
Special Issue: Biomarkers for pathophysiology

Does growth differentiation
factor 11 protect against
myocardial ischaemia/
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Abstract

The pathogenesis of myocardial ischaemia/reperfusion injury is multifactorial. Understanding the

mechanisms of myocardial ischaemia/reperfusion will benefit patients with ischaemic heart disease.

Growth differentiation factor 11 (GDF11), a member of the secreted transforming growth factor-b
superfamily, has been found to reverse age-related hypertrophy, revealing the important role of

GDF11 in cardiovascular disease. However, the functions of GDF11 in myocardial ischaemia/

reperfusion have not been elucidated yet. A number of signalling molecules are known to occur

downstream of GDF11, including mothers against decapentaplegic homolog 3 (SMAD3) and

forkhead box O3a (FOXO3a). A hypothesis is presented that GDF11 has protective effects in

acute myocardial ischaemia/reperfusion injury through suppression of oxidative stress, prevention

of calcium ion overload and promotion of the elimination of abnormal mitochondria via both

canonical (SMAD3) and non-canonical (FOXO3a) pathways. Since circulating GDF11 may mainly

derive from the spleen, the lack of a spleen may make the myocardium susceptible to damaging

insults. Administration of GDF11 may be an efficacious therapy to protect against cardiovascular

diseases in splenectomized patients.
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Introduction

Ischaemic heart disease (IHD) is a leading
cause of death worldwide and a number of
risk factors have been identified, including
ageing, diabetes and hypertension.1 It is well
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known that early coronary artery reperfu-
sion via either fibrinolysis or angioplasty can
attenuate ischaemic injury.2 However, there
is strong evidence that reperfusion leads to
additional myocardial injury beyond that
induced by the ischaemia alone.3,4 The patho-
genesis of ischaemia/reperfusion-induced
myocardial injury is multifactorial and
includes the effects of oxidative stress and
calcium ion (Ca2þ) overload.5–7 In recent
years, strenuous efforts have been made to
identify the mechanisms responsible for this
type of cardiovascular injury. However, to
date it is still not possible to prevent myocar-
dial ischaemia/reperfusion injury in patients
with IHD who receive vascular recanaliza-
tion. Further elucidation of the mechanisms
of myocardial ischaemia/reperfusion and
the development of efficacious therapy to
increase the net cardiac benefits of reperfu-
sion are areas of great ongoing interest.8

Growth differentiation factor 11
(GDF11) is a member of the transforming
growth factor-b (TGF-b) superfamily of
secreted growth factors. The GDF11 gene
has a broad expression pattern in mice,
being found, for example, in skeletal
muscle, intestine, pancreas, kidney and the
developing nervous system.9 GDF11 has
been detected in a range of tissues, including
serum and the myocardium.10,11 The spleen
has been found to have the highest concen-
tration of GDF11, and a secretory defect in
the spleen was shown to lead to a reduction
in circulating GDF11 in mice.11 The amino
acid sequence of GDF11 is 90% homolo-
gous to myostatin,9 which is another
secreted member of the TGF-b superfamily.
Both GDF11 and myostatin stimulate the
TGF-b signalling pathway through activin
receptors type 2A (ACVR2A) and 2B
(ACVR2B), and are antagonized by the
activin-binding protein follistatin.12,13

Myostatin-null mice do not develop changes
in cardiac mass associated with ageing,14,15

but treatment with a soluble ACVR2B
antagonist leads to increased cardiac

muscle mass,9 suggesting that the cardiac
effects of this antagonist may arise from
inhibition of GDF11 signalling independent
of the effects on myostatin. Thus, despite
similar activity in stimulating activin recep-
tors, GDF11 and myostatin may exhibit
many non-overlapping functions. Their dif-
ferential effects might be due to differences
in the activity of endogenous inhibitors and
subtle differences in receptor affinity.16

Growth differentiation factor-associated
serum proteins 1 and 2 have been reported
to delicately regulate the activities of
GDF11 and myostatin.17 In addition, dele-
tion of the GDF11 gene in mice caused
abnormal development of many organs,
including the stomach and the pancreas.18

More recently, Loffredo et al.11 reported
that restoring GDF11 to youthful levels in
old mice reversed age-related cardiac hyper-
trophy, suggesting therapeutic potential for
GDF11 in cardiac ageing. However,
whether GDF11 exhibits protective effects
in acute myocardial ischaemia/reperfusion
injury remains unclear.

The hypothesis

As illustrated in Figure 1, the presented
hypothesis is that circulating GDF11 exerts
cardioprotection in acute myocardial ischae-
mia/reperfusion through the canonical
SMAD3 and the non-canonical FOXO3a
pathways to suppress oxidative stress, pre-
vent Ca2þ overload and promote elimin-
ation of abnormal mitochondria. In
addition, as a major source of circulating
GDF11,11 the spleen may have an important
role in the state of the heart under
both normal and abnormal conditions.
Consequently, GDF11 has interesting thera-
peutic potential in cardiovascular disease.

Evaluation of the hypothesis

Like other members of the TGF-b super-
family, GDF11 is produced from precursor
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proteins by proteolytic processing. The
binding of activin to ACVR2A or
ACVR2B induces the recruitment and phos-
phorylation of an activin type 1 receptor,
which then phosphorylates the intracellular
signalling proteins SMAD2 and SMAD3.19

Bujak et al.20 reported that SMAD3 signal-
ling was critically involved in myocardial
infarct healing and played an important role
in the pathogenesis of cardiac remodelling.
They also demonstrated that the profibrotic
actions of TGF-b on cardiac fibroblasts
were mediated by SMAD3.20 Previous stu-
dies have suggested TGF-b signalling
is an important protective pathway against
ischaemia/reperfusion injury.21–23 However,
the role of secreted GDF11 in myocardial
ischaemia/reperfusion injury remains
unclear. In vitro research has demonstrated
that GDF11 administration increased the
phosphorylation of SMAD3 and decreased
the phosphorylation of FOXO3a,11 both of

which may modify the effects of myocardial
ischaemia/reperfusion.

As a member of the forkhead transcrip-
tion factors, FOXO3a can be phosphory-
lated by Akt,24 leading to inactivation of the
FOXO3a pathway.25 Phosphorylation of
FOXO3a results in its translocation from
the nucleus to the cytoplasm, deactivating its
ability to regulate transcriptional targets in
the nucleus.26 By decreasing FOXO3a phos-
phorylation, GDF11 may activate the
FOXO3a pathway, protecting the heart
against insults.11 Moreover, selective depho-
sphorylation/activation of FOXO3a is able
to upregulate the expression of manganese
superoxide dismutase, a reactive oxygen
species scavenging protein.26

Mitochondrial Ca2þ homeostasis is
known to play a critical role in maintaining
cardiac cell survival.27 FOXO3a can activate
caspase recruitment domain expression
by directly binding to its promoter,

Figure1. Illustration showing cardioprotective cytokines derived from various sources and the proposed

mechanism of action of spleen-derived growth differentiation factor 11 (GDF11) in protecting against

myocardial ischaemia/reperfusion (MI/R) injury. GLP-1, glucagon-like peptide 1; RAAS, renin–angiotensin–

aldosterone system.
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consequently attenuating the release of Ca2þ

from the sarcoplasmic reticulum and inhibit-
ing mitochondrial Ca2þ overload in cardio-
myocytes.28 Furthermore, phosphatase and
tensin homologue-induced putative kinase 1
(PINK1) has been shown to have a central
role in eliminating dysfunctional mitochon-
dria by promoting the recruitment of the
ligase parkin to depolarized mitochondria.29

Chen and Dorn30 have demonstrated that
PINK1 can phosphorylate mitofusin 2 and
promote its parkin-mediated ubiquitination
in cardiac tissues, suggesting an important
role for the PINK1/mitofusin 2/parkin path-
way in cardiovascular pathologies. Most
importantly, PINK1 serves as an important
downstream mediator of FOXO3a, and
FOXO3a activation can lead to PINK1
upregulation.31 Therefore, it is conceivable
to suppose that GDF11 can enhance the
elimination of abnormal mitochondria
through a FOXO3a/PINK1/mitofusin 2/
parkin pathway in a heart subjected to
ischaemia/reperfusion. Consistent with the
hypothesis presented here, Siddall et al.32

reported that PINK1 increased the heart’s
resistance to ischaemia/reperfusion injury.

Activation of SMAD3, a downstream
mediator of GDF11, has been shown
to participate in the cardioprotective effects
of TGF-b1, whereas inhibition of SMAD3
blocks the preventive effects of TGF-b1
on cardiac fibroblast apoptosis in myocardial
ischaemia/reperfusion.33 Moreover, SMAD3
has been reported to be associated with
oxidative stress in the pathogenesis of
kidney fibrosis34 and hyperglycaemia.35

Inhibition of SMAD2 can prevent SMAD2-
mediated downregulation of Ca2þ ATPase
in vivo and in cardiomyocytes.36 SMAD3 is
closely associated with FOXO signalling in
various diseases.11Nodal, anothermember of
the TGF-b family, can stimulate FOXO3a
mRNA and protein expression via the
SMAD3 pathway, and SMAD3 overexpres-
sion enhances FOXO3a-induced cyclin G2
promoter activity in human epithelial ovarian

cancer cells.37 Therefore, GDF11 may play
an important role in myocardial ischaemia/
reperfusion via the canonical SMAD3
pathway.

If the hypothesis that GDF11 exerts
cardioprotection in acute myocardial ischae-
mia/reperfusion through the SMAD3 and
FOXO3a pathways is correct, it offers the
potential for new therapeutic strategies in
the treatment of IHD.

The role of the spleen

As the spleen is a source of circulating
GDF11,11 it may have protective effects in
hearts subjected to ischaemia/reperfusion
via its derived cytokines rather than its
well-known immunological functions.
Therefore, patients who have undergone
splenectomy may have increased suscepti-
bility to cardiac damage. Aydinok et al.38

reported that splenectomized patients have a
higher incidence of myocardial siderosis
than those with an intact spleen. It is
possible that supplementation of exogenous
recombinant spleen-derived cytokines such
as GDF11 after splenectomy may increase
cardiac resistance to damaging insults.

In addition, GDF11 levels exhibit an age-
dependent decline in both the spleen and the
general circulation.11 It is well known that
ageing is one of the main risk factors for IHD
and cardiac hypertrophy.39 It is therefore
possible that administration of recombinant
GDF11 in the elderly may help maintain
cardiac health and decrease the incidence of
cardiac diseases. Consistent with our theory,
GDF11 can successfully activate the
FOXO3a pathway,11 which has been shown
to negatively regulate cardiac hypertrophy.40

A number of studies have shown that
many organs and tissues play important
functions in cardioprotection, such as the
protection against myocardial ischaemia/
reperfusion injury provided by insulin
from the pancreas5 and adiponectin from
adipose tissue41 and the protection against
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diabetes-induced cardiac microvascular
injury provided by intestine-derived gluca-
gon-like peptide 1.42 Notably, the renin–
angiotensin–aldosterone system closely links
the kidney and heart, and significantly affects
blood pressure and cardiac remodelling.43,44

It is suggested that the spleen may be another
organ with an important role in the heart’s
adaption to surroundings and its response to
injury. Consistent with this hypothesis,
Rezende et al.45 reported that splenectomy
resulted in increased atherosclerotic lesions in
apolipoprotein E-deficient mice. To date,
there is no direct experimental evidence sup-
porting the role of spleen in myocardial
ischaemia/reperfusion, and further studies
are needed to confirm this association.
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