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With the onset of the rapidly aging population, the impact of age related

neurodegenerative diseases is becoming a predominant health and economic concern.

Neurodegenerative diseases such as Alzheimer’s disease, Creutzfeldt-Jakob disease

(CJD), Parkinson’s disease, Huntington’s disease, frontotemporal dementia (FTD), and

amyotrophic lateral sclerosis (ALS) result from the loss of a specific subsets of neurons,

which is closely associated with accumulation and deposition of specific protein

aggregates. Protein aggregation, or fibril formation, is a well-studied phenomenon that

occurs in a nucleation-dependent growth reaction. Recently, there has been a swell of

literature implicating protein aggregation and its ability to propagate cell-to-cell in the

rapid progression of these diseases. In order for protein aggregation to be kindled in

recipient cells it is a requisite that aggregates must be able to be released from one

cell and then taken up by others. In this article we will explore the relationship between

protein aggregates, their propagation and the role of macropinocytosis in their uptake.

We highlight the ability of neurons to undergo stimulated macropinocytosis and identify

potential therapeutic targets.
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Introduction

Neurodegenerative diseases are closely linked to the formation and deposition of protein
aggregates, quite often fibrillar, that accumulate intracellularly, such as α-synuclein in Parkinson’s
disease (PD), or extracellularly, such as the amyloid-beta (Aβ) peptide plaques associated with
Alzheimer’s disease (AD) (Chiti and Dobson, 2006). Although the peptides and proteins that
aggregate are seemingly unrelated in terms of primary or tertiary structure, the resulting deposits
are remarkably similar, often sharing a rope-like fibrillar morphology, a common cross-β core
structure, and the ability to bind specific dyes such as thioflavin T and Congo red (Dobson, 2003).
It has been postulated that oligomeric species present in solution prior to the appearance of fibrils
are more likely to be responsible for cellular toxicity (Kayed et al., 2003). However, it is probable
that all aggregate species provoke some level of cellular stress, although how protein aggregates
induce cell injury is not fully understood. One potential mechanism of toxicity is mediated through
exposed hydrophobic residues found on protein aggregates that have been shown to interact with
cell surface receptors and membranes (Stefani and Dobson, 2003; Bolognesi et al., 2010), leading to
membrane disruption and inappropriate signaling cascades.
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Protein aggregation or fibril formation can be described as
a nucleated self-assembly reaction. In this context, misfolded
monomeric proteins or peptides must first aggregate to form
stable nuclei from which fibril growth can occur via addition of
further monomers. In vitro, using bulk measurements such as
light scattering or thioflavin T fluorescence, protein aggregation
reactions display sigmoidal growth kinetics (Figure 1). Initially,
there is a lag phase which is thought to reflect the time it takes
for the nuclei to form, and where the formation of fibrils is
below the threshold of detection (Serio et al., 2000; Pedersen
et al., 2004). In solution, there are two predominant species;
monomers and fibrils (Figure 1A). While oligomeric aggregates
are thought to be present in small amounts (i.e., <2% of total
species). During the elongation phase, the concentration of fibrils
increases dramatically as the monomer concentration decreases.
This is thought to be due to increasing numbers of actively
growing fibrils via fragmentation of fibrils creating new “growing
ends” and/or secondary nucleation (Figure 1B; where available
sites on existing fibrils catalyze the nucleation of new aggregates)
(Chiti and Dobson, 2006; Wilson et al., 2008; Arosio et al., 2014;
Knowles et al., 2014). The lag phase can be circumvented by the
addition of exogenous nuclei or “seeds” in the form of preformed
fibrils (Jarrett and Lansbury, 1993). As a consequence of seeding,
the lag time is eliminated (Jarrett et al., 1993) resulting in a
first-order growth polymerization (Figure 1C).

Patterns of Neurodegenerative Pathology
in Humans

In major neurodegenerative diseases, such as Amyotrophic
Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), AD,
PD, and Huntington’s diseases (HD), pathological changes
such as loss of neurons and presence of pathological protein
aggregates, typically follow distinctive anatomical patterns. The
observed patterns are consistent with a spreading of pathology

FIGURE 1 | Schematic representation of amyloid fibril formation. (A) Fibril formation can be characterized by a lag phase where nucleation events occur,

following critical nucleation a growth/elongation phase is observed which can proceed via primary (monomer addition) or secondary (fragmentation/secondary

nucleation) events (B). During the latter stages, mature fibrils are formed which often display strong ThT emission signals. (C) Addition of fibrils or other functional

seeds to the start of the reaction allows elongation to proceed without the requirement for primary nucleation removing the lag phase.

from one part of the brain to another (Brundin et al., 2010).
The progression of these disorders, which is also associated
with increasing clinical severity, has enabled the development of
several staging systems for a range of neurodegenerative diseases
(Braak et al., 2003, 2006; Brettschneider et al., 2013, 2014). The
resulting patterns suggest that pathology is not only propagated
between nearby cells, but that it also remotely connects regions
of the brain along axonal pathways (Brundin et al., 2010;
Brettschneider et al., 2015).

Propagation of Protein Aggregation and
Neurodegenerative Disease

The patterns identified in neuropathological studies are
consistent with propagation of protein misfolding and
aggregation reminiscent of the prion diseases (Aguzzi, 2009).
Prion diseases include human disorders such as Kuru and
Creutzfeldt-Jakob disease (CJD), but also exist in animal
populations in the form of scrapie in sheep, and bovine
spongiform encephalopathy (BSE) in cattle (and several other
species have their own version of prion-opathies). Prion diseases
are infectious neurodegenerative diseases where the pathogenic
agent is a misfolded/aggregated form of the prion protein which
can seed misfolding and aggregation of the normal cellular prion
protein in naïve cells, and indeed in naïve hosts transmitting
pathology between cells and between individuals (Prusiner,
1998). The neurodegenerative diseases described in this review
differ from prion diseases in one crucial respect; they are not
infectious. Importantly, most neurodegenerative diseases do not
involve the prion protein but typically a disease specificmisfolded
protein. However, it is useful to model the progression of
neurodegenerative diseases associated with protein aggregation
on the propagation of misfolded prion protein within an
individual host. It may help provide an explanation for the
apparent patterns of pathology in ALS, PD, and AD.
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It has been known for decades that fibril formation can be
seeded in vitro through addition of preformed fibrils, removing
the rate limiting lag phase (see Figure 1). Aβ from the brains
of AD patients can seed amyloid formation in non-human
primates (Baker et al., 1993) and in mice engineered to produce
large amounts of APP (Kane et al., 2000). This propagation
is easily understandable given that Aβ aggregates do not have
to cross plasma membranes to seed further aggregation, as
amyloid plaques are present outside of cells. One might imagine
that it would be less likely that aggregates formed inside one
cell could propagate aggregation in another. However, there
is a wave of research that demonstrates that this is possible
(Clavaguera et al., 2009; Desplats et al., 2009; Ren et al., 2009).
Evidence suggests that large fibrillar aggregates of a range of
proteins (tau, α-synuclein, polyglutamine repeats, SOD1) are
able to gain access to the cytoplasmic compartment via an
incompletely understood mechanism and propagate misfolding
and aggregation (Clavaguera et al., 2009; Desplats et al., 2009;
Ren et al., 2009; Grad et al., 2014). Injection of brain/spinal
cord extracts from transgenic mice expressing human tau, SOD1
or α-synuclein can seed pathology in the sites of injection and
spread to other regions of the nervous system (Clavaguera et al.,
2009; Mougenot et al., 2012; Ayers et al., 2014). Further, cell
culture experiments have shown that these neurodegenerative
disease associated protein aggregates can propagate cell-to-cell
in neuronal and other cell lines, and into primary neurons
(Hansen et al., 2011; Münch et al., 2011; Volpicelli-Daley
et al., 2011; Furukawa et al., 2013; Guo and Lee, 2013; Grad
et al., 2014). Moreover, cell culture experiments also show that
insoluble material from brain tissue can seed aggregation of
neuropathological TDP-43, whose cytoplasmic accumulation is
associated with ALS (Furukawa et al., 2011). It is clear that these
disease-associated aggregates are able to spread to naïve cells in
culture gaining access to the cytosol in an unknown manner
linked with fluid phase endocytosis. It is vital then to understand
this mechanism to identify targets that will halt passage of the
“infectious” particle in a strategy analogous to drugs blocking
viral entry. Logically there are two vital steps that must occur
in order to propagate aggregation between cells; aggregates must
first be released in to the extracellular space from the cells in
which they are made, and then be taken up by nearby cells to
seed further aggregation in the cytosol of naïve cells.

Aggregates can be Released by Neurons

The mechanism of release of protein aggregates is incompletely
understood, and it has been proposed that both active and
passive routes of escape may be responsible for aggregate release
(Brundin et al., 2010). For example, cell death may promote the
non-specific release of aggregates from the cell or there may
be active mechanisms responsible for release through exocytosis
pathways (Figure 2A). SOD1 aggregates are generally found to
be intracellular in human SOD1-linked familial ALS patient
samples, however, there is evidence from cell culture models
that these aggregates can escape from neurons and come into
contact with nearby cells (Münch et al., 2011; Grad et al., 2014).
There is evidence of α-synuclein release from neurons into the

extracellular space via brefeldin A-insensitive unconventional
exocytosis (Lee et al., 2005; Jang et al., 2010). The released α-
synuclein is thought to be misfolded or aggregated (Jang et al.,
2010) and is consistent with β-sheet-rich α-synuclein oligomeric
aggregates (Kim et al., 2013). Tau aggregates have also been
shown to be able to transfer between cells (Frost et al., 2009;
Frost and Diamond, 2010; Dujardin et al., 2014). As in the case
of anti-SOD1 antibodies (Grad et al., 2014) the use of anti-
tau antibodies can block this tau transfer (Yanamandra et al.,
2013). While cell lysates from mutant huntingtin-expressing
cells promote propagation of aggregation in naïve acceptor
cells, huntingtin aggregate release from neurons has not been
conclusively demonstrated (Ren et al., 2009). The mechanism
underpinning misfolded SOD1 release in cell culture models has
been shown to be linked to both the release of free aggregates
associated with cell death and to active release via exosomes
(Grad et al., 2014). Collectively these data leave open the
possibility that both cell death and active secretion mechanisms
are acting in concert to promote aggregate release in vivo.

Aggregates can be Taken up by Neurons

In order to facilitate the propagation of intracellular aggregation
in neurodegenerative diseases, such as ALS, PD, AD, and HD,
active aggregate nuclei or seeds must gain access to the cytosol of
naïve cells. Active nuclei could be large aggregates such as those
that are macroscopically visible and accumulating in neurons
(>2 microns in size), or small soluble oligomeric aggregates that
might diffuse between cells. Fibrillar aggregates are generally 1–
20 nm across and can be hundreds of nm long (Dobson, 2003),
large aggregates that accumulate many fibrils in cells can be
several µm in diameter (Farrawell et al., 2015). In this light, and
given that neurons are not professional phagocytes it would be
reasonable to assume that endocytosis of protein aggregates by
neurons would be almost impossible. However, previous work
has shown that exogenously applied SOD1 aggregates associated
with ALS can be taken up efficiently and rapidly into living cells
(Furukawa et al., 2013), such as neuronal cells (Neuro2a; N2a,
NSC-34, and SH-SY5Y), in a time dependent manner (Münch
et al., 2011; Sundaramoorthy et al., 2013).

In the context of PD, direct cell-to-cell transfer of aggregated
α-synuclein has been demonstrated in humans, cell culture
and animal models (Desplats et al., 2009; Lee et al., 2010).
Post mortem studies were able to show that approximately 2–
5% of normal embryonic neurons transplanted in the brains
of PD patients acquired α-synuclein rich Lewy bodies over a
period of 5 years (Brundin et al., 2008; Hansen et al., 2011).
This phenomenon was also demonstrated in mice, where α-
synuclein was shown to propagate from mouse host brain
cells to grafted dopaminergic neurons (Hansen et al., 2011).
Cell culture studies have shown that extracellular α-synuclein
in various forms (fibrils, oligomers, and monomers) can be
internalized by cultured neuronal cells (Lee et al., 2008).
Furthermore, mouse cortical neuronal stem cells were shown to
internalize extracellular aggregated α-synuclein either applied as
recombinantly produced protein aggregates or from co-culture
with cells overexpressing and subsequently releasing α-synuclein

Frontiers in Physiology | www.frontiersin.org 3 October 2015 | Volume 6 | Article 277

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Zeineddine and Yerbury Protein aggregates enter cells via macropinocytosis

FIGURE 2 | Propagation of aggregation and a proposed mechanism for aggregate uptake via macropinocytosis. (A) Protein aggregates form in neurons

(primary nucleation) and have the potential to further nucleate the aggregation of other proteins. These protein aggregates can transfer directly from cell-to-cell through

synaptic transfer, or be actively released via secretion mechanisms (e.g., exosomes) or in their naked form, either actively released from live cells or non-specifically

released from dying cells, to neighboring interconnecting neurons. The uptake of such aggregates nucleates aggregation in naïve cells. (B) Aggregates may interact

with cell surface receptors (such as HSG) (1) and promote the clustering and activation of signaling receptors such as receptor tyrosine kinases. This may result in the

activation of signaling pathways such as those regulated by PAK1 and PKC (2) and subsequent mobilization of actin and formation of ruffles/blebs (3). Upon

macropinosome closure (4) the structure is internalized (5). Given the unstructured nature of the macropinosomes it is likely that rigid aggregate structures may cause

rupture (6) and allow access of the aggregates to the cytosol where nucleation of aggregation can proceed (7).

aggregates (Desplats et al., 2009). Together, these findings provide
evidence that neurons are capable of engulfing even large
α-synuclein structures. Tau aggregates, associated with AD and
tauopathies such as FTD, have also been shown to be taken
up into neurons. A recent study has shown that recombinant
synthetic tau fibrils have been internalized in primary neurons
derived from embryonic mouse hippocampus, and this triggered
robust aggregation of endogenous soluble protein (Guo and Lee,
2013). Similarly, cell culture studies have shown that fibrillar
polyQ aggregates (K2Q44K2), a model for polyQ expansion in
huntingtin associated with HD, can efficiently enter into N2A
cells and gain access to the cytosol to potentially nucleate the
aggregation of otherwise soluble proteins (Ren et al., 2009).
Collectively these data show that, despite their size, aggregates
from a range of neurodegenerative diseases can be efficiently
taken up by cells and most importantly this can occur in
neurons. Given the similar structure and large size of these
aggregates it is likely that similar mechanisms are used by
subsets of neurons to engulf such large aggregates. Intuitively,
the large size of the protein aggregates argues against neuronal
entry by caveolae (generally used for particle sizes from 50 to
100 nm) (Richter et al., 2008) or clathrin-coated pits (for particle
sizes < 200 nm; Traub, 2009). One potential mechanism that
may explain the uptake of such large structures is the process of
macropinocytosis.

Hijacking Macropinocytosis for Aggregate
Entry into Cells

Macropinocytosis is a transient, actin-dependent process that
leads to the internalization of fluid, membrane and other particles
into large vacuoles (up to 5µm). It is generally triggered by
growth factors but can be triggered by a variety of particles
such as bacteria, apoptotic bodies, necrotic cells and viruses
(Mercer and Helenius, 2012). The activation of macropinocytosis
induces membrane ruffling (or membrane extensions or even
blebbing) that can fold back on to the cell, fusing with the
plasma membrane and forming large fluid filled randomly sized
vacuoles that lack supporting coating molecules (Meier et al.,
2002). Several studies now suggest that macropinocytosis may
be involved in the uptake of protein aggregates associated with
various neurodegenerative diseases (Münch et al., 2011; Holmes
et al., 2013; Sundaramoorthy et al., 2013; Grad et al., 2014; Tang
et al., 2015).

Studies on the propagation of SOD1 aggregation by Münch
et al. were the first to suggest that mutant SOD1 ALS protein
aggregates enter into N2A cells via macropinocytosis (Münch
et al., 2011). The work used a large panel of inhibitors
of a range of cellular functions to systematically rule out
specific pathways of endocytosis such as caveolin and clatherin-
dependent endocytosis (Münch et al., 2011). Subsequently,
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these results were confirmed by a study that showed that
uptake of both extracellular wild-type and mutant SOD1
soluble forms into NSC-34 cells can be inhibited by small
molecule inhibitors of macropinocytosis EIPA and rottlerin
(Sundaramoorthy et al., 2013). Similarly, EIPA was shown to
inhibit the uptake of human wild-type SOD1 aggregates into
NSC34 cells (Grad et al., 2014) consistent with macropinocytosis.
EIPA (ethylisopropylamiloride) is an analog of amiloride that is
an inhibitor of Na+/H+ exchangers. It is thought to be specific
to macropinocytosis due to the susceptibility of GTPases such as
Rac1 to pH changes (Koivusalo et al., 2010).

More broadly, uptake and cell-to-cell transmission of α-
synuclein into neurons has been shown to be mediated via an
unconventional endocytosis pathway (Lee et al., 2008; Desplats
et al., 2009). Also, while initially synthetic polyglutamine fibrils
were proposed to enter cells via direct penetration of the lipid
bilayer (Ren et al., 2009) cell surfaces structures have been
recently implicated in the binding and internalization of both
synthetic polyglutamine (K2Q44K2) and huntingtin exon 1 (Htt
exon1Q4444) fibrils suggesting a role for endocytosis mediated
uptake (Trevino et al., 2012). A recent study was also able to
show that the amyloid precursor protein (APP) can be rapidly
internalized from the cell surface to lysosomes, bypassing early
and late endosomes via macropinosome-like structures. This
process was found to be mediated by Arf6, a regulator of
macropinocytosis. A dominant negative mutant version of Arf6
inhibits transport of APP to lysosomes, and therefore reduces the
secretion of Aβ (Tang et al., 2015). Further, exogenously added
AD associated-recombinant tau fibrils have also been shown
to be taken up by cultured cells in a process consistent with
pinocytosis suggested by the co-localization of tau aggregates
with Dextran, a marker of fluid phase endocytosis (Frost et al.,
2009). In support of these findings, a recent study was able
to show that small misfolded tau species are also internalized
through the process of bulk endocytosis (Wu et al., 2013). Further
to this, uptake of fibrillar tau into C17.2 cells (mouse neural
stem cells) could be inhibited by both amiloride and rottlerin
consistent withmacropinocytosis (Holmes et al., 2013). The same
study demonstrates that tau fibrils could be observed in vacuoles
and invaginations with diameters of approximately 5µm. Lastly,
in a result that suggests stimulated macropinocytosis has been
activated, the uptake of the fluid phase marker dextran was
increased with increased doses of tau fibrils (Holmes et al., 2013).
This uptake could be inhibited by suppressing cell binding of
tau fibrils by blocking binding to heparan sulfate proteoglycans,
indeed this also blocked uptake when aggregates were injected
in to the brains of mice (Holmes et al., 2013). This was
also shown in a more recent study where recombinant Tau
assemblies (trimers) bound heparan sulfate proteoglycans on the
cell surface to mediated Tau uptake and seeding into primary
cortical neurons and HEK293 cells (Mirbaha et al., 2015). This
binding stimulated macropinocytosis. However, how the binding
to heparan sulfate proteoglycans on the cell surface relate to
activation of macropinocytosis remains unclear.

In the context of cell-to-cell transfer of misfolded or
aggregated protein, it is interesting to note that exosomes
can contain misfolded and aggregated protein (Bellingham

et al., 2012), and further, that exosomes can enter cells via
macropinocytosis (Fitzner et al., 2011). However, additional work
needs to be performed to confirm a role of macropinocytosis in
exosome associated protein misfolded propagation.

Macropinocytosis in Neurons

The fact that neurons can engulf large particles such as protein
aggregates at all seems counterintuitive. Endocytosis of large
particles is usually thought of as restricted to professional
phagocytes such as macrophages and microglia (Swanson, 2008;
Mercer and Helenius, 2012). This is useful for engulfment of
viral particles, bacteria, and fragments of dying cells in order to
dispose of them. Without extensive degradation machinery, such
as in macrophages, neurons are seemingly left vulnerable with
the ability to take up large particles whilst not built to remove
them. So why is it that neurons have the capacity to perform such
a function? It is unlikely that neurons have evolved to specifically
endocytose pathogens and large protein aggregates. Although,
several viruses are known to enter neurons via macropinocytosis
(Talekar et al., 2011; Hollidge et al., 2012; Kalia et al., 2013),
this is likely due to the hijacking of machinery involved in
macropinocytosis evolved for other purposes. Macropinocytosis,
or closely related processes, are thought to regulate growth
cone membrane recycling and are an integral part of growth
cone collapse, axon retraction and turning during development
and injury (Jurney et al., 2002; Tom et al., 2004; Kolpak
et al., 2009; Kabayama et al., 2011). The membrane recycling
process in growth cones is associated with actin-dependent
membrane ruffles that fuse back on the plasma membrane
creating large pinosomes dependent on PI3K and Rac1; all
characteristic of macropinocytosis. Upon synaptogenesis this
process is suppressed, consistent with the idea that mature
neurons do not undergo bulk changes in the membrane via
macropinocytosis (Bonanomi et al., 2008). However, axonal
injury in in vitro and in vivo models triggers axonal remodeling
in adult neurons that is associated with large amounts of fluid
uptake (Tom et al., 2004) consistent with macropinocytosis.
Interestingly, some disease associated mutations such as those
in ALS2 (in ALS) and γPKC (in spinocerebellar ataxia 14)
result in dysregulation of macropinocytosis (Otomo et al., 2008;
Yamamoto et al., 2014) suggesting dysfunction of these processes
are detrimental to large neurons.

Therapeutic Targeting of Macropinocytosis
for Neurodegenerative Diseases

Collectively, the data summarized above suggests that
macropinocytosis plays a role in allowing the passage of protein
aggregates into naïve cells. Understanding neuron specific
macropinocytosis mechanisms will be vital in identifying a
target to slow disease progression. In particular, the intracellular
pathways that result in activation of macropinocytosis, the
formation and closure of macropinosomes, and importantly
potential disintegration of macropinosomes must be examined.
In an analogous situation, mechanisms underpinning Ebola
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virus entry via macropinocytosis are being scrutinized, with
promising compounds targeting endocytosis and escape of viral
particles from endosomes proving successful in mice (Sakurai
et al., 2015). Macropinocytosis may be a viable target given that
other cell types such as microglia that clear protein aggregates
appear to be via different pathways (Roberts et al., 2013). It may
be possible then to redirect aggregates from entering neurons by
suppressing macropinocytosis in pathological conditions while
maintaining receptor mediated phagocytic pathways utilized by
microglia to engulf protein aggregates.

One potential target could be the cell surface receptor
triggering activation of macropinocytosis (Figure 2B).
Recent work suggests heparan sulfate proteoglycans are
involved in the entry of tau aggregates, but how this relates
to activation of macropinocytosis and to entry of other
neurodegenerative disease associated aggregates is unclear
(Holmes et al., 2013). Although there is no evidence in the
context of aggregate activated macropinocytosis, previous
work would suggest that receptor tyrosine kinases are involved
in endocytosis via macropinocytosis (Kerr and Teasdale,
2009). Activation of receptor tyrosine kinases causes an
increase in actin polymerization at the cell surface, resulting
in an elevation in actin-mediated ruffling and therefore an
increase in macropinosome formation, which is the mechanism
distinguishing it from other endocytic pathways (Kerr and

Teasdale, 2009). In addition to this, inhibition of RAC1 activity
inhibits ruffle formation (Figure 2B) irrespective of receptor
tyrosine kinase signaling (Lanzetti et al., 2004). These are two
examples of pathways that could potentially be exploited to slow
or stop the progression of toxic protein aggregates that enter cells
viamacropinocytosis.

Conclusions

Propagation of protein aggregation is implicated in the
progressive nature of several neurodegenerative diseases such as
AD, PD, and ALS. This may be explained by the nucleation of
aggregation in nearby or connected neurons. In the cases where
protein aggregates are intracellular, in order for this propagation
to occur aggregates must be able to gain access to the cytosol of
naïve neurons. Evidence is accumulating that implicates neuronal
macropinocytosis in the uptake of protein aggregates. This may
provide rational therapeutic targets that could stop the spread of
pathology and halt these progressive neurodegenerative diseases
in their tracks.
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