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Using Brain Imaging to Unravel the Mysteries of Stuttering 

By Soo-Eun Chang, Ph.D. 

 

Editor’s note: After many decades of attributing stuttering to causes ranging from childhood 

trauma to overly anxious personalities, scientists have used neuroimaging techniques to uncover 

measurable differences in the brain activity of people who stutter versus fluent speakers. But 

while researchers have made great strides in understanding stuttering in adults, the neural basis 

of stuttering in children largely remains a mystery. We do not yet know why up to 80 percent of 

children who stutter recover without intervention, nor do we know how to distinguish those who 

will recover without intervention from those who will not. However, recent findings support the 

idea that early intervention can alter or normalize brain function before stuttering-induced 

changes become hardwired. 

 

Article available online at http://dana.org/news/cerebrum/detail.aspx?id=33796 
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As many as 5 percent of children between ages two and five stutter, usually beginning 

around the time they start forming simple sentences. In addition to exhibiting well-known speech 

symptoms such as repetitions, blocks, and prolongations that primarily occur in initial sounds or 

syllables of words and sentences, children who stutter may also experience physical symptoms, 

such as eye squinting, neck and face tensing, and arm and leg movements that can be distracting 

to the listener. In the United States alone, an estimated 3 million people stutter.  

Considering the high incidence of stuttering, we know very little about its etiology. 

People have attributed stuttering to numerous and various possible causes, such as childhood 

trauma (as is suggested in the movie The King’s Speech), hypercritical parents, or an overly 

anxious personality, none of which have been supported in the scientific literature.  

We also do not know why many children grow out of stuttering within a few years of the 

onset of symptoms, while others continue to stutter for the rest of their lives. There is no 

objective marker that can help us discern which children will recover and which will develop 

chronic stuttering. Because up to 80 percent of children who stutter recover spontaneously, the 

usual recommendation to a concerned parent used to be to wait and see. The conundrum is that 

waiting could be disadvantageous to children who could benefit from early intervention. Today, 

most fluency specialists recommend that parents consider speech-language therapy if a child has 

been stuttering for more than six months, particularly if the child finds it bothersome. When 

making a decision regarding intervention, specialists may also consider additional factors such as 

age of stuttering onset, sex, family history of persistent stuttering, and phonological (speech 

sound) development.  

In this article I review some recent advances in determining the neural bases of stuttering 

and discuss why early intervention may be important in the context of brain development. With 

the advent of neuroimaging, scientists now have the unprecedented ability to use sophisticated 

techniques to examine the anatomy and functions of living brains. What we now know, based on 

neuroimaging research, is that people who stutter and people who speak fluently exhibit clear 

differences in brain-activity patterns during speech production. In addition, people who stutter 

exhibit subtle structural deficits, primarily involving left-hemisphere brain regions that support 

fluent speech production. In the future, researchers might develop therapies that maximize brain 

plasticity conducive to producing fluent speech. I also discuss how we may find objective 
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markers of chronic stuttering, which could lead to the development of better treatments for this 

complex condition. 

 

Fluency-Inducing Conditions and the Neural Bases of Stuttering 

Many people who stutter report that their stuttering goes away completely in certain 

situations, such as when they speak to their children or to a pet, sing, talk in chorus with others, 

or even adopt a novel manner of speaking (for example, speaking with an accent or speaking as 

an actor onstage). Speaking under delayed auditory feedback, which delivers an “echo” of one’s 

voice while speaking (one hears back one’s voice with a split-second delay), or frequency-altered 

feedback, which delivers feedback of one’s voice with a pitch shift (one hears one’s voice altered 

to be either higher or lower in pitch), can also induce fluency in many people who stutter. The 

fact that people who stutter often show a dramatic decrease in stuttering during an altered-

feedback condition—one that usually disrupts speech in fluent speakers—suggests that the 

auditory and motor centers of the brain interact differently in this group relative to fluent 

speakers. In addition, many of the fluency-inducing conditions promote slowed rates of speech 

and provide externally delivered timing cues for speech movement. These conditions may 

compensate for a speech system that is less able to sequence speech movements rapidly and 

perhaps unable to rely on internal timing of speech movements.  

Data from recent neuroimaging studies on stuttering give us insights into the possible 

bases of these fluency-inducing conditions in stuttering speakers. The main brain regions that 

work together to make fluent speech production possible include areas in the frontal cortex of the 

brain, which controls movement planning and execution, and auditory sensory regions located 

farther back, in the temporoparietal cortex. Regions deeper within the brain, including the basal 

ganglia, thalamus, and cerebellum, also support speech movements by providing internal timing 

and sequencing cues. It is in these brain regions and their connections that researchers have 

found brain function and anatomy differences between stuttering speakers and fluent speakers. 

 

Evidence of Aberrant Auditory-Motor Integration  

Fluid, effortless speech production is possible because of well-established connections 

among brain regions that support auditory processing, motor planning, and motor execution. 

These connections become established when a child learns to speak by matching the sounds that 



Cerebrum, August 2011 

4 

 

he has heard in a model’s, such as a mother’s, speech with sounds generated by his own speech 

movements. With practice, the child’s speech sounds begin to match the targeted speech sounds. 

According to one speech model, the auditory cortex, which houses the auditory representation of 

speech sounds, is connected with speech planning and execution areas.
1
 This connection is 

achieved through a dorsal stream that researchers posit to be much more highly developed in the 

left hemisphere. Researchers claim that the dorsal stream anatomically corresponds to the superior 

longitudinal fasciculus, a major white-matter pathway that connects the brain structures located in 

the anterior (motor) and posterior (sensory) parts of the brain.
2
 The white-matter tracts act like 

electric cables, transmitting nerve impulses from one part of the brain to another. If the integrity 

of these white-matter tracts is compromised, the rapid information exchange that needs to occur 

among the major areas that support speech may also be compromised.  

Some neuroimaging data support the idea that people who stutter may have aberrant 

connections relative to fluent speakers, primarily in the left hemisphere that involves a major 

white-matter tract (figure 1). In this white-matter pathway, the superior longitudinal fasciculus 

connects the brain regions involved in speech planning in the inferior frontal region with the 

auditory regions involved in the sensory feedback of speech sounds, via the motor cortex, 

which is responsible for speech-motor execution (figure 2). Studies have reported subtle 

decreases in white-matter integrity in the left superior longitudinal fasciculus in both children 

and adults who stutter.
3-6

 

 

Figure 1 

 
 

The superior longitudinal fasciculus (SLF) in the left and right hemispheres. SLF is a major white-

matter tract that interconnects several brain regions important for speech production. Here, SLF is 

shown for the left and right hemispheres based on 14 normally fluent individuals.
46

 The left SLF is 

greater in fiber tract density compared to the right SLF,
47

 which  underscores its role in supporting 

speech and language function. 
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Figure 2 

 
 

A simplified model of the left hemisphere showing the inferior frontal region (speech planning), motor 

cortex (speech execution), and superior longitudinal fasciculus (auditory processing), which is 

interconnected via the superior longitudinal fasciculus (depicted with arrows). 
 

According to some studies, stuttering speakers have greater volume and activity in the 

right side of the brain compared to the left side, perhaps as a reaction to the left-sided 

connectivity deficits. Nonstuttering adults, in contrast, have greater left- than right-side 

auditory cortex volume. Moreover, stuttering adults with the greatest rightward asymmetry 

(right greater than left) brain volume in an auditory association region exhibited more severe 

stuttering and experienced the greatest benefit from delayed auditory feedback during speech 

production.
7
  

Researchers who examined brain-activity patterns in adults who stutter during various 

speech-production tasks found underactivity in the auditory cortex and overactivity in the motor 

regions. Relative to the nonstuttering control group, stuttering speakers exhibited heightened 

activity in the right hemisphere in motor regions
8-10

 as well as in the cerebellum
11

 and lowered 

activity in the auditory areas. In conjunction with abnormal anatomy in these regions, and 

particularly in the left hemisphere, this right-sided overactivity might be explained as a 

compensatory reaction to the left-sided deficit in the auditory areas. 

 

Brain Development in Children Who Stutter 

Studies of children who stutter are critical. The neural correlates of stuttering are difficult 

to establish when examining only adults, since people who stutter for decades may develop 
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compensatory mechanisms that have become hardwired in the brain. These compensatory 

effects—which are much less likely in the brains of children—may confound the core deficit 

associated with stuttering. As it turns out, all studies discussed above involved adult participants, 

mostly due to the practical challenges of conducting neuroimaging research on young children. 

Researchers have conducted large-scale studies examining typical brain development in 

children, however. These studies show that brain structures supporting speech and language 

development have a protracted growth pattern relative to other areas of the brain (such as 

vision).
12-14

 Researchers found that the superior longitudinal fasciculus continues to develop even 

up to adolescence.
15,16

 Thus, during the course of speech acquisition, it is possible that structures 

supporting speech production may develop differently in children who stutter compared to 

children who speak fluently. In addition, the development of these structures and the 

connectivity among them may differ in children who recover from stuttering compared to those 

who continue to stutter into adulthood. Given that in typical brain development, these structures 

particularly maintain plasticity into later childhood and adolescence, the discovery of differences 

may also have significant implications for therapy that results in lasting recovery from stuttering.  

 

Brain Anatomical Differences in Children Who Stutter 

In the only published study to date on the neuroanatomical bases of childhood stuttering, 

we compared children with persistent stuttering, children who recovered naturally from 

stuttering, and age-matched fluent controls on several different brain structure measures. All 21 

children who participated were 8- to 12-year-old, right-handed boys.
3
 We examined both 

differences in the integrity of white matter (the tracts that connect different areas in the brain) 

and differences in the volume of gray matter (composed of nerve-cell bodies and dendrites, 

where information processing takes place) among the groups.  

We found evidence of decreased white-matter integrity in the superior longitudinal 

fasciculus underlying the sensorimotor cortex in stuttering children relative to age-matched 

controls. A decrease in white-matter integrity in this area may mean that signals among the 

movement planning, execution, and sensory brain areas may not be transmitted in a sufficiently 

rapid manner to allow for fluent speech production. This decrease was common for both those 

who were persistent stutterers and those who had recovered from stuttering. Interestingly, the 

recovered group showed an intermediate level of white-matter integrity, between that of the 
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persistent stuttering and control groups. Additionally, the recovered children showed trends of 

increased white-matter integrity in the right-hemisphere homologue region, the equivalent region 

in the right hemisphere that mirrored the left hemisphere region found to have less integrity in 

stuttering children. These findings warrant confirmation with larger groups to determine whether 

brain areas showing distinct growth in recovered children (as found in this study) underlie 

natural recovery.  

Our study replicates findings from an earlier study on stuttering adults. That study found 

that left-sided white-matter integrity decreases in the sensorimotor cortex region in adults who 

stutter compared to controls.
4
 The left-sided decrease in white-matter integrity found in adults—

and now in children—clearly suggests that this may be one of the important structural bases for 

stuttering. Although the school-age children who had persistent stuttering had been stuttering 

since two to four years of age and were likely to have adopted some compensatory behaviors 

similar to those of adults, this cannot be said about the age-matched group of children who had 

recovered from stuttering and who had not been stuttering for at least two years prior to their 

study participation. The fact that both groups exhibited the same white-matter differences 

compared to the control children suggests that this structural difference may be associated with 

the risk of developing stuttering, regardless of outcome. In addition, our study reported 

significant differences in white-matter integrity between children with a stuttering history (both 

persistent and recovered) versus fluent children in an area that contains thalamocortical and 

corticonuclear tracts. These tracts connect cortical brain regions with subcortical areas and 

cranial nerves, respectively, that can directly control speech musculature. If these connections 

are affected, coordination of speech musculature allowing adequate timing, amplitude, and 

sequence manipulation that is typical of fluent speech could be affected as well.  

Right-hemisphere brain volume increases previously reported in adults who stutter
17,18

 

were not found when examining gray-matter volume in children who stutter.
3
 Children who 

stutter exhibited the typical leftward asymmetry in gray-matter volume, particularly in the 

posterior temporal cortices (auditory association areas). This suggests that right-hemisphere 

enhancement may develop with continued stuttering into adulthood. Perhaps the auditory cortex 

increases found in children with persistent stuttering are the result of continuing to stutter for six 

to nine years after onset.
3
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 In summary, children who stutter, regardless of whether they continue to stutter or 

recover from stuttering, appeared to have brain connectivity differences when compared to their 

nonstuttering peers. The differences suggested that dynamic and timely interactions among the 

left motor cortical and sensory regions may be affected in children who stutter, thus resulting in 

nonfluent speech. All children, including both of the stuttering groups, exhibited the normal left-

greater-than-right asymmetry pattern. This suggests that the increased right-sided volume found 

in adults who stutter could be the result of compensation for aberrant left-hemisphere 

connectivity. Because this study was based on relatively small numbers of children and the 

persistent children were more than two years past the onset of stuttering symptoms, it is 

important to replicate these findings in larger groups and in younger children closer to stuttering 

onset. In addition, this study examined only boys who stutter; considering the skewed sex ratio in 

stuttering (for every girl who stutters, there are five to seven boys who stutter) and the fact that 

most girls who stutter recover from it, it would be important to examine both gender groups in 

future studies.  

 

Brain Function Differences in Children Who Stutter 

The anomalous anatomical growth reported in children who stutter may impact how brain 

regions interact when producing speech. In turn, sustained anomalous function could lead to 

further structural changes in the brain. To date, researchers have conducted only a few studies 

examining differences in brain function in young children who stutter.  

Conducting neuroimaging studies with children presents many practical challenges. Any 

study that uses magnetic resonance imaging (MRI) or functional magnetic resonance imaging 

(fMRI), for example, requires restriction of head movement; children must stay immobilized in a 

small space under loud noise during scanning. Other techniques, such as positron-emission 

tomography (PET), involve injecting radioactive substances, which are inappropriate to use in 

children without a clinical justification.  

Perhaps reflecting these practical challenges, studies measuring brain function in 

stuttering children have so far been limited to using event-related potentials, or ERPs. These 

studies involve measuring stereotypical electrophysiological responses to a given stimulus (such 

as auditory presentation of a tone or a vowel) via an electroencephalogram (EEG) or 

magnetoencephalogram (MEG). Using electrodes or very sensitive coils along the scalp, EEG 
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and MEG can pick up electrical and magnetic field potentials, respectively, which are associated 

with neural activity. Both methods can capture the brain responses of interest almost as soon as 

they occur. However, the spatial resolution, which relates to localizing the brain activity to a 

certain region of the brain, is much less reliable than other neuroimaging methods such as fMRI.  

An ERP study conducted with school-age children who stutter reported that stuttering 

children were significantly less accurate than controls when making rhyming judgments that 

required phonological rehearsal. The authors noted that the brain’s evoked responses related to 

the cognitive processes preceding this task were altered in children who stutter, and that the 

responses peaked earlier in the right hemisphere than in the left, while the brain responses 

peaked earlier in the left than the right in the controls.
19

 The same research group conducted 

another ERP study on preschool-age children who stutter and found that children who stutter 

lacked a characteristic waveform that is typically elicited in normal children in response to 

deviant auditory stimuli. This indicated aberrant cognitive mechanisms involved in processing 

auditory stimuli, even in the youngest stuttering children.
20

  

Another study examining school-age children who stutter used MEG to examine a well-

known phenomenon that illustrates the interaction between speech motor and auditory areas: 

vocalization-induced suppression.
21

 The auditory cortex is normally inhibited during 

vocalization, unlike when we listen to a recording of the same vocalization. According to 

scientists, this phenomenon underscores the tight collaboration between the auditory and motor 

regions of the brain to enable normal speech production. The researchers measured the brain’s 

evoked responses to listening to a tone, listening to a vowel, and producing a vowel in school-

age children who stutter. The children did not differ from age-matched controls in their evoked 

response to simply listening to the tone, but they did differ in their response to vowel perception 

and production. The amplitude of the evoked responses did not differ, but the latency of response 

was delayed in both hemispheres of children who stutter.  

In the most recently published study, the extent of laterality (left versus right cerebral 

dominance) in brain function for phonological and prosodic contrast tasks was reported in adults, 

school-age children, and preschool-age children who stutter.
22

 The phonological task involved 

perceiving differences in distinct units of speech sounds, while prosody contrasts involved 

perceiving differences in intonation. The authors expected that speech sounds, compared to 

intonation changes, would be perceived better in the left hemisphere compared to the right, as the 
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former involves linguistic processing, which lateralizes to the left hemisphere in the vast 

majority of individuals.  Using near infrared spectroscopy, a method that allows noninvasive 

examination of brain function similar to fMRI and PET, but is less restrictive for young 

participants, the researchers found that age-matched nonstuttering speakers consistently 

exhibited greater left than right laterality of brain response when listening to auditory stimuli 

differing in phoneme versus prosody. In contrast, not even one subject among the stuttering 

group exhibited leftward laterality for the phoneme versus prosodic contrasts. This was true for 

all age groups, including the youngest preschool-age children. The researchers speculated that 

due to left-sided anatomical deficiencies, both linguistic and prosodic functions may lateralize to 

the right hemisphere in stuttering children, and as this pattern is maintained, children may 

display right-sided structural increases, as have been reported in anatomical studies of adults who 

stutter.
7,17,23

  

 Current data point to differences in brain function and anatomy, involving both auditory 

and motor areas of the brain, even in the earliest stages of stuttering. The functional brain 

differences in stuttering children, when sustained, could result in structural brain changes, in turn 

resulting in abnormal laterality of auditory-motor interaction for speech processing—which is 

reported in stuttering adults. Future studies that track both functional and structural brain growth 

as stuttering children develop are likely to give us more definitive answers on a number of still-

unanswered issues, such as why some children naturally recover from stuttering and why many 

more girls grow out of stuttering than boys. 

 

Implications for Treatment 

Currently there is no cure that works for all people who stutter. At present, behavioral 

therapy by a skilled speech-language pathologist (ideally someone who specializes in fluency) is 

the most viable option for treating stuttering. Although much more data is needed before direct 

clinical applications can be made, there is support for early intervention for children who stutter. 

If parents are concerned about their child’s stuttering, and the child has been stuttering for more 

than six months, therapeutic intervention should be considered. The brain regions found to be 

different in stuttering children are primarily those that undergo active growth and are plastic 

during childhood, and are thus more likely to respond to treatment that stimulates brain 

development toward more normal growth patterns. It is probable that there is greater chance of 
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lasting recovery if therapy is delivered during early childhood rather than after adolescence. In 

the latter case, the stuttering speaker may still benefit (as King George VI did), but he may need 

effortful monitoring of his speech to achieve fluency, and there is possibility of relapse.  

Experienced clinicians claim that successful treatment of children often takes less time 

than is necessary for adults, and normal fluency is the goal for most children. For these children, 

recovery may occur either because they adopt a compensatory neural growth pattern that 

successfully makes up for the deficient brain regions, or because they are able to adopt a pattern 

of development that resembles normally fluent children (we do not at present have any evidence 

to substantiate either of these claims).  

If a child continues to stutter into adolescence and beyond, the window of dynamic 

growth in the speech regions supporting fluent speech may close; an adult is likely to be much 

more resistant to change. Reflecting these ideas, the goal for most adult therapeutic interventions 

is not normal fluency, but rather a state in which stuttering occurs with less tension (stuttering 

modification) or a speech pattern that is volitional and consciously controlled due to relearning 

the components of fluent speech, including respiration, phonation, and articulation (fluency 

shaping). These modified speech patterns are different from the effortless and automatic speech 

production that is typical of normally fluent speakers. Treatment in adults must also address 

psychosocial issues, which are less commonly seen in early childhood stuttering. Adults who 

stutter are likely to have developed an emotional reaction to their stuttering, and many exhibit 

avoidance behavior associated with speech situations, which can exacerbate and perpetuate 

stuttering.  

Several groups have studied brain changes associated with stuttering treatment (primarily 

fluency shaping) during adulthood.
11,24-26

 Some of the major findings indicate that therapy leads 

to attenuation of right-hemisphere overactivity seen before therapy, as well as a shift toward 

more activity in the left hemisphere regions supporting planning, execution, and auditory 

feedback of speech. Abnormal basal ganglia activity also decreased following therapy.
27

 These 

brain changes are still very different from brain activity we see during speech of fluent 

individuals, however—an indication that at least at the neural level, there are limits to what 

adults who stutter can achieve through therapy. These findings all the more support the idea that 

early intervention may be important, as therapy during early childhood provides an opportunity 
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to alter or normalize brain function before stuttering-induced changes become hardwired and 

perhaps less responsive to therapy.  

In the future, researchers should examine therapy’s effects on children and determine 

whether therapy-induced recovery during early childhood leads to similar brain function and 

structure as found in children who have recovered or children who have never stuttered. If the 

therapy-induced brain changes do not lead to brain structure and function that resemble normal 

brain growth in children who never stuttered, yet the children who once stuttered achieve full 

recovery without relapse, this may indicate a successful compensatory growth that may be a goal 

of future behavioral treatment for both children and adults. 

Advances in genetics research may lead to better understanding of the molecular basis 

and biological pathways associated with stuttering
28-30

 and, eventually, to better diagnostic and 

treatment approaches including pharmacological treatment
*
 and gene therapy. There is 

substantial evidence that genetic factors contribute to stuttering. Stuttering shows a strong 

familial aggregation,
33-35

 and twin studies have shown that there is greater concordance for 

identical twins than for fraternal twin pairs.
36-38

 While it is certain that there is a strong genetic 

contribution to stuttering, the mode of inheritance is still unclear. Several genome-wide linkage 

studies
39-43

 have indicated only moderate evidence of linkage to any one region, and replication 

of results across the different labs has been sparse. The recent discovery of mutations of specific 

genes associated with lysosomal dysfunction (dysfunction of the cell organelles that break down 

cellular waste matter and debris) in stuttering families
44

 has been suggested as a possible 

neurochemical basis for the white-matter deficits,
45

 but the results await replication by 

independent groups. More research must confirm the relationship between the genetic mutations 

and brain development patterns relevant to stuttering. 

We are still at an early stage of understanding the basis for this enigmatic speech 

condition. With more advances in the study of the neural bases and genetics of stuttering, 

scientists may find an objective biological marker for persistent stuttering, as well as brain 

changes that lead to successful recovery from stuttering. These future developments will lead to 

better clinical assessment and bring us closer to finding treatment targets. As we near the 

discovery of the etiology of stuttering, we will be closer to finding a long-term cure. 

                                                        
* Recently a large-scale clinical trial was conducted on a drug called pagoclone to treat stuttering 

in adults;
31

 more studies are needed to establish the reliability of the results.
32 
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