals that hydroxy-
indazole (55), resorcinol (48), amino-quinazoline (13), and 7-
azazindole (2) (the number of compounds is in parentheses) are the

most common scaffold types among them. The data set includes crystal
structures of a total of 41 inhibitors determined through X-ray analysis.
In these structures, the R1 substituents of the different scaffolds are
directed toward the entrance of the hydrophilic pocket, while the R2
substituents point to the internal hydrophobic pocket (Figure 1B). N-
HSP90α has a relatively flexible ATP-binding pocket. Henot et al.
clustered over 300 atomic-resolution structures of N-HSP90α and
classified them into eight classes based on a threshold.52 In this study,
we focused on significant conformational differences in the region of
residues 104−114, as it profoundly influences the volume and solvent
distribution of the ATP-binding pocket, impacting the binding kinetics
behavior of ligands.

The binding kinetics properties of different ligands are closely related
to the conformation of the complexes. Among the 41 complex
structures, residues 104−114 of the ATP-lid display four different
conformations (Figure 1C), including different “loop” conformations
(“loop-out”, “loop-in”, and “loop-middle”) as well as “helical”
conformation. In comparison to inhibitors with a “loop-in”
conformation, those inducing a “helical” conformation display slower
binding and dissociation rates (Figures 1D and S2A). This may be
related to the instability of the transition state and the stabilization of
the ground state during the binding process, and the impact of the
transition state on residence time has been highlighted in several recent
studies.15,53,55,56 The dissociation rate constant of inhibitors with a loop
conformation shows a strong correlation with affinity (r = 0.92) (Figure
S2B,C), which may be related to the stabilization of the ground state
after binding. Additionally, consistent with previous observations by
Kokh et al.,31 there is a relatively strong correlation (r = 0.63) between
the molecular weight of inhibitors in the data set and the dissociation
rate constant (Figure 1E) and no obvious correlation observed with the
association rate constant (r = 0.44) (Figure S2D). The correlation
coefficients for resorcinol and hydroxy-indazole inhibitors with
molecular weight and dissociation rate constant are 0.67 and 0.7,
respectively. This can be succinctly understood as compounds with
slow binding and dissociation rates often feature large hydrophobic
moieties. During binding and dissociation, these compounds induce
more complex conformational changes in the ATP-lid and can occupy
the transient hydrophobic cavity formed betweenα-helix 3 and β-strand
in the ATP pocket, engaging in strong van der Waals interactions
mediated by hydrophobic residues.

Preparation of Complex Structures
Complex structures of ligand−receptor are crucial for understanding
interaction characteristics, active conformations, dissociation features,
and other essential information. To comprehensively characterize and
assess the relationship between structure and binding kinetics, we
employed a docking approach to obtain complex structures for the
remaining 91 inhibitors binding to N-HSP90α in the data set. Due to
the flexibility of the ATP-lid in N-HSP90α, particularly at residues
104−114, different inhibitors can give rise to different conformations,
posing a major challenge for obtaining rational and accurate complex
structures by docking.

In this study, multiple structures of N-HSP90α with four different
conformations (“loop-out”, “loop-in”, “loop-middle”, and “helical”
conformations) were used as templates for docking with each of the 91
inhibitors. Figure S3 shows the diagram of the docking workflow,
specifying the PDB structures used. All molecular docking processes
were performed using the Glide module (Schrödinger, 2023). In the
graphical interface software Maestro by Schrödinger, the LigPrep
module was initially used to process the structures of 91 inhibitors,
generating different protonation states, stereochemistry, and tautomers
under conditions of pH 7.0 ± 2.0. Subsequently, the Protein
Preparation Workflow module was used to optimize the protein
structures, including determining the protonation states at pH 7.4 and
performing energy minimization using the OPLS4 force field. Finally,
the Receptor Grid Generation module was used to generate docking
boxes at the ATP-binding pocket, and docking was performed using the
Ligand Docking module. In the Glide module (Schrödinger, 2023), a
series of hierarchical filters were used to score the binding poses of
ligands and receptors.57 The initial filters tested the spatial fit of the
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ligand to the defined active site and examined the complementarity of
ligand−receptor interactions using a grid-based method. The final
scoring defaulted to using Schrödinger’s proprietary GlideScore
multiligand scoring function. For each conformation, the complex
structures obtained by docking were subjected to the Molecular
Mechanics Generalized Born Surface Area (MM-GBSA) scoring
function to calculate the binding free energy (Schrödinger, 2023).
MM-GBSA, a free-energy prediction method that strikes a balance
between accuracy and speed, is widely used for affinity-based virtual
screening and optimization of docking structures.58−61 For each
inhibitor, the conformation with the lowest binding free energy was
selected. We also investigated the similarity between the structures of
the 91 inhibitors and the 41 inhibitors with complex structures
determined by X-ray. Following the theory that inhibitors with
structural similarity binding to the same target have similar binding
modes, the binding conformations of the partially similar inhibitors
were adjusted and aligned. Ultimately, complex structures of the 91
inhibitors binding to N-HSP90α were obtained. For the 41 complex
structures in the data set, we used the Protein Preparation module to
determine the protonation states of protein residues and ligands under
pH 7.4 conditions, optimize hydrogen bond networks, and perform
energy minimization. In the end, 132 complex structures were obtained
for feature extraction.

Feature Extraction and Construction of the QSKR Models
In this study, features were extracted from molecular two-dimensional
(2D) structures, three-dimensional (3D) structures, and complex
structures. The process of feature extraction and the construction and
application of QSKR models are illustrated in Figure 2. All machine
learning processes were executed using the scikit-learn Python library.62

Additionally, we used the Maestro software for structure preparation
and building the QSKR models. Maestro is Schrödinger’s graphical
interface that provides access to the state-of-the-art predictive
computational modeling andmachine learning workflows for molecular
discovery.

Feature Extraction Based on Molecular 2D Structures.
Initially, we employed the AutoQSAR module in the Maestro software
(Schrödinger, 2023) for model construction. This module is an

automated tool for quantitative structure−activity relationship
modeling, widely applied to predict properties such as protein−ligand
binding affinity and solubility.63 The construction process involved
importing inhibitor SMILES into the software and conducting 50
independent random splits with 105 inhibitors for the training set
(80%) and 27 inhibitors for the test set (20%). Various Canvas
fingerprints (radial, linear, dendritic, molprint2D) and descriptors
(topographical, physicochemical, LigFilter) were extracted. Models
were built using multiple linear regression (MLR), partial least-squares
(PLS), kernel-based partial least-squares (KPLS), and principal
component regression (PCR), with feature selection to identify the
subset with all correlation coefficients below a specified threshold.
Descriptors with more than 90% of structures having the same values
were eliminated. The top 10-ranked QSKR models were retained.
KPLS used both descriptor and fingerprint features, while other
methods were trained using only descriptor features. In addition, we
used the RDKit toolkit64 to extract extended connectivity fingerprints 6
(ECFP6).

Feature Extraction Based on Molecular 3D Structures.
Extracting features from molecular three-dimensional (3D) structures
to build QSKR models provides a better understanding of the
relationships between binding kinetics, stereochemical properties,
stereoelectronic effects, hydrophobicity, and other properties. We used
the Field-Based QSAR module in the Maestro software (Schrödinger,
2023) for feature extraction and model construction of N-HSP90α
inhibitors’ 3D structures. The process involved aligning the complex
structures of 132 N-HSP90α inhibitors based on protein residues,
separating the ligand’s 3D structure, and using the Field-Based QSAR
module for feature extraction and model construction. The data set was
randomly split into a training set (80%) and a test set (20%), generating
Gaussian steric, electrostatic, hydrophobic, hydrogen bond acceptor,
and donor fields with a grid spacing of 1 Å. Grid points more than 2 Å
away from any atom in the training set were excluded. Before PLS
regression, each field attribute value was scaled, with a maximum of 4
PLS factors, and cross-validation was performed using the leave-one-
out method. The data set underwent 10 different random splits,
resulting in 10 different models. Additionally, 431 three-dimensional

Figure 2. Workflow of QSKR model construction and lead compound screening. (1) Feature extraction methods: features are extracted from
molecular SMILES,67 3D structures and complex structures. (2) Different machine learning methods are employed to evaluate and construct
regression models for koff. (The AutoQSARmodel’s performance is illustrated in the figure, with R2 = 0.90 on the training set and R2 = 0.80 on the test
set.) (3) After docking with different N-HSP90α conformations, further screening is conducted using the QSKR model for predictive selection. The
selected compounds are then subjected to surface plasmon resonance (SPR) experiments to determine the dissociation rate constant (koff).
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descriptor features were extracted using the PaDEL package in the
ChemDes platform.65

Feature Extraction Based on Complex Structures. We adopted
the approach reported by Wang et al.66 and employed the open-source
generate_features.py script to extract features depicting interactions
between ligand atoms and receptor residues in complex structures. This
method characterizes protein−ligand interactions by defining N
consecutive shells around each atom of the ligand and calculating the
number of contacts between any ligand atom and any protein residue
within those shells. We refer to this method as distance shell feature
extraction (DSFE). Ligand atoms are categorized into eight types: C, H,
O, N, P, S, HLA, and DU, where HLA represents halogen elements (F,
Cl, Br, and I) and DU represents other elements. Meanwhile, the
protein includes 20 standard amino acid residues and 1 nonstandard
residue. Each shell has 168 possible combinations. Previously employed
for extracting features of protein−ligand interactions, this method,
combined with deep convolutional neural networks, achieved higher
prediction accuracy for binding free energy and affinity compared to
most traditional scoring functions. For the 132 complex structures,
water molecules and other ions were removed. Ligands were uniformly
named “LIG″, saved in PDB format, and features were extracted using
the generate_features.py script with 62 shells covering a range of 61.5 Å
around each ligand atom, resulting in a feature matrix of 132 × 10,416.

Construction of the QSKR Models. AutoQSAR and Field-Based
QSAR models were developed using Maestro software (Schrödinger,
2023), selecting models that performed best on the test set without
overfitting. The machine learning training data set for the remaining
methods consisted of extracted features and dissociation rate constant.
The features underwent Min−Max normalization, scaling them to the
range [0, 1]. eXtreme Gradient Boosting (XGBoost) and Support
Vector Machine (SVM) regression were employed to assess each set of
extracted features. These methods were chosen for their balanced and
stable performance in comparison to other techniques such as Random
Forest and Partial Least-Squares. The data set was randomly divided
into a training set (80%) and a test set (20%). Feature selection was
conducted on the training set based on feature importance thresholds.
Hyperparameter tuning was performed using an exhaustive grid search
with a 5-fold cross-validation, optimizing parameters that include the
number of decision trees, learning rate, tree depth, and regularization
parameter. During the formal training phase, the data set underwent 10
random splits, and leave-one-out cross-validation was applied to the
training set (80%). Subsequently, the models were tested on the
respective test sets.

Lead Compound Screening
To comprehensively evaluate the predictive accuracy of models
constructed with different features and apply them to the development
of novel N-HSP90α inhibitors, we employed a strategy that combines
docking-based affinity screening with binding kinetics screening to
identify potential small molecule inhibitors. Molecular docking is a
computational technique to predict the binding mode and binding
affinity of ligand and receptor proteins, which is widely used in drug
discovery and design.68−70 The screening process is succinctly outlined
in Figure 2. Initially, structures of N-HSP90α residues 104−114 with
four distinct conformations (PDB IDs: 5J2X, 1YC1, 2XHX, and 5LQ9)
were optimized using the Protein Preparation module in the Maestro
software (Schrödinger, 2023). Subsequently, the Receptor Grid
Generation module was used to generate docking boxes for ligand
binding. Finally, a docking-based screening was performed using the
GVSrun (https://github.com/Wang-Lin-boop/Schrodinger-Script)
script on a Linux cluster, using the Specs compound library (www.
specs.net). The Specs compound library, comprising over 300,000
commercially available small molecules with proven performance, is
widely used in lead compound screening. After docking, the top 4000
compounds based on Glide docking scores for each conformation were
retained. Subsequently, theMM-GBSAmodule of theMaestro software
(Schrödinger, 2023) was used to calculate the binding free energy for
the top 1000 complexes in each conformation. The top 200 small
molecules with the lowest binding free energy were then retained.
Finally, 100 small molecules were selected based on scaffold similarity

and binding free energy. Here, we used AutoQSARmodels constructed
within the Maestro software (Schrödinger, 2023) to predict the
dissociation rate constant for these 100 small molecules, as this
computational platform is widely employed in drug discovery and has
demonstrated reliable predictive performance. Ultimately, considering
the predicted dissociation rate constant and binding free energies, 39
small molecules were selected for experimental validation.

Protein Purification, Crystallization, and Structure
Determination
The N-HSP90α protein expression and purification methods were
consistent with those previously reported.53 The cDNA sequence
encoding human N-HSP90α WT (amino acid sequences 9−236) was
inserted into the pET15b vector, incorporating an N-terminal His-TEV
tag, and expressed in Escherichia coli BL21 (DE3). Cells were collected,
resuspended in lysis buffer (2 × PBS, 20 mM imidazole, 10% glycerol, 1
mM TCEP, pH 7.5), and subjected to purification via a nickel column,
followed by elution with 200 mM imidazole. Further purification was
carried out using Superdex 200 (GE Healthcare) in 20 mM HEPES,
150 mM NaCl, 1 mM TCEP, pH 7.5.

Crystal structures with “loop-middle” and “loop-in” conformations
were obtained in a crystallization buffer containing 100 mM bis-tris at
pH 8.5, 20% PEG 3350, and 200 mM NaF (PDB IDs: 8W8K, 8KI4).
However, the crystal structure in the “loop-in” conformation was
obtained under conditions of 100 mM tris-HCl at pH 8.5, 200 mM
MgCl2, and 30% PEG 4000 (PDB ID: 8W4V). N-HSP90α WT protein
was concentrated to 25 mg/mL, mixed in equal volume (1:1 v/v) with
crystallization buffer, and grown at 4 °C for 3 days by hanging drop
method. The crystals were immersed in a crystallization buffer
containing a compound concentration of 5 mM. The sample was
rapidly frozen in liquid nitrogen with 25% glycerol as a cryoprotectant.
For structure determination and refinement, X-ray diffraction data were
collected at the BL18U1 beam at the Shanghai Synchrotron Radiation
Facility (SSRF). After HKL3000 treatment, the N-HSP90α apo
structure was used as the search model to solve the problem using
the phaser molecular replacement algorithm within the CCP4 software
package. Subsequently, this model underwent further refinement using
Coot and phenix. The data collection and refinement statistics for the
solution structure are shown in Table S3.

Surface Plasmon Resonance (SPR) Analysis
The binding kinetic parameters of the selected compounds were
measured by the surface plasmon resonance (SPR) method as
described previously.53 In brief, the recombinant N-HSP90α protein
(10 mM HEPES pH 7.40, 0.15 M NaCl) was incubated with 100-fold
alvespimycin (17-DMAG) hydrochloride and diluted to 20 μg/mL in
sodium acetate pH 4.50. According to the Biacore standard, it was
immobilized on the CM5 sensor chip (Cytiva) of the S series using
amino coupling at a temperature of 25 °C and a flow rate of 10 μL/min,
and the fixation amount was about 4000 RU. The unmodified carboxy-
glucan matrix was used as a reference surface. The selected compounds
were stored in 10 mM stock solution in 100% dimethyl sulfoxide
(DMSO). The compounds were dissolved in the running buffer (20
mMHEPES pH 7.50, 150mMNaCl, 0.05%Tween 20, 1mMDTT, 0.1
mM EDTA, 2% DMSO) and then diluted in a 2-fold concentration
gradient. Kinetic tests were performed at 25 °C with a flow rate of 30
μL/min, sample contact times of 120 s, and dissociation times of 200−
600 s. Each cycle was cleaned with 50% DMSO, and solvent correction
with different DMSO concentrations (1.5 to 2.5%) was performed
every 48 cycles.

The data set was processed and analyzed within the Biacore Insight
Evaluation Software (Cytiva). The solvent correction and two-
reference association and dissociation data were fitted to a two-state
reaction model fit with mass transport restrictions. This choice was
motivated by the presence of conformational changes during the
binding of compounds to N-HSP90α and the unsatisfactory outcomes
obtained from fitting a simple 1:1 Langmuir binding model. To verify
the two-state reaction model, different flow rates (20−30 μL/min) and
prolonged binding times (120−200s) were tested to obtain saturation
curves. The two-state reaction model describes the 1:1 binding of
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injected analyte A and immobilized ligand B, followed by a
conformational change of complex AB* to a more stable complex
AB, as described in the following equations
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Circular Dichroic Spectrum
The CD spectra of N-HSP90α protein were obtained using a circular
dichroic spectrometer (Chirascan Plus, UK) in a quartz cell with an
optical path length of 1 mm. The N-HSP90α protein and excess
compounds were incubated overnight at 4 °C, and the buffer was
subsequently changed to 20 mM phosphate buffer at pH 7.5 to avoid
interference fromDMSO and chloride ions during the assay. In the final
test, the protein concentration was adjusted to 0.15 mg/mL, the
measurement temperature was 25 °C, the wavelength range was 180−
260 nm, and the bandwidth was 1 nm. Each test consisted of three
scans, and the results were averaged to minimize noise, with smoothing
applied 3 degrees. To eliminate background baseline signals, blank
experiments were conducted using the same buffer during testing.

All CD data were presented in Milli-Degrees at the time of testing,
and the secondary structure was calculated using the instrument’s built-
in software CDNN. A neural network-based software as abbreviated as
CDNN is a widely used program for analyzing circular dichroism (CD)
data. It uses a reference database to deconvolute CD spectra and
calculate the content of five different secondary structures.73−75

Isothermal Titration Calorimetry
All measurements were performed by PEAQ-ITC (Malvern) in buffer
(20 mM HEPES, 150 mM NaCl, 1 mM TCEP, pH 7.5) with stirring at
750 rpm. The stock solution of the compound (40 mM) was diluted to
400 μM with ITC buffer, and the protein was diluted to 25 μM, both
with a final DMSO concentration of 1%. During titration, 0.4 μL was
injected, followed by 19 injections of the same 2 μL, each with a
duration of 4 and 120 s between each injection. The acquired data were
processed using the PEAQ-ITC analysis software.
MD Simulations
A coarse-grained Cα model was used to simulate the conformational
changes of apo N-HSP90α. Initially, structures for the “loop-middle”
(PDB ID: 8KI4), “loop-in” (PDB ID: 1YER), and “loop-out” (PDB ID:
1YES) conformations within residues 104−114 were processed using
the Protein Preparation module in Maestro software (Schrödinger,
2023). This process involved determining the protonation states of
protein residues under pH 7.4 conditions, optimizing hydrogen bond
networks, and performing energy minimization. Subsequently, Cα
structures were further generated using the SMOG2 (version 2.5-beta)
template (SBM_CA). SMOG2 is packaged with templates for some

commonly used structure-based Hamiltonians, defining a specific force
field (more details on the SBM_CA template can be found in the
Supporting Information (SI)).76−78 GROMACS (v5.0.4) and
PLUMED (v2.3.8) were used to conduct metadynamics simulations
on different conformations of apo N-HSP90α.79 GROMACS and
PLUMED are widely used software for molecular dynamics
simulations, with PLUMED capable of employing different enhanced
sampling algorithms and collective variables. (CVs).80,81 The Langevin
equation was used to run simulations in a low-friction limit. Simulation
of the three conformations for an equivalent duration of 1 μs
maintained identical simulation conditions and parameters (temper-
ature 310 K). The root-mean-square deviation (RMSD) of Cα 102−
137 served as the collective variable, and a Gaussian bias potential
energy was introduced every 0.5 ps, with a Gaussian width of 0.05 nm
and a height of 1 kJ/mol. When the root-mean-square deviation
(RMSD) exceeds 0.5 nm, a bias potential energy is introduced to
restore system equilibrium. The three trajectories were combined for
postsimulation analysis, and the free-energy landscape was extracted
using GROMACS’ integrated tools. The “loop-out” conformation
served as the reference structure, with the RMSD of the collective
variable and Cα 109 distance employed as reaction coordinates.

■ RESULTS AND DISCUSSION
The quality metrics of the regression model for the dissociation
rate constant (log(koff)) of N-HSP90α are presented in Table 1.
Both the AutoQSAR model constructed in Maestro software
and the Field-based QSAR model exhibit excellent predictive
capabilities on the test set. Within the Field-based QSARmodel,
the primary contributors are identified as the Gaussian steric
field and the Gaussian hydrophobic field. This highlights the
significance of inhibitors occupying the hydrophobic pocket of
the ATP-binding site and engaging in extensive hydrophobic
interactions in influencing the koff. Moreover, models con-
structed with features extracted from molecular 2D structures,
3D structures, and complex structures also exhibit superior
predictive performance. Features extracted from molecular 3D
structures indicate that variations in molecular polarity,
nonpolarity, van der Waals volumes, and other factors
significantly contribute to these models. It is noteworthy that
the model constructed using the DSFE method to extract
features from the complex has an R2 of 0.93 and an MAE of 0.18
on the test set. The top 10 features contributing the most to the
model primarily involve interactions between tryptophan,
leucine, and the nitrogen atoms on the ligand, as well as
interactions between asparagine and hydrogen atoms. This
highlights the significant roles played by hydrophobic
interactions and hydrogen bonds in the process of ligand
dissociation.

However, when dividing the data set based on structural
scaffolds, with hydroxy-indazole scaffold inhibitors and

Table 1. Validation Results of the Different Machine Learning Models of Dissociation Constant Rate (log(koff)) Prediction
a

structure feature extraction ML model R2 MAE

2D structure (SMILES) AutoQSAR KPLS 0.80 0.32
ECFP6 XGBoost 0.777 ± 0.027 0.359 ± 0.026

SVR 0.914 ± 0.094 0.174 ± 0.104
3D structure Field-Based QSAR PLS 0.74 0.41

PaDEL_3D XGBoost 0.875 ± 0.101 0.200 ± 0.098
SVR 0.825 ± 0.075 0.305 ± 0.072

complex structure Distance Shell Feature Extraction (DSFE) XGBoost 0.812 ± 0.093 0.298 ± 0.072
SVR 0.933 ± 0.065 0.182 ± 0.078

aR2 is the coefficient of determination on the test set, and MAE is the mean absolute error between the observed and predicted values. The mean ±
SD value was calculated by randomly splitting the data set 10 times. The AutoQSAR and Field-Based QSAR models were constructed using
Maestro software (Schrödinger, 2023), and only the best-performing model was selected; thus, there is no standard deviation (SD).
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resorcinol scaffold inhibitors as the training set (102
compounds, ∼77.2%), and other scaffold inhibitors as the test
set (30 compounds, ∼22.8%), these models display limited
generalization ability on the test set (the best-performing
DSFE_SVRmodel has an R2 of 0.34 and anMAE of 0.979). This
limitation may be attributed to an insufficient data set or an
imbalance in data distribution, resulting in a failure to adequately
capture the differences in inhibitor features. When inhibitors of
helical conformation were used as the training set (108
compounds, ∼81.8%), the prediction accuracy of the
DSFE_SVR model on the test set (inhibitors of loop
conformation) decreased (R2 = 0.40, MAE = 0.545). This
highlights the differences in determining factors for dissociation
rate constants between inhibitors with helical and loop
conformations. In conclusion, these findings underscore the
critical role of diverse structural and interaction features in
predicting the dissociation rate constant of N-HSP90α
inhibitors.
Experimental Validation of N-HSP90α Compound
Screening

Here, we performed surface plasmon resonance (SPR) experi-
ments to test the selected 39 compounds. Among these, 31
compounds exhibited binding signals in steady-state affinity
assays, while 16 compounds showed stable association and
dissociation responses in binding kinetics assays. This allowed us
to obtain the respective binding kinetics parameters, detailed in
Table 2. The binding affinity of compounds with different
scaffolds ranged from a few micromoles (μM) to several tens of
micromoles (μM), and some compounds displayed relatively
slow dissociation rate constant. The chemical structures of these
16 inhibitors are illustrated in Figure S4, and they exhibit
relatively low similarity to the 132 compounds in the data set
(Figure S5). Notably, we used a two-state reaction model to fit
the binding kinetic parameters. This model describes a 1:1
binding of analyte to immobilized ligand followed by a
conformational or other changes that stabilize the complex.
This choice is motivated by the high flexibility and plasticity of
the apo N-HSP90α’s ATP-lid, which undergoes conformational

changes upon binding different compounds, making the binding
and dissociation processes more complex. Binding and
dissociation curves suggest that the compound initially forms
an intermediate state AB* with the N-HSP90α protein, followed
by conformational rearrangement to form the more stable
complex AB (Figure S6). Additionally, in this study, we further
employed circular dichroism experiments to validate ligand-
induced N-HSP90α conformational changes (Figure S7). Upon
the addition of compounds 14, a significant increase of 2.8% in
α-helix content was observed relative to the apo structure,
representing approximately 8.2% of the total α-helix content.
This indicates that these compounds bind to the target and
induce the rearrangement of residues 104−114 into a helical
structure. Guldenhaupt et al. also verified secondary structure
changes of the HSP90 protein induced by resorcinol inhibitors
with different substituents by attenuated total reflection infrared
spectroscopy (ATR-FTIR).82 Table 2 presents the predicted
log(koff) values using the AutoQSAR model and the
experimentally measured log(koff) values for these 16 com-
pounds. In comparison, the log(koff) prediction deviations for
most compounds are within 1 order of magnitude.

Through surface plasmon resonance (SPR) experiments
validating the dissociation rate constant, we further assessed the
practical predictive performance of each regression model. The
results indicate that, for these 16 new scaffolds of N-HSP90α
inhibitors, most models exhibit mean absolute errors (MAEs)
lower than an order of magnitude (Figure 3). Among them, the
AutoQSAR_KPLS model stands out, with a remarkable MAE of
0.516 for predicting the dissociation rate constant (log(koff)).
This model was created using linear fingerprints in Maestro
software, selected as the optimal model through 50 random data
set splits. Figure S8 shows the regression results of the
ECFP6_SVR model. Compared to the QSKR models
established using Maestro software, the ECFP6_SVR and
DSFE_SVR models demonstrate better predictive performance
on the test set (R2 > 0.9) and similarly impressive predictive
performance on the 16 new scaffold compounds. However,
models constructed by extracting features from the 3D structure
of molecules exhibit lower performance on the experimental

Table 2. Experimentally Determined Binding Kinetics for 16 Compounds, with Predicted Values for koff from the AutoQSAR
Modela

N-HSP90α-WT

compound IDs KD (M) kon (M−1 s−1) koff (s−1) log (koff) log (koff)-Pre

1 6.05 × 10−6 1.38 × 103 5.31 × 10−3 −2.2747 −1.66
2 5.47 × 10−6 4.21 × 103 2.31 × 10−2 −1.6359 −1.863
3 2.32 × 10−5 2.86 × 103 3.79 × 10−2 −1.4208 −2.013
4 5.87 × 10−6 3.13 × 103 1.51 × 10−2 −1.8206 −1.563
5 6.06 × 10−6 4.71 × 104 1.17 × 10−1 −0.9321 −1.712
6 5.42 × 10−6 4.69 × 103 1.23 × 10−2 −1.7588 −1.869
7 4.62 × 10−5 2.75 × 102 1.02 × 10−2 −1.9901 −2.535
8 1.23 × 10−5 1.48 × 103 8.74 × 10−3 −2.0586 −1.828
9 1.33 × 10−5 3.45 × 103 4.84 × 10−2 −1.3149 −2.041
10 2.98 × 10−5 1.31 × 102 4.81 × 10−3 −2.3177 −1.746
11 2.20 × 10−5 4.53 × 101 9.23 × 10−4 −3.0346 −1.93
12 3.75 × 10−5 3.89 × 102 1.39 × 10−2 −1.8565 −1.704
13 6.87 × 10−5 3.05 × 101 2.14 × 10−3 −2.6702 −2.351
14 1.77 × 10−5 1.09 × 103 1.91 × 10−2 −1.7192 −2.266
15 1.64 × 10−5 1.71 × 103 1.93 × 10−2 −1.7144 −2.286
16 1.78 × 10−5 1.19 × 103 2.30 × 10−2 −1.6375 −2.546

aData were averaged from 2 to 4 independent measurements, and the corresponding standard deviations are presented in Table S2. “log(koff)-Pre”
indicates the predicted values of the AutoQSKR model.
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validation set, potentially due to a significant contribution of
molecular weight in the extracted features. Additionally, we
performed the Wilcoxon signed-rank test to compare the
predicted values of these models with experimental observations
(Table S2). The results indicate that, at a significance level of
0.05, there is no significant difference between the predicted and
observed values. This further validates the reliability and
accuracy of the models. In conclusion, these models show
promising predictive potential, providing robust tools for the
discovery of new HSP90 inhibitors.
Crystal Structures of Bound Forms and Ligand-Free of
N-HSP90α
To delve into the relationship between different conformations
and the binding kinetics of inhibitors, we conducted
crystallization experiments and determined the complex
structure of compound 4 with N-HSP90α in the “loop-in”
conformation (Figure 4A). Consistent with the binding mode of
previously reported resorcinol derivatives, the 2-hydroxy group
on the resorcinol ring of compound 4 forms a hydrogen bond
with the D93 side chain, and it engages in water-mediated
hydrogen bonding within the hydrophobic pocket with G92.
Additionally, the 4-hydroxy group interacts via hydrogen
bonding with N51 and forms water-mediated hydrogen bonds

Figure 3. Mean absolute error (MAE) between predicted and
experimental values. The error bars represent the standard deviation
(SD) of MAE, which was estimated based on 10 random splits of the
data set.

Figure 4. Different conformational complex structures of N-HSP90α. (A) Cartoon representation of the complex structure of compound 4 with N-
HSP90α in the “loop-in” conformation (PDB ID: 8W4V). (B) Detailed interaction of compound 4 with relevant residues of N-HSP90α and water
molecules in the ligand binding pocket. Yellow represents hydrogen bonds and purple represents salt bridges. (C) Thermodynamics data of compound
4 titrated into N-HSP90α with a concentration ratio of 400 μM: 25 μMmeasured by PEAQ-ITC. (D) In one asymmetric unit, both the apo form and
the Ganetespid-bound form of N-HSP90α exhibit “loop-in” and “loop-middle” conformations (PDB IDs: 8KI4, 8W8K).
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with L48 and S52. The hydrogen atom on amino group 15
participates in water-mediated hydrogen bonding with K58,
while amino group 15 establishes a salt bridge with the D102
residue (Figure 4B). We also determined the thermodynamic
parameters for compounds 4 and 5 through ITC (Figures 4C
and S9).

In X-ray crystallography experiments, the “loop-middle”
conformation of apo N-HSP90α was observed for the first
time (previously, the “loop-middle” conformation had only been
observed in holo-N-HSP90α structures). Interestingly, we
observed a structure in one asymmetric unit where apo N-
HSP90α simultaneously adopts both “loop-in” and “loop-
middle” conformations (PDB ID: 8KI4, Figure 4D, left).
Similarly, after binding with Ganetespid (an N-HSP90α
inhibitor in phase III), these two conformations are also present
(PDB ID: 8W8K, Figure 4D, right). This suggests that residues
104−114 of the ATP-lid in apoN-HSP90α exist in different loop
conformations in solution. The binding of specific ligands,
different crystallization conditions, additives, pH, and other
factors can alter the pre-existing conformational equili-
brium.51,52 This leads to a shift in the population distribution
toward more stable conformations, thereby increasing the
proportion of this conformation. In the isolated structure of N-

HSP90α, Henot et al. also observed a “closed” conformation of
the ATP-lid, with an occupancy of 3−4% at room temperature.52

However, this helical conformation remains elusive in the
absence of ligand binding, likely triggered by specific binding
events. Research by Amaral et al. on the thermodynamics of the
N-HSP90α inhibitor binding indicates that inhibitors capable of
forming helical conformations exhibit significantly favorable
entropy contributions upon binding. Overcoming higher-energy
barriers during binding and dissociation, these specific
compounds dynamically alter the conformational landscape.53

Compounds adept at occupying hydrophobic pockets and
forming extensive hydrophobic interactions further induce the
rearrangement of ATP-lid from different loop conformations
into a helical conformation. Inhibitors with the ability to induce
the formation of helical conformations exhibit slower rates of
binding or dissociation and can linger in this conformation for an
extended duration after binding to the protein. This may reduce
the fraction of conformations suitable for normal chaperone
functional cycling.

Figure 5. Free-energy landscape and structural analysis of apo N-HSP90α metadynamics simulations in different conformations. (A) 3D plot
illustrating the free-energy landscape obtained from the merged trajectories. The figure displays the free energies associated with the three lowest-
energy basins. (B) A 2D free-energy topography was constructed using the root-mean-square deviation (RMSD) of the collective variable, Cα 102−
137, and the RMSD of Cα 109 as reaction coordinates. Regions I, II, and III correspond to a free-energy range of 0−3.05 kJ/mol (solid white line area),
while region IV represents a free-energy range of 3.05−5.42 kJ/mol (dotted white line area). Region V indicates a free energy greater than 5.42 kJ/mol.
The red solid line represents the lowest-energy path for the three conformations I, II, and III allosteric to each other. (C) Structural analysis of regions I,
II, III, IV, and V was conducted following clustering. The structure only displays the Cα 102−137 segment’s “lid”, while other regional conformations
remain unchanged. The black arrow denotes the direction of “lid” movement during the simulation.
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Molecular Dynamics Simulations of apo N-HSP90α in
Different Conformations

The binding kinetics of N-HSP90α inhibitors are intricately
linked to their distinct conformational states, and a compre-
hensive understanding of the entire conformational system is
pivotal for elucidating the molecular mechanism of N-HSP90α.
In recent research, molecular dynamics simulations have been
extensively used to explore the mechanisms of HSP90
conformational changes and inhibitor binding.83,84 Chen et al.
demonstrated, through their study on the binding mechanisms
of inhibitors capable of forming helical conformations, that
inhibitor binding distinctly influences the structural flexibility of
N-HSP90α, potentially leading to significant impacts on HSP90
function.85,86 Conformational changes in the ATP-lid occur on
themicrosecond tomillisecond time scale and even longer.53 No
significant changes in the ATP-lid were observed in our all-atom
dynamics simulations of a few microseconds. To address this
challenge, we used a coarse-grained model for metadynamics
simulations. Onuchic and Wolynes have made significant
contributions to the study of protein folding, energy landscapes,
and biomolecular dynamics.87−89 Structure-based Hamilto-
nians, simplified models are derived from the energy landscape
theory of protein folding, which has proven effective in capturing
long-time and large-length scale motions of proteins.90−92 These
techniques enable us to describe different conformational
energy landscapes and observe structural changes, further
enhancing our understanding of the structure−function
relationship.

Using the coarse-grained Cα structures of “loop-in”, “loop-
out”, and “loop-middle” in apo N-HSP90α as initial structures,
the RMSDof Cα 102−137 served as a collective variable (Figure
S10). A bias potential energy was applied to configurations with
significant deviations from these conformations, facilitating the
overcoming of high-energy barriers for transition states.
Throughout the entire simulation process, all three initial
conformations could effectively and relatively rapidly transition
into other conformations. Through the analysis of combined
trajectories, the RMSD of the collective variable and the distance
between Cα atoms at position 109 as reaction coordinates are
used to calculate the free-energy landscape. In the free-energy
landscape (Figure 5A), the three basins with the lowest energy,
denoted as ①, ②, and ③, correspond to the “loop-middle”, “loop-
in”, and “loop-out” conformations, with the relative free energy
of 0, 0.74, and 0.83 kJ/mol, respectively. Additionally, multiple
potential wells around them represent the diversity of different
loop conformations. Based on the analysis of their free-energy
ranges and conformational clustering, we divided them into five
regions (Figure 5B), with regions I, II, and III representing
“loop-middle”, “loop-in”, and “loop-out” conformations,
respectively. Within the range of 0−3.05 kJ/mol in free energy
(Figure 5C), the ATP-lid is relatively stable. The IV region
comprises metastable conformations with a free-energy range of
3.05−5.42 kJ/mol. In this “loop-out” state, the ATP-lid
obviously closes toward the ATP pocket. Region V represents
high-energy conformations, with free energies exceeding 5.42
kJ/mol. Notably, the ATP-lid segment of the three structures
exhibits different degrees of conformational regulation in the
high-energy region, with multiple “closed” conformations
observed. This segment demonstrates significant flexibility
while inducing changes in Cα 104−114 near the ATP pocket.
Simulation results suggest the presence of a diverse distribution
of cyclic conformations in apo N-HSP90α, with the major
proportions being the “loop-middle”, “loop-in”, and “loop-out”

conformations. In contrast, the ATP-lid of the “loop-out”
conformation tends to close more easily, transitioning to other
states. The red line in the free-energy landscape represents the
lowest-energy conformational change path connecting “loop-
out” and “loop-in” conformations (Figure 5B). The pathway
search method used in the study is similar to previously reported
methods,35 coarsely dividing the constructed free-energy
landscape into a 32 × 32 grid, with each grid having
corresponding energy and coordinates. Starting from the
lowest-energy point in the “loop-out” conformation, we traverse
the grid along the path with the minimum global potential
energy. This path includes three stable states and onemetastable
conformation, accompanied by three transitional conformations
(Figure S11). With the opening and closing of the ATP-lid,
residues 104−114 display different loop conformations. The
differences in the size of the ATP-binding pocket and solvent
distribution among different cyclic conformations may be due to
significant changes in the ATP-lid of apo N-HSP90α. Ligand
binding tends to prioritize the binding of the matching
conformation, thereby increasing its proportion. In the
simulations, the formation of the helical conformation was not
observed, suggesting that the induction of helical conformation
formation, triggered by specific ligand binding events, requires
overcoming higher-energy barriers.

■ CONCLUSIONS
The role of drug−target binding kinetics in drug efficacy and
safety is becoming increasingly important. The rapid and
accurate prediction of the binding kinetics of drug−target has
become a current research focus with the aim of simplifying and
expediting the drug discovery process. In this study, we
developed a quantitative structure−kinetics relationship
(QSKR) model for the dissociation rate constant (koff) of
HSP90 inhibitors on a larger data set. The model exhibited good
predictive performance on the test set and was successfully
applied to a lead compound screening strategy, leading to the
discovery of new N-HSP90α inhibitors. Consistent with
previous research findings, the dissociation rate of inhibitors is
closely related to hydrogen-bonding and hydrophobic inter-
actions and factors such as the occupation of the hydrophobic
pocket within the ATP-binding site. The model shows further
refinement and extension potential on an experimental
validation set with a new scaffold. Our experimental data and
molecular dynamics simulations indicate that residues 104−114
of apoN-HSP90α ATP-lid exhibit different loop conformations.
The transitions between different loop conformations are
induced by the conformational changes of the ATP-lid. Inhibitor
binding may involve a mixed mechanism of conformational
selection and induced fit. The conformational dynamics of N-
HSP90α are closely related to the binding and dissociation
behavior of inhibitors. However, currently, most N-HSP90α
inhibitors primarily compete by binding to ATP rather than
being specifically designed to influence the conformation of N-
HSP90α. Inhibitors with longer residence times and the ability
to induce helical conformations may profoundly impact the
conformational distribution of N-HSP90α, suggesting that small
molecules influencing N-HSP90α conformational dynamics
may have clinical potential.

In AI, different scientific problems or models require different
amounts of data, which is directly related to the complexity of
the problem itself. Let us take our example: since N-HSP90α has
multiple dynamic conformations, which indicates that the
process of small molecule recognition is also very complex, the
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variable dimensions are high and therefore a larger number of
parameters that can cover these different dimensions are needed
to train the model. In our example, we used more than 130 data
to get better results, which indicates that this data size is
reasonably meaningful, but the generalization ability of the
model still needs to be improved, for which more data is needed.
Of course, in artificial intelligence problems, we can simplify the
problem by creating a physical model and artificially reducing
the dimensionality when the data is relatively small. There are
currently some studies on the development of computational
models for the prediction of binding kinetics. For example,
Ganotra et al. used the comparative binding energy
(COMBINE) method, calculating interaction energies for
ligand−receptor complexes in data sets comprising 70 N-
HSP90α inhibitors and 36 HIV-1 inhibitors. They constructed
QSKR models using partial least-squares, achieving correlation
coefficients of 0.69 and 0.70, and the mean absolute errors were
0.45 and 0.58 on two test data sets, respectively. This indicates
the feasibility of constructing quantitative structure−kinetics
relationship prediction models for other systems, even with a
data set size below 100. In our study, a predictive model was
developed using a data set of 132 N-HSP90α inhibitors, with a
determination coefficient (R2) of 0.93 and a mean absolute error
(MAE) of 0.18. It is noteworthy that, when the data set is split
according to scaffold types, a significant decline in performance
on the test set was observed. This suggests that due to the limited
data and imbalance in inhibitor types, the predictive accuracy for
other scaffolds is reduced, and the generalization capability of
the model needs improvement. Therefore, obtaining more
binding kinetics data would be highly desirable. With the
determination of more structures and binding kinetics data, AI-
based models for binding kinetics prediction are expected to
have greater advantages and prospects, providing substantial
support for drug discovery and development.
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