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Abstract. Several studies have indicated that the cen- 
tral pair of microtubules and their associated structures 
play a significant role in regulating flagellar motility. To 
begin a molecular analysis of these components we 
have generated central apparatus-defective mutants in 
Chlamydomonas reinhardtii using insertional mutagen- 
esis. One paralyzed mutant recovered in our screen, 
D2, is an allele of a previously identified mutant, pfl6. 
Mutant cells have paralyzed flagella, and the C1 micro- 
tubule of the central apparatus is missing in isolated ax- 
onemes. We have cloned the wild-type PF16 gene and 
confirmed its identity by rescuing p f16 mutants upon 
transformation. The rescued pf l6  cells were wild-type 
in motility and in axonemal ultrastructure. A full-length 
cDNA clone for PFI6  was obtained and sequenced. 
Database searches using the predicted 566 amino acid 

sequence of PF16 indicate that the protein contains 
eight contiguous armadillo repeats. A number of pro- 
teins with diverse cellular functions also contain arma- 
dillo repeats including pendulin, Rchl ,  importin, 
SRP-1, and armadillo. An antibody was raised against a 
fusion protein expressed from the cloned cDNA. 
Immunofluorescence labeling of wild-type flagella indi- 
cates that the PF16 protein is localized along the length 
of the flagella while immunogold labeling further local- 
izes the PFI6  protein to a single microtubule of the cen- 
tral pair. Based on the localization results and the pres- 
ence of the armadillo repeats in this protein, we suggest 
that the PF16 gene product is involved in protein-pro- 
tein interactions important for C1 central microtubule 
stability and flagellar motility. 

D 
ESPITE the diversity of eukaryotic cells using cilia 

and fagella for motility, the structural compo- 
nents of the flagellar axoneme are well conserved. 

These components include the inner and outer dynein 
arms, radial spokes, and a central apparatus comprised of 
two singlet microtubules and their associated structures. 
Although the mechano-chemical properties of the dynein 
ATPases and their contribution to microtubule sliding has 
been studied for some time (Gibbons and Rowe, 1965; re- 
viewed in Witman, 1989), little is known about the role of 
other axonemal components in converting microtubule slid- 
ing into complex fagellar waveforms. Using a new gene 
disruption technique in the biflagellate alga Chlamydomo- 
nas reinhardtii, we have undertaken a molecular dissection of 
the central apparatus to examine its role in flagellar motility. 

The central apparatus consists of two singlet microtu- 
bules and their associated projections. In cross-section the 
C1 microtubule has projections 18 nm in length whereas 
those of the C2 microtubule are 8 nm (Witman et al., 1978; 
Dutcher et al., 1984; Goodenough and Heuser, 1985). 
Combining ultrastructural and biochemical techniques to 
analyze several Chlamydomonas mutants with defects in 
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the central apparatus, Adams et al. (1981) and Dutcher et 
al. (1984) determined that 23 polypeptides (in addition to 

and 13 tubulin), comprise the central apparatus. Nine of 
these polypeptides are uniquely associated with the C1 mi- 
crotubule, 13 are uniquely associated with the C2 microtu- 
bule and one is found associated with both microtubules. 
Therefore, each microtubule of the central pair has dis- 
tinct associated proteins, perhaps indicating that the two 
microtubules are functionally specialized. 

The role of the central apparatus has been suggested by 
studying motility in axonemes from wild-type and mutant 
ceils. Chlamydomonas mutants in which the central appa- 
ratus is missing have paralyzed flagella (Warr et al., 1966), 
yet sliding between doublet microtubules can be induced 
in a sliding disintegration assay (Witman et al., 1978) al- 
beit at a reduced velocity (Smith and Sale, 1994). There- 
fore, the motility defect in central apparatus mutants is not 
in generating force but in regulating force to produce 
flagellar bending. The central apparatus may serve to con- 
vert dynein-induced microtubule sliding into flagellar 
bending. How the central apparatus might accomplish this 
is unknown. 

In structural studies of Elliptio gill cilia, Warner and 
Satir (1974) observed that the radial spokes maintain con- 
tacts with the central pair projections in bending regions of 
the axoneme, and they proposed that the radial spokes un- 
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dergo cyclic detachment and reattachment to the central 
pair projections. Studies of Paramecia cilia by Omoto and 
Kung (1979, 1980) and Chlamydomonas axonemes by Ka- 
miya (1982) and Hosokawa and Miki-Noumura (1987), 
demonstrate that the central pair rotates counterclockwise 
once per beat cycle, with a slight twist that has the same 
period as the propagating flagellar bend. Functional analy- 
ses using mutants lacking the radial spokes have suggested 
that the radial spokes regulate microtubule sliding through 
a posttranslational modification of dynein (Smith and 
Sale, 1992; Howard et al., 1994). One hypothesis to explain 
these observations is that the central pair projections peri- 
odically sweep the radial spoke heads, much like the dis- 
tributor of a mechanical motor, inducing a series of events 
that ultimately regulate dynein. Additional support for 
this hypothesis comes from the analysis of extragenic sup- 
pressor mutations which partially restore flagellar motility 
when combined with paralyzed mutants lacking the cen- 
tral apparatus or radial spokes (Huang et al., 1982). These 
mutants restore partial flagellar motility without restoring 
the missing axonemal structures. Several of these suppres- 
sors are mutations in the recently identified dynein regula- 
tory complex (Piperno et al., 1992) or in dynein compo- 
nents (Porter et al., 1994) indicating possible regulatory 
interactions between the central apparatus, radial spokes 
and dynein. 

Interestingly, rotation of the central apparatus is not ob- 
served for all cilia and flagella (Tamm and Tamm, 1981). 
This observation has led to the hypothesis that central ap- 
paratus rotation represents a refinement of preexisting 
regulatory mechanisms, allowing flagella to beat with a va- 
riety of bending patterns. Support for this hypothesis 
comes from computer-assisted motion analysis of Chlamydo- 
monas mutants (Brokaw et al., 1982; Brokaw and Luck, 
1985). Suppressed central apparatus defective strains have 
restored motility, but their flagella produce only large am- 
plitude, symmetric waveforms. Therefore, the central ap- 
paratus may be required to convert symmetric bends into 
the asymmetric ciliary waveforms required for efficient 
forward swimming in Chlamydomonas. 

Attempts to solubilize and purify central apparatus 
components biochemically have had only limited success 
(Witman et al., 1972; Piperno and Luck, 1979). To identify 
components that may be involved in regulating motility, 
we have begun a molecular dissection of the central appa- 
ratus using a new gene disruption technique in Chlamydo- 
monas reinhardtii (Tam and Lefebvre, 1993). New central 
apparatus mutants were generated by transforming cells 
with a selectable marker gene that integrates into the 
host's genome. The advantage of this approach is that the 
selectable marker serves as a molecular tag to identify and 
ultimately clone the gene responsible for the mutant phe- 
notype. 

In our first screen of transformants, several central ap- 
paratus defective mutants were identified. One mutant, 
D2, is an allele of the previously identified mutant, pfl6. 
Ultrastructural analysis indicated that two central micro- 
tubules were present in intact flagella from pfl6 cells but 
upon demembranation to produce axonemes, the C1 mi- 
crotubule was lost (Dutcher et al., 1984). Using the inte- 
grated plasmid as a tag, a fragment of DNA flanking the 
site of insertion was cloned, and full-length genomic and 

cDNA clones were subsequently obtained. The PF16 gene 
encodes a protein of ~60 kD, containing eight contiguous 
42-amino acid armadillo repeats (see Peifer et al., 1994). 
Several proteins that participate in a variety of cellular 
processes also contain armadillo repeats. Although these 
proteins have diverse cellular functions, the repeat do- 
mains in each have been implicated in protein-protein in- 
teractions necessary for their function. Therefore, the 
PF16 gene product may be involved in protein-protein in- 
teractions necessary for central microtubule stability and 
flagellar motility. 

Materials and Methods 

Cell Strains and Media 

Strain A54-e18 (nit1-1, ac17, srl, rot+) was the host strain for transforma- 
tion experiments to obtain insertional mutants. Strains L5 (nit1, apml-19, 
rot+) and L8 (nit1, apm1-19, rot-) were provided by L. W. Tam (Univer- 
sity of Minnesota, St. Paul, MN) and were used as parents in back crosses 
with Nit+, A54-e18 transformants to determine cosegregation of the Nit+ 
phenotype with the motility defect. The central apparatus-defective mu- 
tants pfl5 (CC807+), and pf20 (CC22- and CC1030+) were provided by 
the Chlamydomonas Genetics Center (Duke University, Durham, NC). 
The arg7 strain (Lux and Dutcher, 1991) used to construct double mutants 
for cotransformation experiments and the central pair mutants pf6, pfl6, 
pf18, and pf l9  were provided by Mary Porter (University of Minnesota). 
All cells were grown in constant light in SGII, SGII-NO3 (see Sager and 
Granick, 1953; Kindle, 1990; Tam and Lefebvre, 1993), or TAP media 
(Gorman and Levine, 1965). 

Transformation 

High-efficiency transformation was achieved using the glass bead proce- 
dure of Kindle (1990). For transformation using the plasmid pMN56 (con- 
taining the full-length nitrate reductase gene; Fernandez et al., 1989; Kin- 
dle et al., 1989; Nelson et al., 1994), nitl mutant cells were grown in SGII 
liquid culture, concentrated by centrifugation to 4 X 106/ml, and stirred 
under bright light for ~4  h (Nelson et al., 1994). After the 4-h incubation 
0.5 ml of cells, 1 p~g of pMN56 plasmid linearized by digestion with EcoRI, 
5% PEG-8000 (Sigma Chem. Co., St. Louis, MO) and 0.3 g of acid-washed 
glass beads (0.7-1.2 mm diam; Sigma) were vortexed together at top speed 
on a Vortex Genie II mixer in 15-ml conical plastic tubes for 45 s. The cells 
were suspended in 10 ml of SGII-NO3 media, transferred to a fresh tube, 
pelleted by centrifugation, and then plated onto SGII-NO3 agar plates. 
For transformation of arg7 cells, cells grown in arginine-supplemented 
(0.005 %) TAP media were concentrated and treated with autolysin (Har- 
ris, 1989) for 1 h to dissolve cell walls. Cells were transformed by the glass 
bead method as described, using 1 v,g of plasmid pARG7.8 (containing 
the wild-type Chlamydomonas arginino-succinate lyase gene; Debuchy et 
al., 1989) linearized by digesting with BamHI. The transformants were 
plated on TAP agar plates without arginine supplement. For transforma- 
tion using a dominant selectable marker for emetine resistance, cells were 
transformed as described using the plasmid pJN4 that carries a mutant 
Chlamydomonas gene for the ribosomal protein S14 that confers resis- 
tance to emetine upon transformation (Nelson et al., 1994). Following vor- 
texing, cells were resuspended in 10 ml of SGII media and shaken under 
light for 3.5 h. The cells were then pelleted and resuspended in 100 ml of 
SGII-N in a 250-ml flask and bubbled for 4 d in constant light. After 4 d 
the cells were pelleted and resuspended in SGII and shaken under light 
for 8 h. The cells were then pelleted and plated onto SGII plates contain- 
ing 80 p,M emetine dihydrochloride (Sigma). To test genomic lambda 
clones for rescue of mutant phenotypes, 1-3 p,g of each genomic clone was 
cotransformed with plasmid DNA carrying a selectable marker gene. 

Mutant Selection 

Colonies of successful transformants were picked into 96-well microtiter 
dishes containing SGII-NO3 liquid media and screened for motility de- 
fects using a stereomicroscope (Zeiss DR-C) at 80X magnification. For 
further analysis of flagellar defects, cells were examined using phase optics 
at 400 x magnification. Axonemes from mutants of interest were prepared 
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for ultrastructural analysis by electron microscopy. Flagella were severed 
from cell bodies using dibucaine (King et al., 1986; Witman, 1986) and iso- 
lated by differential centrifugation in HMDEdNa (10 mM Hepes, 5 mM 
MgSO4, 1 mM DTT, 0.5 mM EDTA, 30 mM NaCI, pH 7.4). Axonemes 
were isolated using 0.5% NP-40 in HMDEdNa to remove flagellar mem- 
branes. For thin section electron microscopy, specimens were fixed with 
1% glutaraldehyde and 1% tannic acid in 0.1 M sodium cacodylate, post- 
fixed in osmium tetroxide, dehydrated in a graded series of ethanol, and 
embedded in Quetal resin (EM Sciences, Fort Washington, PA). Uniform 
silver-gray sections were mounted on formvar-coated, carbon stabilized 
copper grids, stained with uranyl acetate and Reynolds lead citrate, and 
then examined at 80 kv in the transmission electron microscope (either a 
model 100CX or 1200CX [JEOL U.S.A., Inc., Peabody, MA] or Hitachi 
H-600 [Hitachi Sci. Instrs., Mountain View, CA]). 

Genetic Analysis 
Techniques for mating and tetrad analysis are described by James et al. 
(1988). Meiotic progeny were scored for Nit+ or N i t -  phenotypes by rep- 
lica plating on SGII-NO3 and SGII agar plates. The motility phenotype 
was scored by resuspending meiotic progeny in liquid media. Pairs of mu- 
tants were tested for complementation by mating strains containing com- 
plementing auxotrophic markers (D2 arg7 x pf l6  nit1 and A10 arg7 x 
pf20 nit1) and plating on minimal media to select for stable diploid strains. 
To assess eomplementation, at least 10 diploids from each cross were 
scored for motility in liquid media. 

DNA-BIot Analysis 
Genomic DNA was isolated as described previously (Schnell and Lefeb- 
vre, 1993). Size fractionation of genomic DNA and transfer to nylon fit- 
ters, colony lifts, plaque lifts, and hybridizations were performed using 
Magna NT nylon membranes (Micron Separations Inc., Westborough, 
MA) following protocols supplied by the manufacturer. For all hybridiza- 
tions, probes were isolated from agarose gels using the GeneClean II kit 
(BIO 101 Inc., La Jolla, CA). Probes for genomic Southerns were pre- 
pared by random primer labeling using either the Genius 2 nonradioactive 
DNA labeling kit (Boehringer Mannheim Biochemicals, Houston, TX) or 
using [32p]dCTP (Feinberg and Vogelstein, 1983). For plaque and colony 
lift hybridizations, 32p-labeled probes were used. 

Isolation of Genomic Sequence Flanking the 
Integrated Plasmid 
Genomic DNA was isolated flanking the site of insertion of the integrat- 
ing plasmid in the D2 mutant. A 4-kb fragment was identified by hybrid- 
ization that consisted of the 3' end of the N1T1 gene (from pMN56) along 
with genomic DNA flanking the insertion site. This fragment was cloned 
by constructing and screening a partial genomic DNA library. Genomic 
DNA (20 l~g) was digested with BamHI and SphI and fractionated on a 
1% Sea Plaque agarose gel (FMC Corporation, Rockland, ME). After 
electrophoresis, 1-mm slices containing the 4-kb size fraction were excised 
from the gel; DNA was isolated from the gel slices by melting at 65°C fol- 
lowed by sequential extractions using phenol, phenol/chloroform (1:1), 
and chloroform. To identify which DNA size fraction contained the junc- 
tion fragment, one-tenth volume of each fraction was electrophoresed on 
an agarose gel, transferred to Magna NT filters, and then hybridized with 
a labeled probe recognizing the 3' end of the NIT1 gene. The DNA frac- 
tion containing the junction fragment was ligated into the pBluescript vec- 
tor (0.1 ~Lg) digested with BamH1 and Sphl. The ligation mixture was 
transformed into MC1061 cells by electroporation using the BTX trans- 
fector 100 (Biotechnologies and Experimental Research, Inc., San Diego, 
CA) following protocols in the Bio-Rad GenePulsar Application Guide. 
The transformed cells were then plated on LB agar plates containing 100 
p.g/ml ampicillin to select for resistant colonies. Ampicillin-resistant colo- 
nies were transferred to Magna NT nylon membranes (Sambrook et al., 
1989) and hybridized with a 32p-labeled probe from the 3' end of the NIT1 
gene to identify clones containing the junction fragment. 

Cloning PF16: Library Screening and Mutant Rescue 
A genomic library constructed with DNA from the wild-type strain 21gr 
rot+ (Schnell and Lefebvre, 1993) in the lambda phage vector hFixII 
(Stratagene, La Jolla, CA) was screened using a fragment of cloned se- 
quence flanking the insertion site in the mutant  D2 as a probe. Approxi- 

mutely 4 x 105 plaques in each of two successive rounds were screened to 
obtain the PF16 gene. Phage DNA was prepared from 25-ml cultures by 
PEG precipitation (Chisholm, 1989). Genomic DNA clones that could 
rescue the mutant phenotype on transformation were subcloned to delin- 
eate the smallest DNA fragment that rescued the mutant defect. Plasmid 
pB6D2 (see Fig. 2) was constructed by digesting lambda clone 9b with 
XbaI yielding a 4.5-kb fragment that was ligated into pBluescript. The 
pB6D2 plasmid rescued the mutant phenotype. The pB6D2 plasmid was 
digested with Notl and XbaI to generate Probe 3 (see Fig. 2) that was used 
to screen a cDNA library. The cDNA library was prepared in the hEXlox 
vector by Novagen, Inc. (Madison, WI) from poly(A) RNA isolated from 
the wild-type strain A55 (Schnell and Lefebvre, 1993). The pEXlox(+) 
plasmid containing the cDNA clone was excised from hEXlox using cre- 
lox recombination as recommended by Novagen. 

Cloning the pf16 Gene 
The pf l6  gene was cloned from a previously described pf l6  mutant, pfl6B 
(Huang et al., 1979; Dutcher et al., 1984). A partial library o fp f l6  DNA 
was constructed by digesting genomic DNA with KpnI and Xbal. KpnI 
cuts 604 bp inside the 5' end of the 4.5-kb insert in pB6D2, and XbaI cuts 
at the 3' junction of the insert. Although smaller than the insert in pB6D2, 
the resulting fragment still contains 500 bp upstream of the translation 
start site and the complete coding sequence. The cut DNA was size frac- 
tionated on a 1% Sea Plaque agarose gel. The fraction of interest was 
identified by Southern analysis using the insert of pB6D2 as a probe. The 
appropriate DNA fraction was ligated into pBluescript digested with 
KpnI and XbaI and transformed into DH5ct cells using CaCI2 transforma- 
tion. 

RNA Preparation, Northern Blots 
Cells were grown in 250 ml of TAP media to mid to late log phase. The 
cells were divided into two batches; one was deflagellated by pH shock 
and one was not. Total RNA was prepared from nondefiagellated cells 
and from cells 45 min after deflagellation (Wilkerson et al., 1994). 
Approximately 30 p~g of total RNA was fractionated on formaldehyde 
agarose gels (Sambrook et al., 1989), then transferred to Hybond N+ 
membranes (Amersham, Arlington Heights, IL), and hybridized with 32p_ 
labeled Probe 3 (see Fig. 2) according to the manufacturer's instructions. 

Sequence Analysis 
For cloned genomic DNAs and cDNAs, both strands were sequenced us- 
ing Sequenase 2.0 (United States Biochemical Corp. Cleveland, OH) ac- 
cording to manufacturer's instructions. For some templates, sequencing 
was performed by the DNA Sequencing Facility (Iowa State University, 
Ames, IA). The GCG programs were used for sequence assembly 
(Devereux et al., 1984). Searches of the GenBank and SwissProt data- 
bases for sequence homologies were performed using the FASTA and 
BLAST programs (Altschul et al., 1990). 

Fusion Protein Expression and Antibody Production 
The pEXlox vector containing the full-length PF16 eDNA was digested 
with KpnI and the resulting 1.8-kb insert fragment was ligated into the 
pRSET B vector (Invitrogen Corp., San Diego, CA) digested with KpnI 
and dephosphorylated with calf intestinal alkaline phosphatase (Boehr- 
inger Mannheim) before ligation. The resulting fusion protein contains a 
6x  His tag at the 5' end. The pRSET-PF16 construct was transformed 
into BL21(DE3) cells carrying the pLysS plasmid by CaC12 transformation 
and plated on LB plates containing 50 p.g/ml ampicillin and 34 ixg/ml 
chloramphenicol. For induction of gene expression, cells were grown at 
37°C to a density of OD6~0 0.6-1.0 and fusion protein synthesis was in- 
duced by adding 0.4 mM IPTG. After 2-h incubation the cells were har- 
vested in 8 M urea, 0.1 M Na-phosphate, and 0.01 M Tris/HCl, pH 8, and 
then lysed by freezing at -80°C and thawing. Recombinant protein was 
purified from the resulting lysate by binding and elution to Ni 2 NTA resin 
as recommended by the supplier (QIAGEN Inc. Chatsworth, CA). Eluate 
fractions were analyzed by SDS PAGE on 10% polyacrylamide gels 
stained with Coomassie Blue. Peak fractions that contained pure fusion 
protein were pooled and protein concentrations were determined using 
the Bradford reagent. Three injections of 100 ~g of pure protein each 
were used to generate polyclonal antibody production in rabbits (Spring 
Valley Laboratories, Sykesville, MD). Sera collected after the second 
boost following primary injection was affinity purified using the recombi- 
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nant PF16 protein that had been electroblotted onto PVDF membrane 
(Millipore Corp., Bedford, MA). Binding and elution of the antibody was 
performed as described by Talian et al. (1983). For immunoblots, flagella 
were isolated as described above and 75 Ixg of protein loaded into each 
lane of a 10% polyacrylamide minigel. The proteins were transferred elec- 
trophoretically to a PVDF membrane. Incubation with the purified PF16 
antibody and alkaline phosphatase conjugated secondary antibodies, and 
antibody detection was performed according to the Western Light Chemi- 
luminescent Detection System kit (Tropix Inc., Bedford, MA). 

Immunolocalization 

For immunofluorescence experiments flagella were isolated and resus- 
pended in HMDEdNa as described above. Fixation, permeabilization, and 
antibody incubation steps were carried out as described in Sanders and 
Salisbury (1995) using purified PFI6 antibody as the primary antibody 
and goat anti-rabbit, FITC-conjugated secondary antibodies (Cappel, Or- 
ganon Technika, Durham, NC) diluted 1:500. For immunogold labeling 
flagella were isolated from A54-e18 cells, resuspended in HMDEK (10 
mM Hepes, 5 mM MgSO4, 1 mM DTT, 0.5 mM EGTA, and 25 mM KCI), 
and allowed to settle on formvar-coated, carbon-stabilized nickel grids. 
All subsequent antibody incubation steps were carried out as described in 
Bernstein et al. (1994) using purified PF16 antibody as the primary anti- 
body and 12 nm gold-conjugated secondary antibodies (Jackson Immuno- 
logicals, Westgrove, PA) diluted 1:40. Control experiments in which the 
primary antibody was omitted were also performed. 

Resu l t s  

Transformation and Mutant Screen 

Mutants were generated by transforming nit1 (nitrate re- 
ductase deficient) cells with the plasmid pMN56 contain- 
ing the cloned NIT1 gene (Fernandez et al., 1989). To 
identify mutants with motility defects, colonies were 
picked into liquid media in 96-well microtiter dishes and 
visually screened for motility defects. One hallmark of mu- 
tants with central apparatus defects is that the cells have 
rigid flagella (Randall et al., 1964, 1967). Immotile cells 
were easily identified by eye since they sink to the bottom 
of the dish. Putative mutants were further characterized by 
phase microscopy to identify paralyzed mutants with rigid 
flagella. Axonemes were isolated from all cells with para- 
lyzed flagella of wild-type length and analyzed by electron 
microscopy. Of 1,700 transformants screened, 17 mutants 
were selected for electron microscopic analysis and of 
these, 6 showed clear defects in the central apparatus (see 
Table I). 

Table L Central Apparatus Mutants Obtained by Insertional 
Mutagenesis 

Number of central 
tubules present 

Cosegregation 
Mutant 0 1 2 Motility of Nit+ with pf 

Wild-type 6% 13 81 Normal NA 
A10 73 27 0 Paralyzed/rigid Yes 
C l 1 53 45 2 Paralyzed/twitch No 
F9 4 58 38 Twitch/bend at base Yes 
D2 55 45 0 Paralyzed Yes 
A7 87 13 0 Paralyzed No 
H2 0 19 81 Uncoordinated Yes 

bends, missing 
C2 projections 

The number of central tubules present was determined for isolated axonemes and is 
expressed as a percentage (n > 100 cross sections in each case). 

An analysis of axonemal cross sections revealed that the 
majority of axonemes from the mutants A10 and A7 com- 
pletely lacked central microtubules, a phenotype previ- 
ously described for the mutants pfl5,  pfl8, pfl9, and pf20 
(Randall et al., 1964, 1967; Warr et al., 1966). Axonemes 
from the mutants D2 and C l l  had either one central mi- 
crotubule or no central apparatus present, similar to ax- 
onemes from the mutant pf l6  (Dutcher et al., 1984) that 
contain only the C2 microtubule of the central pair. In 
cross sections of axonemes from the mutant F9, either one 
or two central microtubules were present, a phenotype not 
previously described. Axonemes from the mutant H2 had 
two central pair microtubules but further analysis revealed 
that a subset of projections was absent from the C2 central 
microtubule. 

Genetic Analysis 

Each of the mutants was backcrossed to a nitl parent to 
determine whether the central apparatus defect cosegre- 
gates with the Nit+ phenotype. If a mutant phenotype was 
produced by gene disruption due to plasmid integration 
into the genome, then the Nit+ phenotype should cosegre- 
gate with the flagellar motility defect. Tetrad analysis re- 
vealed that in four of six of the central apparatus mutants, 
the Nit+ phenotype cosegregated with flagellar paralysis 
in a minimum of 24 complete tetrads in each of two back- 
crosses. For two of the mutants (Cl l  and A7), N i t - ,  para- 
lyzed progeny were obtained, indicating that the paralyzed 
phenotype was not linked to the insertion of the nitrate re- 
ductase gene; these mutants were not analyzed further. 

The insertional mutants were tested for allelism with 
previously identified mutants with central apparatus de- 
fects. For example, axonemes from the mutant H2 and 
from the previously described mutant p f6 are both missing 
a subset of central pair projections. However, crosses of 
p f6 with H2 indicated that H2 is not closely linked to or al- 
lelic with p f6. Both nonparental ditype (2 paralyzed cells: 2 
motile cells) and tetratype (3 paralyzed cells: 1 motile cell) 
tetrads were obtained indicating that recombination be- 
tween these two loci had occurred. Of the mutants exam- 
ined genetically, only A10 and D2 appeared to be allelic 
with previously identified mutants. In crosses of A10 with 
p f20 no recombinants were obtained in 24 complete tet- 
rads. Allelism was established by constructing stable dip- 
loids. Heterozygous diploids of A10 and pf20 have para- 
lyzed flagella, indicating that these mutations are allelic. In 
crosses of D2 with p f16 no recombinants were obtained in 
24 complete tetrads and no complementation was ob- 
served in heterozygous diploids. D2 was chosen for a de- 
tailed molecular analysis. 

Cloning the PF16 Gene 

Because the Nit+ and paralyzed flagella phenotypes of D2 
cosegregated in backcrosses with N i t -  cells, the lesion in 
D2 was most likely caused by the integration of the trans- 
forming plasmid DNA. To begin cloning the PF16 gene, a 
fragment of DNA flanking the site of plasmid integration 
was cloned from D2 genomic DNA. We determined that 
the mutant contained a single copy of the plasmid by prob- 
ing Southern blots of genomic DNA using the p U C l l 9  
vector as a hybridization probe. Unfortunately, the vector 
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B a m H I  Sphl 

I I f 
pUCII9 

BamHl Sphl 

m , m m m m  Genornic DNA [ I I [ 
pBluescript I I J I 

[ ] V e c t o r  Ps t l  Sites 

Nitrate Reductase m 

1.3kb Pstl probe 

Figure I. Cloning a DNA fragment flanking the insertion site of 
the pMN56 plasmid. Solid wide lines represent genomic DNA, 
thin lines represent NIT1 gene sequence, and the box represents 
the pUCl l9  vector. The broken lines of the pUCl l9  box indicate 
that the vector was not intact. Flanking sequence was cloned into 
pBluescript using the enzymes BamHI and SphI. A 1.3-kb PstI 
restriction fragment that did not contain the NIT1 gene or vector 
was used as a hybridization probe on Southern blots and in 
screening a wild-type lambda library. 

por t ion of this construct  was not  intact, e l iminat ing the use 
of a plasmid rescue technique as a potent ia l  cloning strat-  
egy. Therefore  a par t ia l  genomic l ibrary was constructed 
from D2 D N A  to clone sequence flanking the insert ion 
site. Genomic  D N A  from D2 was digested with BamHI ,  
which cuts at the 3' end of  the NIT1 gene, and SphI, which 
cuts in the genome (Fig. 1), and the appropr ia te ly  sized 
fragments  were l igated into the pUC119 vector. Bacter ia  
containing the plasmid D N A  of  interest  were identif ied 
using the 3' end of the NIT1 gene as a probe.  A restr ict ion 
map  of PstI sites in the plasmid was prepared ,  and a 1.3-kb 
f ragment  that  conta ined only genomic sequence from D2 
was ident i f ied by Southern  hybridizat ion.  To confirm that  
the c loned sequence f lanked the site of  plasmid insertion, 
this 1.3-kb PstI f ragment  was used as a p robe  on Southern 
blots  of  genomic D N A  from D2 and wild- type (A54-e18) 
cells cut with a variety of enzymes (not  shown). The re- 
striction fragments  that  hybr id ized to this p robe  were of 

different  sizes in D N A  from D2 and wild-type cells con- 
f irming that  this p robe  represen ted  a piece of D N A  flank- 
ing the site of plasmid insert ion in the mutant .  

The 1.3-kb PstI p robe  (Fig. 2, Probe 1) was then used to 
screen a bac te r iophage  l ambda  l ibrary constructed from 
wild-type genomic D N A  (Sehnell and Lefebvre,  1993). In  
the first screen several  over lapping clones were identif ied 
but  none  of  these rescued the moti l i ty defect  in D2 upon 
t ransformation.  One  possible explanat ion for failed rescue 
is that  the comple te  wild-type copy of  the gene was not  
conta ined in the  clones tested. Inser t ion of exogenous 
D N A  into Chlamydomonas f requent ly  results in rear-  
rangement  and dele t ion of large por t ions  of  D N A  (Tam 
and Lefebvre,  1993). Thus, if a sizable de le t ion  occurred at 
the integrat ion site, D N A  clones f lanking that  site might  
be far from the PF16 gene. Rest r ic t ion maps  of  our  ge- 
nomic lambda  clones were  p repa red  using the enzyme 
NotI ,  and the labe led  restr ict ion fragments  were used as 
probes  on Southern  blots of  genomic D N A  from D2. A 
sizable dele t ion was de tec ted  that  ex tended  beyond the 
l ambda  clones we had obtained.  A 3.5-kb NotI  f ragment  at 
the end of clone 8a ex tended  into the region de le ted  in the 
mutant ,  and this f ragment  was used as a p robe  to rescreen 
the l ibrary (Fig. 2, Probe 2). A new set of  over lapping 
clones was ob ta ined  that  rescued the moti l i ty and struc- 
tural  defects in D2 and pf16 upon t ransformation.  

Rescue o f  D2 and pf16 

To de te rmine  which of the l ambda  clones ob ta ined  in our  
screen contained a functional  PF16 gene, the l ambda  
clones were t ransformed into D2 and p f l 6  cells and the 
t ransformants  were screened for rescue of f lagellar  paraly-  
sis. In these exper iments  the  cells were  t ransformed with 
both a l ambda  clone being tested and a selectable marke r  
gene. For  D2 rescue, a D2, arg7 double  mutan t  was con- 
s t ructed and t ransformed with pA RG 7.8  (arginino-succi- 
nate lyase; Debuchy  et al., 1989) and putat ive genomic 
clones for PF16. Transformants  were selected as colonies 

D2 Genomic  DNA Clones - NotI  Restrict ion Map 

pBluescript 
pb6D2 I I 

m 

Probe 3 

Rescue Upon  
T r a n s f o r m a t i o n  

+ 

8b ' ' ' 5- 
9b I , , , ' ' ' -I" 
5 , , , , , ,  q. 
7 I i I I __ 
6 , , , , __ 

98.  I I I I I 

i i  

Probe 2 Probe 1 

Figure 2. Restriction map of 
overlapping lambda clones. 
Probe 1 is the 1.3-kb Pstl 
fragment from Fig. 1 used in 
the first screen of the library 
to obtain clones 6, 8a, and 9a. 
Probe 2 is the 3-kb NotI frag- 
ment used to screen the li- 
brary a second time to obtain 
additional clones. Clones 5, 
7, 8b, and 9b were obtained 
in the second screen and res- 
cued the paralyzed flagella 
phenotype when trans- 
formed into D2 mutant cells. 
The plasmid pB6D2 was con- 
structed by digesting clone 
9b with XbaI and ligating the 
indicated fragment into the 

Deletion pBluescript vector. Probe 3 is 
a NotI/XbaI fragment of pB6D2 used to screen a eDNA library and as a probe on RNA blots. The extent of deleted DNA in the mutant 
was determined by using each of the NotI fragments as probes on Southern blots of wild-type and D2 DNA digested with NotI. The de- 
letion may extend beyond the left side of clone 8b. 
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Table II. Rescue of D2 and pf16 by Transformation 

Number of central tubules present 

Mutant 0 1 2 

% 

Wild-type 6 12 81 
D2 55 45 0 
D2 Transformant 0 1 99 
p f l6*  32 60 8 
pfl 6 Transformant 9 14 75 

Percentiles represent at least 100 cross-sections for each strain. 
*Dutcher et al., 1984. 

Figure 3. Thin section electron microscopy of axonemes from 
the mutant D2 (a) and from rescued mutants D2 (b) and pfl6 (c) 
transformed with the cloned PF16 gene. Panels are representa- 
tive axonemal cross sections. Bar, 200 nm. 

growing on media without arginine supplement. These col- 
onies were picked into 96-well microtiter plates containing 
liquid media. Successful transformants in which the puta- 
tive genomic clones rescued the mutant phenotype were 
identified as colonies with swimming cells. Similar experi- 
ments involving pf l6  used emetine resistance as a domi- 
nant selectable marker. The cells were transformed with 
both a lambda clone being tested and the plasmid pJN4, 
containing a mutant copy of the gene for ribosomal pro- 
tein S14 that confers emetine resistance upon transforma- 
tion (Nelson et al., 1994). Successful transformants were 
selected as colonies growing on plates containing emetine. 
Emetine-resistant colonies were transferred to liquid me- 
dia; rescued transformants were identified as swimming 
cells. For both D2 and pf l6  rescue of the mutant pheno- 
type by the transforming DNA was confirmed by isolating 

genomic DNA from several transformed strains and iden- 
tifying the DNA from the appropriate lambda clone by 
Southern analysis using Probe 2 (Fig. 2). In all cases the 
rescued cells contained the transforming lambda clone, in- 
dicating that rescue was most likely due to the function of 
the transgene. 

Ultrastructural analysis by electron microscopy of ax- 
onemes isolated from rescued cells revealed that for both 
D2 and pf l6  the central apparatus was restored (Fig. 3). 
Table II  summarizes these results quantitatively. In the 
rescued mutants, the number of central microtubules ob- 
served in axonemal cross-sections was comparable to the 
number of central microtubules observed in cross-sections 
of axonemes from wild-type cells. 

Northern Analysis and cDNA Sequence 

To characterize the transcript of the PF16 gene and to ob- 
tain the amino acid sequence of its predicted gene product, 
cDNA clones were isolated and sequenced. First, the PF16 
gene was more precisely defined by subcloning lambda 
clone 9b into smaller portions and testing each subclone 
for the ability to rescue flagellar paralysis. The smallest 
subclone that rescued pf l6  was a 4.5-kb XbaI fragment 
subcloned into pBluescript (Fig. 2, pB6D2). A NotI/XbaI 
fragment from this clone (Fig. 2, Probe 3) was used as a 
probe on RNA blots. Total RNA was prepared from D2, 
pfl6,  and wild-type cells before and 45 min after deflagel- 
lation. Hybridization of Probe 3 (Fig. 2) to blots of size- 
fractionated RNA revealed a 2.2-kb transcript that was in- 
duced following deflagellation in wild-type cells (Fig. 4, 
lanes 1 and 2). Deflagellation in Chlarnydomonas has been 
shown to cause an accumulation of transcripts from genes 
encoding flagellar proteins (reviewed in Lefebvre and 
Rosenbaum, 1986). As expected, no detectable transcript 
was observed in RNA from the mutant D2 (Fig. 4, lanes 3 
and 4) since the PF16 gene is deleted in the mutant. A 
transcript of the expected size was present in RNA from 
pf16 cells, although in reduced amounts. A Chlamydorno- 
nas cDNA library was screened with Probe 3 and resulted 
in the isolation of two clones, one H1 kb in length and one 
~2  kb, which were sequenced (Fig. 5). The 1-kb sequence 
was incomplete, representing only the 3' end of the tran- 
script. The sequence of the 2-kb clone appeared to be full 
length. A single large open reading frame extending 566 
amino acids, was present in the sequence. The putative ini- 
tiation codon was preceded by an upstream in-frame ter- 
mination codon (Fig. 5, double underline). The two cDNA 
sequences overlapped at the 3' end of the gene and were 
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Figure 4. RNA Blot. 30 I~g of total RNA prepared from cells be- 
fore and 45 rain after deflagellation were loaded in each lane. The 
blot was probed with Probe 3, (Fig. 2). The S14 gene (encoding 
the ribosomal $14 protein) is constituitively expressed and was 
used as a control for equal loading. Lanes 1 and 2 contain RNA 
from wild-type cells pre- and postdeflagellation, lanes 3 and 4 
contain D2 RNA prepared pre- and postdeflagetlation, and lanes 
5 and 6 contain pfl6 RNA prepared pre- and postdeflagellation. 
The band of 1 kb represents the transcript of the S14 gene. 

identical in the region of overlap, although the 1-kb cDNA 
used a different putative polyadenylation site (Fig. 5). 

Sequence Analysis 

The predicted protein of 566 amino acids has an isoelectric 
point of 7.7 and mass of 60.2 kD. The PF16 gene product 
contains eight contiguous 42-amino acid repeats in the 
amino-terminal half of the protein (Fig. 5, underlined). 
The seventh and eighth repeats are separated by a single 
amino acid whereas repeats one through seven are orga- 
nized in perfect tandem array. These repeats were first 
identified in the Drosophila segment polarity gene prod- 
uct armadillo (Riggleman et al., 1989; see review in Peifer 
et al., 1994). These so-called armadillo repeats have been 
found in a variety of different proteins from other eukary- 
otic systems including pendulin (mouse and Drosophila, 
Kussel and Frasch, 1995; Torok et al., 1995), Rchl (hu- 
man, Cuomo et al., 1994), importin (Xenopus, Gorlich et 
al., 1994), and SRPI (yeast, Yano et al., 1992). PFI6 is only 
homologous to these proteins in the repeat region and it is 
therefore not the Chlamydomonas homologue of any of 
these proteins. The repeats within PF16 are more similar 
to each other than are the repeats in the other proteins of 
this class (Fig. 6; see Peifer et al., 1994). For example, in 
pairwise comparisons of the PF16 repeats, the identity be- 
tween any two repeats ranged from 14-43%. In pairwise 
comparisons of repeats from the armadillo protein, the 
identity between any pair of repeats range from 9-20%. In 
addition, for the other proteins containing armadillo re- 
peats, gaps are often introduced to maximize alignment. In 
the case of the PF16 protein, the eight repeats are contigu- 
ous and perfectly aligned with the exception of a single 
amino acid between repeats seven and eight. Database 
searches using only the amino acid sequence from the car- 
boxy third of the protein found no sequence similarities 
with other proteins. However, the carboxy terminus is gly- 

1 a~Itattttacateagaaettlttqan~taeaageaaattacgage~etttaaeg¢~aga~tatttecaaem~t~¢e 
82 ct t aagagt get cta�gcgtgccgct geaag~c cacti tact t ct ~_~_qcgc cg~t gggggcaaa agcc c~ t caacat ggog 

M A 2 

163 accc~gca~t ~ c caga cgt t t ga gctjgtat cagaaggagcgg~ggcct t cgt ga u cgcgqt ggcagaaat ggcaaag 

~ R ~ L a r ~ g a Y Q ~ ~ ~ v A , v r A v A E . A ~28 

244 aao cQgcaaaacat egaggc oct gcaacaagcaggagccat ggcaet g~t geggcogctgct gct ggacaa~c~ 
N P QN I E A L Q O A G A M A L  L R P  L L L  D N V P  S 56 

325 atacagcagt ccgcggccct ggcgct aqggcgat t ggcgaact acagc<jacga~ ctt gcqga~gc~tqtgt/t q~aqaac~u 
I Q Q S A A L A L ~ R L ~ ~ 7 S D D L A ~ A V V ~ N R 63 

406 a~cct~cgcaact 9gtgt actctet gagcgage agaaccggtt tt acaagcagg ccguggct~t ctg~cgt gcggt g 
T L P o L v Y s L S R O N R W Y K O A A A W C L R & V Ii0 

487 gc%c~cactccccagagct g~Icgcagt cggttat t gecaguggcgc~c~ggat tcgcsagt t~cct gcc~cgag~agttt 
A R H S P E L A O S V I D S G A L D S L V T C L R R ~ 137 

568 gacccccQgcgtcaaggaggcct cage ~U ggacgct gggc~ a cat cgcgggc ca ca acgcggacg~ ggcgoa g~aggt g~g 
D P G V K E A S A W T L G Y T A G H N A D V A O O V V 164 

649 ga cgct ggggc~gt gc cg ct g~t ggt gct gt g~gt gca ggag C cgga gc~ cagcct gaagogca~c~cgc ~ cggc~ 
D A G A V P L L V L C V C R P E L S L K R I A A S A L 191 

~30 t ccgacat ~ ccaagcacacgccagagc~ggcgcagg~q~ ~ gt gga cgcaggcgoggt ggca~ acct t gcgcc c~ ~ c 
S U ! S K H T ~ E L A O A V V ~ A G A V A Y L A P L V 218 

811 at caac ~agga~c~ aagct caagcgucaggt q~gct gcgcg¢ t cagc eagat t gceaagcacagcgt ggac~t g~cagaa 
~ O D A K L K R 0 V C C A L S O I A K M S V D L A E 245 

892 gtq~t g~tgg~xj~agat ~t ccccaaaa~tct cacs~ cc~ caagt t c~ggacgagt~cgtcaag~agcacag~cc 
V V V C. A R ~ ~ P K T L • C L K ~ P D R F V K K ~ S A 272 

933 . ~g~jg~gcgcgaggt cgccaa~acacac c ~age~ggegcacg~ggt ggt cggcaacggcggcgt ggg~t ~c 
T V V R E V A R 8 T P E L A ~ V V V G N G G V G A L v 299 

1054 ga ct at a~ cag~gact ¢t gcg~gcaaoaac cggct gccgggcat cat gg~ct ~gct a cat cgccgcgt t ct cg~a~cg 
D Y ~ S D S A G N N R L P G T M ~ r G Y ~ A A ~ S 8 ? 326 

1135 c~ggca~tgtc~gtcattg~ggagaagg~cctg~cgc~g~tagt~t~gg~gctcaacgaqgagccggagga~acctcaaa 
L A L S V I A ~ K A L P P L V S A L N E E P E D H L ~ 353 

1216 agcgccaccgcctggacgct ggggcagattggccggcacacgcucgaccacgecaaggct gt cgcagacacaggctgcctg 
S A T A ~ T L G O ~ G ~ H T P D H A K A V A ~ T G C L 38~ 

1297 gcaaogctggtt tcgctggagagegacggcgcct ccagcgacgacetcaagaecaagtgccgccgcgcgutcaag~cogt ~ 
A T L V S L E S n S A 5 S D D L K T E C R R A L K S V 607 

1878 at cgooaagct cac~cct gc~cgc~ct ggacgcgt t ggt g caecggcaactgccggagag~gt ga%~aa~a%gg~ctg 
I A K L T H L P A L D A L V H R Q L P E S V M K M V L 434 

145~ g~gcaggtggg~aaggtgctgg~caac~acg~ggcgggccgcgcgcg~agttcg~gca~a~ggc~gcc~ggcgg~tgc 
E Q V G K V L A N D A A G R A R S S C T A A A W R R C 461 

1540 ~qcagatggcggaggcg~cgg~ag~aag~tgaaggaggcg~tg~agat~at~aacagctgctac~gaggaga~t~caa 
S R W R R R R Q Q A E G G G G D H Q Q L L P R G D C Q 488 

1621 gtactacag~agc~acagc~agCa~ctactaga~aag~tggagag~a~gg~cgcaaccacta~ggcgta~aag~gg 
V L Q P Q L Q P A A T R E A G E H G R N H Y G V L S G 515 

1702 ggget gcgagagcact gqagatgeagctgga gg~ct ag~ggcgggt gt ggc gt gggccggggcgccgct ggt ggaggcgeg 
G L R E H W R C S W R A S G G C G V G R G A A G G G A 542 

1782 g~ca~g~gggc~acaca~gacg¢ggtcggagctgcttgcac~t~gagg~ctgtg~gccgaaatg~tctcggtaga~cg 
A M G A T Q D A V G A A C T L R S V R R N V S R * 566 

1864 tqtttctgtgggt taaccgggt aat gggeacggtt aactt gcat ggagqaggacggtgagatgtggccgtt~otatqqaag 
1945 t~ctgcaact~eggt gg~cgtgtatagctgcggacat tggtagggagggt agggggact ctgact ct ctgacat ctttgg 
2026 tacat~ggaactgagggcctg~taatggcctgtgacattcaag~ucagtttgtttgtgatacagcgcgtg~g~agggg 
2107 ctggcgccg~gccgactcaaatggaggcaaccagttgtagccgaacatgeaettg {a} 

Figure 5. Sequence of PF16 cDNA. The longest open reading 
frame predicted by the sequence is indicated. The region contain- 
ing the eight armadillo repeats is underlined, and the amino acid 
at the beginning of each repeat is in bold. Intron placement is in- 
dicated by carets. Two polyadenylation sites are found in the two 
cDNA clones sequenced and are indicated by the bold a and g in 
the 3' untranslated region. The in frame stop codon upstream of 
the predicted initiation codon is indicated by double underlines. 
These sequence data are available from GenBank/EMBL/DDBJ 
under accession number U40057. 

cine rich having 26% glycine residues over a stretch of 72 
amino acids. The presence of a glycine-rich region at the 
carboxy terminus is similar to the armadillo protein, that 
contains 32% glycines over a stretch of 70 amino acids. 

To determine the gene structure and confirm the se- 
quence of the PF16 coding region we sequenced the 4.5-kb 
insert of the smallest genomic clone that rescued the PF16 
defect, pB6D2. There are six introns in the coding region 
(Fig. 7), all found within the repeat region of the protein 
(Fig. 5, see carets). None of the introns separates two re- 
peats precisely. The genomic clone contained ~0.97 kb of 
sequence upstream of the 5' end of the cDNA clone and 
1.0 kb downstream of the polyadenylation site. 

To confirm that the cloned wild-type gene corresponded 
to pfl6,  the genetic lesion in ap f l6  mutant (pfl6B) was de- 
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Figure 6. Alignment of the eight armadillo repeats found in the 
predicted PF16 gene product. Vertical rows conforming to the 
universal consensus of Peifer et al. (1994) are highlighted and out- 
lined. In addition, vertical rows not conforming to this consensus 
but containing the same amino acid in at least three of the copies 
are highlighted. In the consensus, an asterisk indicates a noncon- 
sensus position, a plus indicates a K, R, or H, and a minus indi- 
cates a D or E. 

termined by cloning and sequencing a copy of the gene 
containing the pf l6  mutation. Within the first 2.1 kb se- 
quenced, a mutation was found at the 3' splice acceptor 
site of the second intron. For all Chlamydomonas introns 
identified so far, the splice acceptor consensus sequence is 
AG. In the case of pfl6, the A G  is mutated to AA. If this 
intron is not removed by splicing, the resulting transcript 
would be 90 bp larger than the wild-type transcript, a 
change not detectable on RNA blots. Two potential splice 
acceptor sites were found downstream at nucleotides 501 
and 503. These cryptic splice sites might be used in the mu- 
tant. However, both the unspliced mRNA and the mRNA 
that would be produced by splicing at positions 501 or 503 
would contain a frameshift introducing a stop codon. In 
other systems, mRNAs containing an in-frame nonsense 
codon are preferentially degraded (e.g., Peltz and Jacob- 
son, 1993), which could account for the observation that 
the PF16 transcript from pf16 cells was wild-type in size 
but reduced in amount. The same sequence alteration 
(AG to AA at a splice acceptor site) was recently identi- 
fied for another gene in Chlamydomonas. For the mutant 
ida4-3, whose wild-type gene product encodes an interme- 
diate chain of inner arm dynein (LeDizet and Piperno, 
1995a), an AG to AA mutation was found at intron 4 

(LeDizet and Piperno, 1995b). In this case, the intron was 
not spliced and a larger than wild-type transcript was de- 
tected on RNA blots. 

Fusion Protein Expression and Purification, Antibody 
Production, and Localization 

To localize the PF16 gene product in axonemes, antibod- 
ies were generated to a fusion protein expressed in Escher- 
ichia coli cells. A large portion of the eDNA was cloned 
into the pRSET B vector using the enzyme NcoI. The re- 
sulting construct expressed a PF16 protein lacking 39 
amino acids from the amino terminus and 23 amino acids 
from the carboxy terminus for a total of 503 amino acids. 
The expressed protein also contained six additional histi- 
dine residues at its amino terminus, making it possible to 
purify the expressed fusion protein. The pRSET-PF16 
construct was transformed into BL21(DE3) cells carrying 
the pLysS plasmid, and protein expression was induced by 
the addition of IPTG to the growth media. Cells were 
lysed by freezing and thawing and the bacterial lysate was 
purified by binding to a nickel column (QIAGEN NTA 
Ni 2+ resin). As assessed by SDS PAGE, large quantities of 
pure fusion protein of the expected size (~50 kD) were 
found in the eluate. Polyclonal antisera were prepared in 
rabbits using the purified protein as antigen. 

The resulting sera was purified against the fusion pro- 
tein and analyzed on western blots of flagella prepared 
from three cell strains: wild-type (A54-e18), pf l6  and pf l6  
cells in which the mutant phenotype had been rescued by 
transformation with pB6D2. The purified sera recognized 
a protein of the expected size in flagella from wild-type 
and rescued pf16 cells (Fig. 8, lanes 1 and 3) but no band 
was observed in flagella from the mutant pf16 (Fig. 8). 
These results indicate that the antibody was specific for 
the PF16 protein. 

For immunolocalization, the same purified sera was 
used in whole mount preparations of flagella from wild- 
type and mutant cells. In immunofluorescence experi- 
ments staining was observed along the length of wild-type 
flagella whereas no staining was observed in flagella from 
pf16 cells (not shown). To more precisely localize the 
PF16 gene product, immunogold electron microscopy was 
performed. Whole mounts of wild-type flagella were pre- 
pared for immunogold labeling and negatively stained for 
electron microscopy. In samples in which the axonemal 
doublets splayed and the two microtubules of the central 
apparatus separated, gold particles were observed to be 
bound along the length of only one microtubule of the 
central apparatus (Fig. 9). The central microtubule recog- 
nized by the antibody is presumably C1 because axonemes 

ATG TAG 

cDNA ~ poly A 
¥ 
AG ~ A A  in pf16 

Figure 7. Gene structure. The line drawing represents the entire 4.5-kb insert sequenced from pB6D2; introns and 5' and 3' untranslated 
regions are represented by the thin line. Exons are represented by the shaded squares. The mutation in pfl6 is indicated. 
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Figure 8. Immunoblot of 
flagellar protein. Approxi- 
mately 75 I~g of isolated fla- 
gella were loaded into each 
lane. The purified PF16 an- 
tibody recognizes a protein 
of the expected size present 
in flagella of wild-type (lane 
1) and rescued pfl6 cells 
(lane 3). No band is seen in 
flagella of the mutant pfl6 
(lane 2). 

of pf l6  are missing this microtubule. No gold particles 
were observed to be bound to axonemes when incubation 
with the primary antibody was omitted. 

Discussion 

The central apparatus in Chlamydomonas flagella is com- 
posed of two singlet microtubules and at least 23 associ- 
ated polypeptides. Despite the variety of mutants that ex- 
ist, little is known about these proteins and their functions. 
Using new cloning strategies developed for Chlamydomo- 
nas reinhardtii, we have begun a molecular dissection of 
the central apparatus with the hope of eventually under- 
standing how it regulates dynein-driven microtubule slid- 

ing during flagellar beating. In addition, these central ap- 
paratus polypeptides may be unique microtubule-associated 
proteins having microtubule stabilizing or nucleating func- 
tions. 

Several studies of central apparatus components have 
already identified polypeptides of general interest. For ex- 
ample, Miller et al. (1990) identified capping structures at 
the tips of the central pair microtubules that are recog- 
nized by an antibody to a kinetochore antigen. This tip 
protein, by analogy, may serve to capture and stabilize the 
plus ends of the microtubules. The plus ends of central 
pair microtubules are distal to the cell body (Euteneuer 
and McIntosh, 1981), consistent with a role for this antigen 
in microtubule capture. Also, recent studies of Bernstein 
et al. (1994), Fox et al. (1994), and Johnson et al. (1994) 
have identified members of the kinesin family of proteins 
that localize to the central apparatus. So far, the role these 
proteins play in flagellar motility or assembly has not been 
determined. 

In this study new central apparatus defective mutants 
were generated in which the mutated gene could be cloned 
using the transforming DNA as a molecular tag. A variety 
of central apparatus mutants were obtained, some of 
which represent alleles of previously identified mutants. 
Among 1,700 transformed strains examined, six had clear 
ultrastructural defects in the central apparatus. The first 
central pair gene cloned from our mutant collection is an 
allele of pfl6; axonemes of this mutant are missing the C1 
microtubule of the central apparatus. Using two-dimen- 
sional gel analysis, Dutcher et al. (1984) determined that 

Figure 9. Localization of the PF16 gene product in flagella by immunogold labeling. The two panels are representative images of whole 
mount isolated axonemes labeled with the purified PFI6 antibody and secondary antibodies conjugated with 12-nm gold particles. In 
the image on the right all nine doublet microtubules have splayed apart and are present in the field. In both images, the central pair of 
microtubules (CP) have also separated. Bar, 200 nm. 
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pfl6 fagella contain two intact central pair microtubules 
but are missing three polypeptides. Upon demembrana- 
tion, however, the C1 microtubule is destabilized, and the 
resulting axonemes contain only the C2 microtubule. Most 
likely, the three polypeptides missing from pfl6 flagella 
are critical for flagellar motility and presumably contrib- 
ute to the stability of the C1 microtubule. Using a combi- 
nation of dikaryon rescue experiments, reversion analysis, 
and 2-D SDS PAGE, Dutcher et al. (1984) proposed that 
the gene product of the PFI6 locus is one of the three 
polypeptides missing in mutant flagella, a 57-kD protein 
designated CP14. 

Using the insertional mutant, D2, to identify a fragment 
of genomic DNA flanking the insertion site, a wild-type 
genomic clone and a full-length cDNA clone containing 
the PF16 gene were isolated and sequenced. The genomic 
clone rescued the motility and structural defects in both 
D2 and the original pfl6 mutant upon transformation. The 
PF16 gene encodes a predicted 566-amino acid protein 
with a molecular mass of ~60 kD, in close agreement with 
the findings of Dutcher et al. (1984). However, the isoelec- 
tric point predicted from the amino acid sequence (7.7) is 
very different from that observed by Dutcher et al. (~5.5; 
see Piperno et al., 1981; Dutcher, 1995). The difference in 
isoelectric point seems too large to be due to posttransla- 
tional modification (such as phosphorylation) altering the 
primary gene product. Thus, the relationship between 
CP14 and the PF16 gene product is not yet clear. 

Database searches using the predicted amino acid se- 
quence of PF16 placed the protein in a family of proteins 
that contain repeat domains first identified in the Dro- 
sophila segment polarity gene armadillo (Riggleman et al., 
1989). Eight contiguous 42-amino acid repeats comprise 
most of the amino-terminal two-thirds of the protein. The 
deduced universal consensus for armadillo repeats (Peifer 
et al., 1994) is found in the PF16 repeats. The sequence 
similarity of the repeats within individual proteins and the 
sequence similarities among the repeat regions between 
different proteins have been compared (Peifer et al., 
1994). The repeats within PF16 are more similar to each 
other than are the repeats within other proteins of this 
family. Proteins in this family perform a wide range of 
functions. For example, armadillo homologues 13-catenin 
(McCrea et al., 1991) and plakoglobin (Franke et al., 1989) 
function in connecting adhesive junctions to the cytoskele- 
ton and they localize near the plasma membrane. SRP-1 
(Yano et al., 1992), a suppressor of RNA polymerase I 
mutations in Saccharomyces cerevisiae, and Rch-1, a pro- 
tein that is involved in V-D-J joining during immunoglob- 
ulin recombination (Cuomo et al., 1994) are both localized 
to the nucleus. Importin, which is localized to the nuclear 
envelope, is involved in protein import into the nucleus 
(Gorlich et al., 1994). Pendulin, a Drosophila protein that 
is thought to act as a tumor suppressor, localizes to the cy- 
toplasm during interphase but is rapidly translocated to 
the nucleus during the G2 to M-phase transition (Kussel 
and Frasch, 1995; Torok et al., 1995). 

Riggelman et al. (1989) proposed that one important 
feature of the armadillo repeats is their highly conserved 
length and spacing, allowing the protein to interact with it- 
self or other molecules to form highly ordered three- 
dimensional structures. Indeed, although the proteins in 

this family have very different cellular functions, genetic 
analyses as well as functional knockout experiments have 
indicated that the repeat domains mediate specific pro- 
tein-protein interactions required for function. Truncated 
armadillo protein, for example, retains some function but 
the degree of function is strictly correlated with the length 
of the truncated protein (Peifer and Weishaus, 1990). The 
authors suggest that the repeats form discrete structures 
that are independent and additive in function. Because the 
flagellar axoneme is one of the most highly ordered cellu- 
lar organelles, the finding of an axonemal protein contain- 
ing such highly conserved and precisely ordered repeats 
may not be surprising. In the case of the PF16 gene prod- 
uct, given that the mutant flagella are paralyzed and the 
C1 microtubule is destabilized when flagella are demem- 
branated, one possibility is that the repeat region is in- 
volved in protein-protein interactions important for C1 
microtubule stability and flagellar motility. This hypothe- 
sis can be tested by transforming pfl6 cells with modified 
copies of the PF16 gene in which some or all of the repeats 
have been mutated or deleted and assessing for restora- 
tion of motility and C1 stability. 

Polyclonal antibodies were generated using the ex- 
pressed PF16 cDNA as an antigen. Western blots of fla- 
gella isolated from wild-type cells and pfl6 cells that had 
been rescued by transformation with the PF16 gene, 
showed immunoreactivity with a single band of the ex- 
pected size. Using the affinity-purified sera for immuno- 
fluorescence and immunogold labeling of wild-type fla- 
gella, the PF16 gene product was localized to a single 
microtubule of the central apparatus. Because axonemes 
from pfl6 cells are missing the C1 microtubule, the PF16 
gene product is most likely a component of the C1 micro- 
tubule complex, perhaps comprising part of the C1 projec- 
tions. In the future these antibodies will be invaluable in 
determining which polypeptides interact with the PF16 
gene product. For example, one or more of the polypep- 
tides identified by Dutcher et al. (1984) as missing in ax- 
onemes from pfl6 cells may interact with the PF16 gene 
product. Using the antibody in cross-linking and immuno- 
precipitation experiments, we can identify these interact- 
ing components and begin to elucidate the composition of 
the C1 microtubule complex. 

Further analysis of the polypeptides associated with the 
central pair of flagellar microtubules should reveal impor- 
tant clues as to the regulation of dynein-driven doublet 
sliding in flagellar motility, and should also provide clues 
as to the assembly of the central apparatus. The central 
pair of microtubules assemble with their plus ends distal 
(Euteneuer and Mclntosh, 1981), the same polarity ob- 
served for the nine doublet microtubules (Allen and 
Borisy, 1974; Binder et al., 1975); but unlike the nine dou- 
blet microtubules, they are not nucleated from the basal 
bodies. The central pair microtubules are more similar to 
cytoplasmic microtubules than doublet microtubules for 
example, in their cold lability and colchicine sensitivity 
(Behnke and Forer, 1967; Shelanski and Taylor, 1967). Al- 
though no difference in tubulin composition or protofila- 
ment organization for the two tubules has been observed, 
different polypeptides are assembled specifically to one 
microtubule or the other. The PF16 protein is attached 
preferentially to the C1 microtubule (this study) whereas 
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KLP-1 is preferentially attached to the C2 microtubule 
(Bernstein et al., 1994). Further characterization of the 
polypeptides associated with the central pair of microtu- 
bules should provide new insights into the binding speci- 
ficity of other microtubule associated proteins. 
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