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Abstract: Lower-grade glioma (LGG) is a diffuse infiltrative tumor of the central nervous system,
which lacks targeted therapy. We investigated the role of Podocan-like 1 (PODNL1) methylation in LGG
clinical outcomes using the TCGA-LGG transcriptomics dataset. We identified four PODNL1 CpG
sites, cg07425555, cg26969888, cg18547299, and cg24354933, which were associated with unfavorable
overall survival (OS) and disease-free survival (DFS) in univariate and multivariate analysis after
adjusting for age, gender, tumor-grade, and IDH1-mutation. In multivariate analysis, the OS and
DFS hazard ratios ranged from 0.44 to 0.58 (p < 0.001) and 0.62 to 0.72 (p < 0.001), respectively, for the
four PODNL1 CpGs. Enrichment analysis of differential gene and protein expression and analysis of
24 infiltrating immune cell types showed significantly increased infiltration in LGGs and its histo-
logical subtypes with low-methylation levels of the PODNL1 CpGs. High PODNL1 expression and
low-methylation subgroups of the PODNL1 CpG sites were associated with significantly increased
PD-L1, PD-1, and CTLA4 expressions. PODNL1 methylation may thus be a potential indicator of
immune checkpoint blockade response, and serve as a biomarker for determining prognosis and
immune subtypes in LGG.

Keywords: Podocan-like 1; PODNL1; glioma; low-grade glioma; CpG methylation; G-CIMP; immune
infiltration; immune checkpoint blockade

1. Introduction

Lower-grade gliomas (LGGs) are diffusely infiltrative tumors of the central ner-
vous system (CNS), which consist of WHO grades II and III astrocytomas and oligo-
dendrogliomas [1,2]. Adult LGGs typically affect young patients with a mean age of 41 [3],
and are ultimately fatal with a median overall survival between 4 and 13 years [4]. Over
the past 30 years, there has been no significant improvement in LGG clinical outcome [3],
and with increasing recent knowledge of distinct molecular subgroups within LGGs and its
histological subtypes [5–8], there is a need to identify therapeutically targetable drivers of
tumor aggressiveness and malignant transformation. Currently, ongoing clinical trials are
underway for targeting the well-established diagnostic and prognostic biomarker isocitrate
dehydrogenase 1/2 (IDH1/2) mutation [9–11]. There is no molecular targeted therapy under
development for the more aggressive IDH1/2 wildtype LGGs [11,12], or the aggressive
subgroup within IDH1/2 mutant LGGs [13,14]. Thus, there is a need to identify biomarkers
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associated with LGG aggressiveness that may serve as therapeutic targets and facilitate the
discovery of efficacious treatment options for LGG.

Podocan Like 1 (PODNL1) is a member of the small leucine-rich proteoglycan (SLRP)
family [15], and it belongs to the Class V non-canonical class of SLRPs in particular [16,17].
It is highly expressed in tissues and bones [15] and high-grade gliomas [18]. A recent study
reported the unfavorable effects of PODNL1 overexpression in glioma overall survival [19].
It has also been reported as a prognostic marker in ovarian cancer [20]. However, the
mechanisms of these effects or the PODNL1 regulation machinery remained unknown, as
the exploration and characterization of this gene are still in its dawn.

As the frequent IDH1/2 mutation induces global DNA hypermethylation, commonly
known as glioma CpG island methylator phenotype (G-CIMP) in LGG [6], in this study,
we first investigated the correlation between PODNL1 methylation and PODNL1 mRNA
expression in TCGA-LGG to determine whether PODNL1 expression is epigenetically
regulated, and identified specific methylated CpG islands that significantly correlate with
PODNL1 mRNA expression. We next determined the prognostic effects of PODNL1 mRNA
overexpression in LGG disease-free survival (DFS) in order to elucidate its potential role
in affecting LGG aggressiveness. We also performed comprehensive overall and disease-
free univariate and multivariate survival analysis based on individual PODNL1 CpG site
methylations to identify significantly prognostic PODNL1 CpGs. Lastly, we performed
differential gene and protein expression analysis based on the methylation levels of all
significant CpGs individually, in order to shed light on the mechanism involved in driving
LGG aggressiveness, which revealed significant differences in tumor immune microen-
vironment, thus we further investigated the potential response to immune checkpoint
blockade therapies based on methylation subgroups.

2. Results
2.1. PODNL1 Expression and Methylation in LGG

To investigate the differential expression of PODNL1 in LGG, PODNL1 protein expres-
sion in normal brain tissues and LGG tissues was compared using immunohistochemical
data from the Human Protein Atlas (Figure 1A). Normal brain tissues showed moderate ex-
pression of PODNL1 protein in the neuronal cells and weak expression in glial cells. In the
two LGG samples analyzed, PODNL1 protein was underexpressed in LGG compared with
the two normal brain tissues. Notably, one LGG sample showed particular underexpression
of PODNL1 protein compared with the other LGG sample. Thus, intertumoral hetero-
geneity of PODNL1 expression may exist between LGG samples, depending on unknown
factors, and it is possible that there are subgroups of LGGs with high and low PODNL1
expression. As IDH1 mutation, which is highly frequent in up to 70–90% LGGs [11,12],
plays a role in inducing global DNA hypermethylation [6], we investigated the methylation
levels of PODNL1 CpG islands in TCGA-LGG and found hypermethylation in multiple
CpGs in this gene. Methylation patterns of the twelve most hypermethylated PODNL1
CpGs are visualized in Figure 1B. To further examine the potential role of PODNL1 CpG
methylations in regulating PODNL1 expression, we determined the correlation between
CpG site methylation levels (beta-values) and PODNL1 mRNA expression (RSEM+1). Sig-
nificant negative correlations between PODNL1 CpG methylations and mRNA expressions
were observed in multiple cases with Spearman’s rho correlation coefficients ranging from
−0.072 to −0.53 (p < 0.05). Scatterplots of CpG methylations correlating with PODNL1
mRNA with a Spearman’s rho correlation coefficient of −0.28 or below are presented
in Figure 1(Ci–Cxii), while data for other CpGs with weaker correlation coefficients are
presented in Supplementary Figure S1. These results indicate that methylation of PODNL1
CpG sites is potentially involved in the downregulation of PODNL1 mRNA expressions in
varying degrees in LGG.



Int. J. Mol. Sci. 2021, 22, 12572 3 of 18

Figure 1. PODNL1 protein expression, CpG methylations, and its correlation with PODNL1 mRNA levels. (A) Immunohis-
tochemical images showing PODNL1 protein expression in normal brain and lower-grade glioma (LGG) tissues (Human
Protein Atlas). Weak PODNL1 expression in glial cells and moderate expression in neuronal cells were reported in normal
brain tissues. Moderate expression was reported for one LGG sample (left), while weak expression was reported in the
other (right). (B) Heatmap showing methylation levels in the top twelve PODNL1 CpG loci in TCGA-LGG (MethSurv).
(C) (i–xii.) Correlation between TCGA-LGG PODNL1 CpG methylations (beta-values) and PODNL1 mRNA expressions
(RSEM+1) (p < 0.05 for all). Spearman’s rho correlation coefficients are reported within each figure.

2.2. Association between PODNL1 Aberrations and Tumor Aggressiveness in LGG

Previously, PODNL1 mRNA overexpression was reported to be associated with unfa-
vorable OS in LGG and glioblastoma [19]. As DFS indicates tumor aggressiveness through
faster recurrence, we firstly analyzed the prognostic effects of PODNL1 mRNA in the DFS
of all TCGA cancers (Figure 2A), where PODNL1 mRNA overexpression was associated
with significantly unfavorable DFS in four TCGA cancers including ACC, KIRC, KIRP, and
LGG. These prognostic effects in LGG DFS were further examined with Kaplan–Meier sur-
vival analysis where the high PODNL1 mRNA group showed a median DFS of 30 months
versus 60 months in the low PODNL1 mRNA group (p < 0.01; Figure 2Bi). Multivariate
survival analysis confirmed the independent unfavorable prognostic effects of PODNL1
mRNA overexpression in LGG (Figure 2Bii). As we found a significant association between
methylation of PODNL1 CpG sites and mRNA expression, we investigated whether the
methylation of these particular CpGs affects the PODNL1 prognostic effects, and per-
formed univariate and multivariate survival analysis (DFS and OS) adjusting for patient
age, gender, tumor grade, and IDH1 mutation status (Table 1).
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Figure 2. PODNL1 mRNA expression and methylation associates with LGG disease-free survival (DFS). (A) Log10 hazard
ratio heatmap showing the association between PODNL1 mRNA expression and DFS across TCGA cancers. Solid outlined
border represents statistically significant prognostic effects (p < 0.05). Lower-grade glioma (LGG) is indicated with a black
arrow. (B) (i). Kaplan–Meier survival curve showing DFS based on PODNL1 mRNA levels (median expression cut-off).
The curves show 95% confidence intervals for each group in dotted lines. (ii). Forest plot showing multivariate hazard
ratio based on gender, age, tumor mutational burden (TMB), and PODNL1 mRNA expression groups (median expression
cut-off) for TCGA-LGG. *** p < 0.001, ** p < 0.01 and * p < 0.05. (C) (i–iv). Kaplan–Meier survival curves (DFS) based on
methylation levels (median beta value cut-off) of four PODNL1 CpGs. The red line indicates “Meth” or the high methylation
group and the black line indicates “Unmeth” or the low methylation group. Sample numbers n = 254 for each methylation
group, for all figures. Log-rank p-values are marked in each figure. A p-value of <0.05 was considered significant. (D) Forest
plot of DFS multivariate analysis hazard ratios for each significant CpG, after adjusting for age, gender, tumor grade, and
IDH1 mutation.



Int. J. Mol. Sci. 2021, 22, 12572 5 of 18

Table 1. Univariate and multivariate survival analysis based on PODNL1 CpG methylation high/low subgroups.

Univariate Analysis Multivariate Analysis

Overall Survival Disease-Free Survival Overall Survival Disease-Free Survival

CpG loci Position HR
[95% CI] p-Value HR

[95% CI] p-Value HR
[95% CI] p-Value HR

[95% CI] p-Value

cg26498537 13929563 0.68
[0.48–0.97] 3.40 × 10−2 0.75

[0.56–1.00] 5.26 × 10−2 1.01
[0.69–1.47] 9.60 ×10−1 0.95

[0.70–1.28] 7.68 × 10−1

cg21993464 13930493 0.60
[0.42–0.87] 6.56 × 10−3 0.82

[0.62–1.09] 1.89 × 10−1 0.91
[0.63–1.33] 6.57 × 10−1 0.99

[0.74–1.33] 9.82 × 10−1

cg14697425 13932027 1.02
[0.72–1.46] 8.81 × 10−1 1.05

[0.79–1.39] 7.23 × 10−1 1.20
[0.83–1.73] 3.12 × 10−1 1.19

[0.89–1.60] 2.25 × 10−1

cg03417156 13932833 0.66
[0.46–0.94] 2.34 × 10−2 0.78

[0.58–1.04] 9.42 × 10−2 1.09
[0.73–1.62] 6.50 × 10−1 1.07

[0.79–1.45] 6.47 × 10−1

cg03690334 13933004 0.57
[0.40–0.82] 2.43 × 10−3 0.72

[0.54–0.96] 2.62 × 10−2 0.72
[0.49–1.04] 8.64 × 10−2 0.85

[0.63–1.14] 2.93 × 10−1

cg10165008 13933098 0.60
[0.42–0.86] 6.25 × 10−3 0.72

[0.54–0.96] 2.83 × 10−2 0.83
[0.57–1.21] 3.45 × 10−1 0.83

[0.61–1.12] 2.40 × 10−1

cg00040427 13933384 0.43
[0.29–0.62] 6.00 × 10−6 0.59

[0.44–0.79] 4.20 × 10−4 0.71
[0.48–1.06] 1.01 × 10−1 0.79

[0.58–1.08] 1.54 × 10−1

cg15092231 13935853 0.49
[0.34–0.71] 1.49 × 10−4 0.65

[0.49–0.87] 3.66 × 10−3 0.79
[0.53–1.18] 2.62 × 10−1 0.87

[0.64–1.18] 3.82 × 10−1

cg07425555 13938206 0.32
[0.22–0.46] 3.40 × 10−9 0.47

[0.35–0.63] 5.45 × 10−7 0.44
[0.29–0.67] 1.39 × 10−4 0.62

[0.46–0.85] 3.53 × 10−3

cg19921355 13938280 0.37
[0.25–0.54] 2.29 × 10−7 0.56

[0.42–0.74] 8.30 × 10−5 0.54
[0.35–0.84] 5.70 × 10−3 0.76

[0.55–1.05] 1.03 × 10−1

cg24354933 13938482 0.33
[0.22–0.49] 1.95 × 10−8 0.51

[0.38–0.68] 7.00 × 10−6 0.55
[0.36–0.84] 5.93 × 10−3 0.72

[0.53–0.99] 4.74 × 10−2

cg11802027 13938630 0.35
[0.24–0.51] 5.62 × 10−8 0.53

[0.39–0.70] 1.70 × 10−5 0.50
[0.32–0.79] 3.32 × 10−3 0.76

[0.54–1.07] 1.25 × 10−1

cg18547299 13938766 0.44
[0.30–0.64] 1.80 × 10−5 0.52

[0.39–0.70] 1.50 × 10−5 0.58
[0.38–0.87] 9.25 × 10−3 0.64

[0.47–0.88] 6.52 × 10−3

cg10729062 13939010 0.48
[0.33–0.69] 1.05 × 10−4 0.50

[0.37–0.67] 5.00 × 10−6 0.73
[0.48–1.10] 1.37 × 10−1 0.73

[0.53–1.01] 5.73 × 10−2

cg11453058 13953364 0.62
[0.44–0.89] 1.02 × 10−2 0.70

[0.53–0.94] 1.73 × 10−2 0.66
[0.45–0.96] 3.03 × 10−2 0.79

[0.59–1.06] 1.18 × 10−1

cg26969888 13953442 0.34
[0.24–0.50] 3.59 × 10−8 0.51

[0.38–0.68] 7.00 × 10−6 0.56
[0.38–0.84] 4.85 × 10−3 0.70

[0.51–0.96] 2.65 × 10−2

cg10760452 13953776 0.72
[0.50–1.02] 7.00 × 10−2 0.83

[0.62–1.10] 2.07 × 10−1 0.79
[0.55–1.13] 2.06 ×10−1 0.94

[0.71–1.27] 7.26 × 10−1

cg10609371 13954060 0.94
[0.66–1.34] 7.38 × 10−1 1.04

[0.78–1.39] 7.50 × 10−1 1.14
[0.79–1.65] 4.60 × 10−1 1.14

[0.85–1.52] 3.68 × 10−1

We found that 15 CpG methylations were associated with significantly longer OS, of
which 12 CpG methylations were associated with significantly longer DFS in univariate
analysis. In multivariate analysis, 7 CpG (cg07425555, cg19921355, cg24354933, cg11802027,
cg11453058, cg26969888, and cg18547299) methylations significantly affected LGG OS, of
which 4 CpG methylations (cg07425555, cg26969888, cg18547299, and cg24354933) were
significant prognostic factors in LGG DFS. The Kaplan–Meier survival curves for CpGs
that are significantly prognostic after adjusting for age, gender, tumor grade, and IDH1
mutation are presented in Figure 2(Ci–Civ) for DFS along with forest plot visualization
of hazard ratios with 95% CI in Figure 2D. For cg07425555 (Figure 2Ci), the median DFS
of high methylation (“Meth”) versus low methylation (“Unmeth”) was 72 (52–91) months
versus 31 (21–40) months (p < 0.001). For cg26969888, the median DFS of Meth versus
Unmeth was 63 (44–83) months versus 30 (22–37) months (p < 0.001). For cg18547299, the
median DFS of Meth versus Unmeth was 63 (44–82) months versus 31 (22–39) months
(p < 0.001). For cg24354933, the median DFS of Meth versus Unmeth was 63 (41–86) months
versus 32 (25–40) months (p < 0.001). Thus, between these CpGs, the median DFS ranged
from 63 to 72 months for Meth versus 31 to 32 months for Unmeth, and these significant
differences in DFS confirm the association between low methylation in these CpG sites and
increased tumor aggressiveness.

We further investigated the association between these PODNL1 CpG methylation
levels (beta-values) and the histological subtypes and grades of LGG (Supplementary
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Figure S2). In oligodendroglioma, there was no significant difference in CpG methylation
levels between grade II and grade III for all four CpGs. In astrocytoma, CpG methylation
levels were significantly lower in grade III compared with grade II for all four CpGs
(p < 0.001). This indicates the possible demethylation of PODNL1 during grade progression
and its role in astrocytoma aggressiveness.

These prognostic effects in DFS are mirrored in the OS analysis, where cg07425555
Meth showed a median OS of 117 (84–150) months versus 52 (35–68) months in Unmeth,
cg26969888 Meth showed 114 (71–156) months versus 46 (27–64) in Unmeth, cg18547299
Meth showed 98 (63–132) months versus 61 (39–84) in Unmeth, and cg24354933 Meth
showed 130 (70–190) months versus 54 (37–72) months in Unmeth (p < 0.001 or p < 0.01
for all). Three additional CpG sites compared with DFS were significant prognostic fac-
tors for OS in multivariate analysis, which also showed the same prognostic patterns
(Figure 3((Ai–Avii); Table 1). The hazard ratios with 95% CI are visualized in a forest plot
in Figure 3B. Within the IDH1 mutant LGG histological subtypes analysed separately for
grade II and grade III tumours (Supplementary Figure S3), cg26969888 was a significant
prognostic factor for OS in both grade II and grade III oligodendroglioma, as well as in
grade III astrocytoma. In grade II IDH1 mutant astrocytoma, cg07425555 and cg24354933
were significant prognostic factors for OS. Our results are concordant with and validate
the known association between PODNL1 mRNA overexpression and unfavorable OS in
glioma [19], as we show that methylation of PODNL1 is associated with decreased PODNL1
expression, and specific PODNL1 CpG methylations are associated with significantly im-
proved OS. Thus, PODNL1 methylation is an important occurrence in LGG, which affects
disease aggressiveness and clinical outcome. In particular, a set of four CpGs (cg07425555,
cg26969888, cg18547299, and cg24354933) may be of importance, as they show significant
independent prognostic effects in both OS and DFS, after adjustments for age, gender,
tumor grade, and IDH1 mutation in multivariate analysis.

2.3. A Subset of LGGs with Low PODNL1 Methylation Is Associated with Increased Immune Cell
Infiltration in the Tumor Microenvironment

To elucidate the possible mechanisms associated with the increased tumor aggressive-
ness in the low methylation of specific CpGs, we determined the differentially expressed
genes (DEGs) between high and low methylated groups of each of the four significant
CpGs that showed significant prognostic effects in the OS and DFS of LGGs in multivariate
analysis. The top 1000 genes upregulated in the low methylation group of each CpG were
analyzed for enriched GO term, molecular pathways, and cell types. The enriched GO
molecular functions and Azimuth cell types are presented in Figure 4 (the corresponding
data for the high methylation group are presented in Supplementary Figure S4). For all
four CpGs, the low methylation group was most significantly associated with the GO term
enrichment of MHC class II receptor activity (GO:0032395), and for two CpGs, there was
enrichment of CD4 receptor binding (GO:0042609) (Figure 4). The cell types enriched in
these low methylation groups were predominantly immune cells for all CpGs, including
different types of T cells, dendritic cells, and natural killer cells (Figure 4). In contrast, in the
groups with high methylation of these CpGs, significant enrichments related to RNA bind-
ing (GO:0003723) and ligand-gated channel activity (GO:0022834), and cell types related to
oligodendroglial precursor cell (CL0002453) were present (Supplementary Figure S4).
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Figure 3. PODNL1 CpG methylation status affects LGG overall survival (OS). (A) (i–vii). Kaplan–Meier survival curves
for LGG OS based on the methylation status of specific PODNL1 CpGs (median beta value cut-off). The red line indicates
“Meth” or high methylation group and the black line indicates “Unmeth” or low methylation group. Log-rank p-values are
marked in each figure. A p-value of <0.05 was considered significant. Sample numbers n = 254 for each methylation group,
for all figures. (B) Forest plot of OS multivariate analysis hazard ratios for each significant CpG, after adjusting for age,
gender, tumor grade, and IDH1 mutation.

WikiPathway and KEGG pathway analysis of the DEGs showed significant enrich-
ments of inflammatory response pathway (WP453) and other immune-related pathways
in all low methylation groups of each CpG type (Supplementary Figure S5). In the high
methylation groups, significant enrichments of pathways involved nicotine addiction,
neuro-active ligand–receptor interaction, ribosome, and other non-oncogenic pathways.
Descartes cell type analysis showed enrichment of lymphoid cells and stromal cells in
low methylation groups for all CpGs, and neurons and oligodendrocytes in the high
methylation groups for all CpGs (Supplementary Figure S5).
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Figure 4. Gene Ontology (GO) molecular function and Azimuth cell type analysis using the top 1000 significantly upregu-
lated genes (Benjamini–Hochberg false discovery rate < 0.01) in PODNL1 low methylation groups of four significant CpGs.
Data represents −log10 p-values. All enriched terms have p-values < 0.05.

Collectively, these results indicate that, in LGGs with low methylation levels of these
CpGs, there may be enrichments of immune cells in the tumor microenvironment and
activated inflammatory response pathways. Whereas, in LGGs with high methylation
levels of these CpGs, non-oncogenic cells and functions are enriched. These results support
the findings of unfavorable survival associated with low methylation of these CpGs in
LGG, as immunity-high LGGs have been reported to show higher tumor stemness and
epithelial–mesenchymal transition scores, leading to unfavorable survival [21,22].

As significantly differentially expressed proteins and PPI network analysis can shed
light on the protein networks involved in the different behavior of the tumor, we identified
twenty common differentially expressed proteins that are significantly upregulated in the
low methylation groups (ten proteins) and the high methylation groups (ten proteins) of
all four CpGs (Figure 5A). The identification of these common proteins upregulated in the
low methylation group suggests that the mechanism of prognostication may be similar
among all four significant CpGs. We performed and visualized the PPI network analysis
for upregulated proteins in low and high groups separately in STRING (Figure 5(Bi,Bii)),
which showed the significant interactions between these proteins.
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Figure 5. Differential protein expression, protein–protein interaction (PPI), and enrichment analysis. (A) Venn diagram
presenting the overlap between differentially expressed proteins in four significant PODNL1 CpGs. The white circle
represents common differentially expressed proteins between all four CpGs, used for further analysis. (B) PPI network
visualization of ten proteins upregulated in (i). low CpG methylation groups and (ii). high CpG methylation groups
(STRING). (C) Enrichment analysis (MetaScape) of ten upregulated proteins in (i). low CpG methylation groups and (ii).
high CpG methylation groups. Data represents −log10 p-values. All enriched terms have p-values < 0.05.

Enrichment analysis of upregulated proteins in low methylation groups of CpGs
showed the most significant GO term enrichment of leukocyte cell–cell adhesion (Figure 5Ci),
which is associated with immune response, thus reflecting the findings from DEGs’ analy-
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sis. Apoptosis, apoptosis signalling pathway in response to DNA damage, and epithelial
cell differentiation were enriched in the high methylation group, potentially reflecting the
inherent lower aggressiveness of these LGGs (Figure 5Cii). These results further support
the survival analysis and DEG analysis, and suggest the association between immune cell
infiltration and low PODNL1 methylation groups.

The PPI network of AKT1, AKT2, AKT3, ERBB2, and STAT5A was particularly strongly
connected in the low PODNL1 methylation group (Figure 5Bi) and there was enrichment of
the reactome pathway, upstream of the AKT signaling pathway, related to downregulation
of ERBB2/ERBB3 signaling (Figure 5Ci).

We explored the association between PODNL1 methylation levels and a range of
immune cell infiltration levels across TCGA cancers (Figure 6A). A clear negative correla-
tion between immune cell infiltration and PODNL1 methylation in LGG and PRAD was
observed. A significant negative correlation between LGG PODNL1 methylation and 27
out of 28 immune cells was observed (Figure 6A). We found enrichment of immune-related
MHC class II receptor activity in the DEG analysis, thus we also investigated the correlation
between PODNL1 methylation and MHC class II molecules (Figure 6B). In accordance
with the other findings, we observed a significant negative correlation between PODNL1
methylation and all 21 MHC class II molecules analyzed (Figure 6B). These findings sug-
gest that PODNL1 may play a role in immune infiltration in LGG; however, it may not be
involved in the immune microenvironment of other cancers. Further studies incorporating
tumor histological and molecular subtypes and tumor grades are required to investigate its
potential immunomodulatory role in other cancers.

We found a significant association between LGG immune subtypes [23] and PODNL1
mRNA expression, where high PODNL1 mRNA expression (potentially corresponding to
low methylation) was associated with “C3: inflammatory” subtype, moderate PODNL1
mRNA expression was associated with “C4: lymphocyte depleted” subtype, and low
PODNL1 mRNA expression was associated with “C5: immunologically quiet” subtype
(Figure 6C).

A significant association between immune cell infiltration and all of the four prognostic
CpGs were observed for multiple immune infiltrates including CD4+ T cells, CD8+ T cells,
dendritic cells, and natural killer cells (Figure 6D–G). Data for other immune infiltrates
are presented in Supplementary Figure S6. In all significant observations, the immune
infiltrate level was higher in lower methylation groups of these CpGs.

We further investigated the immune cell infiltration levels of 24 immune cell types
within PODNL1 high/low oligodendroglioma and astrocytoma separately for all four
CpGs, and found that there was increased immune cell infiltration in the low methylation
groups of these CpGs within both LGG subtypes (Supplementary Figure S7 and S8). In
astrocytoma, the majority of the 24 immune cell types were significantly increased in the
low methylation subgroups of the four CpGs, whereas in oligodendroglioma, the number
of infiltrating immune cell types was lower than in astrocytoma, and depended on the
specific CpG site.

Collectively, these results strongly support the potential high immune cell infiltration
and inflammatory response activity in LGGs with low PODNL1 methylation levels. It is
possible that the observed unfavorable prognosis and tumor aggressiveness associated
with low PODNL1 methylation/high PODNL1 expression is related to the enrichment of
immune cell infiltration in the tumor microenvironment, as previous reports identified
shorter glioma survival in patients with high immune infiltration [21–25].
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Figure 6. Association of PODNL1 methylation and expression, with immune cell infiltration and immune subtypes.
Correlation heatmap between PODNL1 methylation (beta values) and (A) immune infiltrates and (B) MHC class II molecules
across TCGA cancers (LGG marked with a black arrow; analyzed using TISIDB). (C) PODNL1 mRNA expression levels
in TCGA-LGG immune subtypes. C3: inflammatory (n = 10), C4: lymphocyte depleted (n = 147), C5: immunologically
quiet (n = 356), C6: TGF-b dominant (n = 1). One-way ANOVA p-value = 2.9 × 10−11. (D–G) Association between specific
PODNL1 CpG methylation group (group 1 = high methylation and group 2 = low methylation; stratified by median beta
value cut-off) infiltrating immune cells in all four significant CpGs. Statistical significance was determined by a Student’s
t-test with a p-value < 0.05. **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05.

2.4. PODNL1 Methylation May Affect Immune Checkpoint Blockade Response in LGG

As the methylation status of specific PODNL1 CpGs showed strong associations with
immune cell infiltration, we investigated the potential efficacy of immune checkpoint
blockade (PD-L1, PD-1, and CTLA4) in groups of TCGA-LGG histological subtypes, astro-
cytoma and oligodendroglioma, based on PODNL1 expression and CpG methylation status
(Figure 7). In astrocytoma, PODNL1 expression showed significant positive correlations
with PD-1 and PD-L1 expression (Figure 7(Ai,Aii)). Low methylated groups of all of the four
PODNL1 CpG sites showed significantly increased expression of PD-1, PD-L1, and CTLA4,
compared with the high methylated groups (Figure 7(Bi–Biv)). In oligodendroglioma, there
was significant positive correlation between PODNL1 expression and the expression of all
three immunotherapeutic targets (Figure 7(Ci–Ciii)). The association between PODNL1
CpG methylation status and the three immunotherapeutic targets in oligodendroglioma
depended on the specific CpG sites, with no association observed for cg26969888, signifi-
cantly higher expression of only PD-L1 in low methylated cg07425555, significantly higher
expression of PD-L1 and CTLA4 in low methylated cg24354933, and significantly higher
expression of all three targets in low methylated cg18547299 (Figure 7(Di–Div)).
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Figure 7. Association between PODNL1 expression/specific PODNL1 CpG methylations and immunotherapeutic targets—
PD-L1 (CD274), PD-1 (PDCD1) and CTLA4, in TCGA astrocytoma (Ai–Aiii) and (Bi–Biv) and in TCGA oligodendroglioma
(Ci–Ciii) and (Di–Div). R = Spearman’s rho correlation coefficient. Methylation groups of high (meth) and low (unmeth)
were determined with a median beta-value cutoffs for each CpG. A p-value of less than 0.05 was considered statistically
significant. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05, and ns = not significant.

Collectively, these results indicate that PODNL1 methylation may affect immune
checkpoint blockade therapy response in both astrocytoma and oligodendroglioma in vary-
ing degrees. Additionally, the methylation levels of cg07425555, cg26969888, cg18547299,
and cg24354933 can potentially serve as biomarkers for strategizing immune checkpoint
blockade therapy in LGG.

3. Discussion

In this study, we investigated the potential role of an SLRP class V member, PODNL1,
in determining LGG aggressiveness. It is a largely uncharacterized and understudied gene;
however, its high expression in high-grade glioma [18] and its role as a prognostic factor in
high and low-grade gliomas [19,26] and ovarian cancers [27] warranted a comprehensive
analysis of its influence in LGG aggressiveness, which this study has conducted. We have
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found that PODNL1 overexpression is associated with a significantly more unfavorable
DFS, thus PODNL1 overexpressed LGGs recurred at a faster rate than underexpressed
PODNL1. This finding complements the OS analysis carried out by Geng et. al., where
PODNL1 overexpression was associated with a significantly shorter OS [19].

As little is known about PODNL1 mRNA regulation, we investigated the role of
PODNL1 methylation in regulating gene expression, particularly owing to the high fre-
quency of IDH1 mutation in LGGs [11], which is associated with global DNA hyperme-
thylation [6]. We reported multiple CpGs that showed significant negative correlations
with PODNL1 mRNA expression in the TCGA-LGG dataset. CpG methylation has been
commonly associated with gene expression silencing in normal and cancer cells [28–31].
Thus, it is possible that PODNL1 mRNA expression is epigenetically regulated in LGG. A
comprehensive survival analysis revealed four PODNL1 CpGs (cg07425555, cg26969888,
cg18547299, and cg24354933) that were significant independent prognostic factors for both
OS and DFS in multivariate analysis (adjusted for age, gender, tumor grade, and IDH1
mutation status), where low methylation levels were associated with a more unfavorable
clinical outcome. Methylations in these CpGs negatively correlate with PODNL1 mRNA
expression in LGG, thus our findings are concordant with the previous report of improved
OS in PODNL1-underexpressed LGGs [19]. Furthermore, their significant associations with
LGG DFS suggest that low methylation of these CpGs may contribute to LGG aggressive-
ness. The relationship between global demethylation patterns in recurrent gliomas and
tumor aggressiveness has been reported previously [32], and particular demethylation
patterns were noted in tumors that exhibited malignant transformation [33]. However, the
influences of individual genes methylations, and particularly specific CpG methylations,
are important to be elucidated in order to potentially find therapeutic targets, as the prog-
nostic roles of particular gene methylations may be opposing in nature, complicating the
efficacies of demethylating therapeutic agents such as 5-Azacytidine [34–39]. Our study
elucidates the importance of specific PODNL1 CpG methylations in LGG aggressiveness,
which may potentially facilitate the development of targeted therapy.

Our findings from the differential gene and protein expression analysis suggest that
the aggressive tumor behavior in hypomethylated PODNL1 CpGs may involve increased
inflammatory pathways and immune cell infiltration levels. Further analysis of the asso-
ciation between the four significant CpGs and immune cell infiltration levels confirmed
the significant enrichment of a range of immune infiltrates in low-methylated groups of all
four CpGs. Specific CpG methylations have previously been associated with immune cell
infiltration levels (thoroughly reviewed by Bacolod et. al, 2020) [40]. Increased immune
cell infiltration levels are linked to heightened tumor aggressiveness in a range of cancers
including breast cancer, kidney renal clear cell carcinoma, uveal melanoma, pancreatic
cancer, and osteosarcoma [41–48]. In gliomas, including LGG, increased immune cell infil-
tration levels showed poor prognosis and more aggressive phenotypes [21,22,49–57]. Thus,
we report that low PODNL1 methylation, specifically of CpG sites cg07425555, cg26969888,
cg18547299, and cg24354933, may be a key factor in the modulation of immune infiltrates
in the LGG tumor microenvironment, affecting its aggressiveness and prognosis.

Another factor that may determine LGG aggressiveness in low methylation groups of
these PODNL1 CpGs could involve the AKT signaling pathway, which we found to be en-
riched in this group, as previous studies reported the association between phosphorylation
of AKT and glioma aggressiveness [58–61].

Lastly, we showed that high PODNL1 expression subgroups and low methylation
subgroups of the identified PODNL1 CpGs within the histological subtypes of LGG may
be particularly responsive to immune checkpoint blockade therapy; however, in vitro and
in vivo studies are warranted to confirm these findings. Thus, PODNL1 CpG methylation
may also be a potential biomarker for LGG immune subtypes and immune checkpoint
blockade response prediction.
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4. Materials and Methods
4.1. Tumor Cohort

The Cancer Genome Atlas (TCGA) lower-grade glioma (LGG) was used for analysis
in this study. Clinical and mutational data for the LGG tumors were downloaded from
the cBioPortal platform (www.cbioportal.org, accessed on 7 September 2021). Duplicate
samples were removed where more than one sample existed for a patient, and the total
cohort size with the required clinical information available was n = 508. The median age of
the TCGA-LGG cohort was 41 (14–87) and the male/female ratio was 1.2/1.

4.2. PODNL1 Expression and Methylation Analysis

Normal brain and LGG PODNL1 protein expression in the form of immunohistochem-
istry data was queried and retrieved from the Human Protein Atlas (www.proteinatlas.org,
accessed on 15 September 2021).

PODNL1 methylation data were explored in MethSurv [62] and TCGA-Wanderer [63]
to identify commonly methylated PODNL1 CpG sites in LGG. CpG site methylations
with statistically significant correlation (p < 0.05) with PODNL1 mRNA expression were
identified through correlation scatterplots in TCGA-Wander [63]. Methylation beta values
for each PODNL1 CpG site in TCGA LGG samples, which significantly correlated with
PODNL1 mRNA, were downloaded from SMART App [64].

4.3. Survival Analysis

Disease-free survival (DFS) was termed in this study as the period of time from the
patient’s primary treatment end until the date of relapse or censored at last follow-up.
Overall survival (OS) was termed as the period of time the patient survived from the date
of diagnosis until the date of death (or censored at the last follow update). Survival analysis
was performed using the Kaplan–Meier survival method and Cox proportional hazard’s
model. Statistical significance was determined by a log-rank p-value of less than 0.05.

Survival analysis of DFS based on PODNL1 mRNA expression (median cut-off) was
performed in GEPIA2.0 [65]. Multivariate analysis to determine independent prognostic
effects of PODNL1 mRNA expression was performed in CVCDAP [66]. The prognostic
effects of PODNL1 mRNA expression across all TCGA cancers were visualized in a heatmap
using GEPIA2.0 [65].

For survival analysis (DFS and OS) based on individual methylated CpG sites, median
beta-value was used as a cut-off for each methylated CpG site. IBM SPSS version 27
was used to perform Kaplan–Meier and Cox proportional analysis. Multivariate analysis
adjusting for age, gender, tumor grade, and IDH1 mutation status was performed in IBM
SPSS using Cox proportional hazard’s model. Hazard ratios with 95% confidence interval
(95% CI) that are statistically significant were visualized in forest plots generated using
GraphPad Prism version 9.

4.4. Differential Gene and Protein Expression Analysis

Median beta value cut-off was used for each prognostically significant CpG site to
stratify the TCGA samples into two groups with high (methylated) and low (unmethy-
lated) PODNL1 methylation. Custom groups were created in the cBioPortal platform by
importing TCGA sample IDs of methylated and unmethylated groups for each CpG site,
separately. Methylated and unmethylated groups for each CpG site were analyzed and
compared in cBioPortal to identify significantly differentially expressed genes. The top
1000 most upregulated genes in methylated and the top 1000 most upregulated genes in
unmethylated groups were identified with p-values corrected for multiple comparisons
using the Benjamini–Hochberg procedure false discovery rate (FDR < 0.01). The gene lists
were imported to EnrichR platform [67] for Gene Ontology (GO) term, pathway, and cell-
type enrichment analysis in methylated and unmethylated groups separately. GO cellular
component, molecular function and biological process, KEGG pathway, WikiPathways,

www.cbioportal.org
www.proteinatlas.org
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Descartes cell types, and Azimuth cell types enrichments were analyzed for each group of
CpGs.

Differential protein expression (p-values corrected for multiple comparisons using the
Benjamini–Hochberg procedure; FDR < 0.05) between groups of methylated and unmethy-
lated CpGs (for four significant CpGs) was downloaded from cBioPortal, and proteins that
were differentially expressed between methylated and unmethylated groups for all four
CpGs were curated. The protein–protein interaction (PPI) network was generated and vi-
sualized using STRING (www.string-db.org, accessed on 16 September 2021) by importing
the curated list of differentially expressed genes. Proteins upregulated in unmethylated
groups and methylated groups were analyzed separately in MetaScape [68] to determine
significant GO terms and pathway enrichments within each group.

4.5. Immune Cell Infiltration Analysis

Correlations between PODNL1 methylation and immune cell infiltration levels and
MHC class II molecules were analyzed using TISIDB [69]. Associations between indi-
vidual CpG methylation and immune cell infiltration levels were analyzed using LGG
transcriptomics data retrieved from cBioPortal and ImmuCellAI [70]. PODNL1 mRNA
expression within each immune subtype [23] of TCGA LGG was visualized and analyzed
in TISIDB [69].

4.6. Immune Checkpoint Blockade (ICB) Therapy Response Prediction

TCGA-LGG transcriptomics data were retrieved from cBioPortal, and expression
data for PODNL1, PD-1, PD-L1, and CTLA4 were extracted for astrocytoma and oligoden-
droglioma samples. Methylation beta values for each CpG site were retrieved from SMART
App [64]. Using beta value median cut-off, the TCGA-LGG histological subtype samples
were stratified by “meth” (high methylation) and “unmeth” (low methylation) groups
of CpG sites. Correlation and association between PODNL1 expression and PODNL1
CpG methylation, respectively, were then analyzed in GraphPad Prism v9 (San Diego, CA,
USA).
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