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Abstract

A local immune response has been implicated in the pathogenesis of age-related macular

degeneration (AMD), but it is unclear if systemic immunosuppressive/immunomodulatory

therapy (IMT) protects against the onset and/or progression of AMD. We performed a retro-

spective cohort study using a Cox proportional hazards model of two cohorts. Cohort 1

included patients with stage V chronic kidney disease (CKD) status post kidney transplanta-

tion, on at least one IMT agent, and older than 50. Cohort 2 included patients with stage IV

or V CKD who had not undergone kidney transplantation, were not on IMT, and were older

than 50. The main outcomes were hazard ratios of a new diagnosis of dry AMD, wet AMD,

or conversion from dry to wet. There were 10,813 patients in cohort 1, and 217,081 patients

in cohort 2. After controlling for sex and age, there was no significant difference in the hazard

of developing a new diagnosis of dry AMD (HR = 0.95, 95% CI 0.87–1.05, p = 0.32), devel-

oping a new diagnosis of wet AMD without any prior diagnosis of dry AMD (HR = 0.85, 95%

CI 0.66–1.08, p = 0.18), or converting from dry to wet AMD (HR 1.24, 95% CI 0.94–1.62,

p = 0.12). For patients over 70 on mycophenolate mofetil, there was a reduced hazard of

converting from dry to wet AMD (HR = 0.92, 95% CI = 0.85–0.99, p = 0.02). In contrast,

everolimus had an increased hazard of dry AMD (HR = 2.14, 95% CI 1.24–3.69, p < 0.01).

Most systemic IMT does not affect the risk of onset or progression of AMD in patients with

CKD. However, mycophenolate mofetil may confer some degree of protection against the

conversion of dry AMD to wet AMD, suggesting that modulation of the immune response

may prevent progression of the disease.

Introduction

Age-related macular degeneration (AMD) is the leading cause of vision loss in patients over 65

in the United States [1]. While there have been major advances in treating exudative AMD,

long-term outcomes are still poor, with 2/3 of patients experiencing significant vision loss and

almost all patients exhibiting some geographic atrophy of the macula after seven years [2,3].

Furthermore, its pathogenesis is still poorly understood. Senescence of the retinal pigment epi-

thelium (RPE) and Bruch’s membrane, oxidative stress, accumulation of metabolic bypro-

ducts, and lipid metabolism all appear to play a role, but the exact nature and hierarchy of all
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these processes are still uncertain[4–10]. In addition, a local immune response has been impli-

cated in the pathogenesis of AMD. Genetic associations between complement factor H and

accumulation of drusenoid material beneath Bruch’s membrane are well established [11]. Acti-

vated macrophages also play a role in the pathogenesis of choroidal neovascularization. More-

over, there is a well-established association between mutated high temperature serine protease

(HTRA-1) and AMD [12].This protease is thought to regulate TGF-beta and cleaves fibronec-

tin, whose fragments stimulate proinflammatory cytokines and matrix metalloproteinases. Fas

ligand (FasL), a key downregulator of the immune response in the eye, is important in inhibit-

ing pathological angiogenesis in the RPE [13]. In a similar vein, systemic immunosuppression

in animal models has been shown to inhibit choroidal neovascularization [14].

While corticosteroid therapy in AMD has shown little efficacy [15, 16, 17], a small pilot

study at the National Eye Institute investigating concomitant use of systemic immunosuppres-

sive/immunomodulatory therapy (IMT) showed initial promise in decreasing the frequency of

anti-VEGF injections in patients with pre-existing exudative AMD [18]. Since then, no larger

trials of systemic IMT have been conducted, and trials modulating the complement cascade

have failed to halt the growth of geographic atrophy [19]. Of course, there are many patients

on systemic IMT for diseases not involving the eye. This begs the following questions: do they

have a lower incidence of AMD? If such patients develop dry AMD while on IMT, do they

convert to wet AMD at a lower rate?

The purpose of this study was to determine if systemic IMT protected against the onset

and/or progression of AMD. Immunomodulatory therapy is broadly indicated for two groups

of patients: those with systemic inflammatory/autoimmune diseases and those with organ allo-

grafts. The former group presents major problems in this endeavor because of confounding by

indication. The very reason for their being prescribed IMT, namely a systemic inflammatory

disease, establishes an aberrant immune response and may increase the risk or accelerate the

progression of AMD. This question remains open, but sufficient evidence exists to entertain

the hypothesis. For instance, patients with psoriasis, a systemic inflammatory disease charac-

terized by a T cell response against cutaneous antigens, have been shown to have a higher risk

of AMD [20]. Myeloproliferative disorders, hematologic neoplasms associated with chronic

inflammation, have also been linked to AMD [21]. This leaves for study the population of

patients who are on IMT to suppress allograft rejection after organ transplantation. The

chronic kidney disease (CKD) population is a suitable group to study for two reasons. First,

advanced CKD can be treated by transplantation plus IMT or by non-transplantation means,

allowing for a natural comparison group with a similar underlying disease severity. Second,

the kidney is the most commonly transplanted organ in the United States and worldwide. In

the United States, approximately 17,000 renal allografts are performed each year [22], and all

these patients must be on lifelong IMT, typically starting with three agents and eventually

weaning down to one or two. This study sought to compare the incidence of dry and wet

AMD in patients on IMT because of advanced CKD status post renal transplantation to

patients with advanced CKD but without a transplant, and thus not on IMT. For patients with

a diagnosis of dry AMD, we sought to compare rates of conversion to wet AMD between those

on IMT and those who were not.

Methods

Dataset

The Truven Analytics (Fort Worth, TX, USA) dataset includes approximately 80 million

patients enrolled in multiple different private health insurance plans across the United States

from 2010 to 2015. It includes de-identified demographic information, all ICD-9 diagnosis
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codes from all outpatient visits and inpatient hospitalizations, records of all prescribed medica-

tion, and all procedural codes. Because of the de-identified nature of the data, it was exempt

from review by the University of Louisville’s institutional review board.

Study design

This was a retrospective cohort study. Cohort one was the IMT cohort. Inclusion criteria

included age greater than 50, a diagnosis of stage V CKD, commonly referred to as end-stage

renal disease (ESRD), a procedure code for renal transplantation, and a prescription for at

least one of eight IMT agents or oral prednisone. Cohort two was the control or non-IMT

group. Inclusion criteria included age greater than 50 and a diagnosis of stage IV or V CKD.

Exclusion criteria for both groups were a diagnosis of a common systemic inflammatory, auto-

immune, or rheumatic disease, a diagnosis of membranoproliferative glomerulonephritis, or a

diagnosis of an inherited retinal degeneration (IRD) (Table 1). Mebranoproliferative glomeru-

lonephritis was excluded because of its close association with a form of macular degeneration.

Inherited degenerations were excluded because of the diagnostic confusion that would ensue if

a patient had a diagnosis code for an IRD but was then later also given a diagnosis of AMD.

The index date for cohort one was the date of the first recorded prescription of any IMT agent.

For cohort two, it was the first date listing the diagnosis of stage IV or V CKD. Patients were

censored for a diagnosis of any form of AMD, death, or departure from the dataset. An initial

six-month period without any diagnosis of AMD was required. The purpose of such a lead-in

Table 1. Diagnoses and corresponding ICD9 codes excluded from this study.

Diagnosis ICD9 code

Rheumatic Diseases
Connective tissue diseases 710.x

Rheumatoid arthritis and rheumatoid arthritis variants 714.x

Behcet’s disease 136.1

Anklyosing spondylitis 720.0

Psoriatic arthritis 696.0

Systemic vasculitides 446.x

Dermatologic Diseases
Psoriasis 696.x

Neurological Diseases
Multiple sclerosis 340

Other demyelinating disorder 341.x

Gut Diseases
Crohn’s disease 555.x

Idiopathic proctocolitis, ulcerative colitis 556.x

Primary biliary cirrhosis, autoimmune hepatitis 571.x

Hematopoietic Diseases
Chronic myelogenous leukemia 205.1

Myeloproliferative disorders 238.x

Renal Disease
Membranoproliferative glomerulonephritis 581.2

Retinal Diseases
Hereditary retinal dystrophies 362.7x

Other
Sarcoidosis 135.0

https://doi.org/10.1371/journal.pone.0203492.t001
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period was to capture only new or incident cases of AMD. Outcomes of interest were the haz-

ard ratio of developing a new diagnosis of dry AMD, a diagnosis of wet AMD without a prior

diagnosis of dry, and conversion from a diagnosis of dry AMD to wet AMD.

Statistical analysis

A multivariate Cox proportional hazards model was employed to determine the hazard of a

new diagnosis of dry AMD, wet AMD, and conversion from dry to wet. All hazards were

expressed as the ratio of the hazard in cohort 1 to the hazard in cohort 2. Sex and age were

used as covariates in order to control for the key role that advanced age plays in the disease.

Data on race and cigarette smoking were not in the dataset and thus could not be covariates.

All statistical analysis was performed using Stata (College Station, TX, USA).

Results

There were 404,735 patients in the dataset with stage IV or V CKD. After inclusion and exclu-

sion criteria were applied, there were 10,813 patients in cohort 1 and 217,081 in cohort 2 (Fig

1). Cohort 1 was 36.6% female and cohort 2 44.6%. Average age in cohort 1 was 59.4 years

(interquartile range [IQR] 9). Average age in cohort 2 was 71.5 years (IQR 19) (Table 2).

469 patients (4.3%) in cohort 1 and 8123 patients (3.7%) in cohort 2 developed a diagnosis

of dry AMD. By univariate analysis, the hazard ratio of developing dry AMD in cohort 1 rela-

tive to cohort 2 was 0.98 (95% CI 0.90–1.08, p = 0.76). When controlling for age in multivariate

analysis, the difference in hazard was still negligible (HR = 0.95, 95% CI 0.87–1.05, p = 0.32)

(Table 3).

The wet AMD outcome is actually two distinct outcomes. The first is those patients who are

diagnosed with wet AMD without a prior diagnosis code for dry AMD. The second is those

patients who harbor an existing diagnosis of dry AMD and then later are diagnosed with wet

AMD, which we call conversion from dry to wet. With regard to the former group, 70 patients

in cohort 1 (0.64%) and 1435 patients (0.66%) in cohort 2 developed a diagnosis of wet AMD

without any prior diagnosis of dry. By univariate analysis, the hazard ratio of developing wet

AMD in cohort 1 relative to cohort 2 was 0.87 (95% CI 0.69–1.11, p = 0.26). Again, in multi-

variate analysis, this effect was still not significant (HR = 0.85, 95% CI 0.66–1.08, p = 0.18)

(Table 3).

For conversion from dry to wet AMD, in both univariate and multivariate analysis, there

was no statistically significant difference in hazard between the two cohorts (univariate: HR

1.17, 95% CI 0.91–1.52, p = 0.23; multivariate HR 1.24, 95% CI 0.94–1.62, p = 0.12) (Table 3).

Patients were then divided into subgroups based on a prescription for individual IMT

agents and analyzed for the same outcomes. Nine different agents were examined: the cortico-

steroid prednisone; the anti-metabolites methotrexate, azathioprine, and mycophenolate

mofetil; the calcineurin inhibitors cyclosporine and tacrolimus; the mechanistic/mammalian

target of rapamycin (mTOR) inhibitors sirolimus and everolimus; and the T cell co-stimula-

tion antagonist belatacept (soluble receptor for the ligand B7 on antigen-presenting cells). The

vast majority of prescriptions were for prednisone, mycophenolate mofetil, and tacrolimus

(Table 4), which together constitute the most common triple immunomodulatory regimen for

renal allograft patients. One agent, everolimus, had an increased hazard of developing dry

AMD (HR = 2.14, 95% CI 1.24–3.69, p< 0.01) (Table 4). Of note, only 132 patients were on

the agent, and 10 (7.6%) developed dry AMD. In the wet AMD group, there was no statistically

significant change in hazard for any agent. When patients who converted from dry to wet

AMD were analyzed by IMT drug, mycophenolate mofetil showed a reduction in hazard

(HR = 0.92, 95% CI = 0.85–0.99, p = 0.02) in older patients, namely those over 70. However,
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Fig 1. Flow chart of patients in each cohort after applying exclusion and inclusion criteria.

https://doi.org/10.1371/journal.pone.0203492.g001
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across all ages, mycophenolate showed no difference in hazard (HR 1.03, 95% CI 0.69–1.52,

p = 0.90, Table 4). No other drug showed any effect in conversion from dry to wet AMD. All

potential combinations of two or three drugs were also examined. No pair or trio of drugs had

any statistically significant effect.

Discussion

Human histopathology and animal studies of AMD have consistently demonstrated a local

immune response in this disease. What has yet to be demonstrated is that modulation of this

immune response can have a therapeutic effect. In this study, most IMT in the CKD popula-

tion had no effect, either helpful or harmful, on the risk of onset or progression of AMD. How-

ever, one agent, mycophenolate mofetil, showed a modest but statistically significant reduction

in the hazard of converting from dry AMD to wet AMD, and one agent, everolimus, had an

increased hazard of dry AMD.

The immune response in AMD is complex and incompletely understood. Multiple mole-

cules and cells across both the innate and adaptive immune systems are involved, but the hier-

archy and importance of such mechanisms in the broader context of retinal, RPE, and Bruch’s

membrane senescence have yet to be established. Drusen themselves consist partly of comple-

ment factors, and polymorphisms in complement factor H, a downregulator of complement,

are a well-known risk factor for AMD. When certain complement components are blocked in

the laser-induced model of CNV, neovascularization does not develop [23]. In addition, a

monocytic infiltrate is present in AMD [24, 25], and alternatively activated macrophages (M2

macrophages) are known contributors to angiogenesis. Alternatively activated macrophages

do not exhibit the pro-inflammatory phenotype of classically activated ones. Instead, they

express TGF-beta and Il-10, contribute to wound healing, and induce angiogenesis [26]. In

multiple studies of macrophage depletion in mice, loss of macrophages inhibits choroidal neo-

vascularization [27, 28]. We should add that the appropriate cytokine milieu, mostly involving

Il-10 [29], is necessary to polarize macrophages towards the pro-angiogenic M2 subtype, or

else the anti-angiogenic, M1 subtype dominates [30]. Indeed, Il-10 increases in the aging eye

[31], polarizing them to the M2 subtype. Furthermore, loss of FasL causes increased choroidal

neovascularization in mice [13]. These findings have led to the invocation of a “response to

retention” hypothesis in AMD pathogenesis, not unlike atherosclerosis [32]. Due to RPE

Table 2. Baseline characteristics of the study population by cohort.

Cohort 1 Cohort 2

Number of patients 10,813 217,081

Mean age (IQR) 59.4 years (9) 71.5 years (19)

% Female 36.6% 44.6%

https://doi.org/10.1371/journal.pone.0203492.t002

Table 3. Hazard ratios of developing dry AMD, wet AMD without a prior diagnosis of dry, or conversion from

dry to wet.

Hazard Ratio (HR Cohort 1/HR cohort 2) 95% CI P value

Dry Univariate 0.98 0.90–1.08 0.76

Multivariate 0.95 0.87–1.05 0.32

Wet Univariate 0.87 0.69–1.11 0.26

Multivariate 0.85 0.66–1.08 0.18

Dry to Wet Univariate 1.17 0.91–1.52 0.23

Multivariate 1.24 0.94–1.62 0.12

https://doi.org/10.1371/journal.pone.0203492.t003
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senescence, lipoproteins begin to accumulate beneath the RPE. These retained products, some

of which are oxidized, elicit a subclinical immune response, hence the phrase response to

retention. This includes macrophages that, when alternatively activated, degrade Bruch’s

membrane with matrix metaloproteinases and ultimately can induce angiogenesis. This shares

certain commonalities with atherosclerosis, in which oxidized lipoproteins are retained in a

subintimal location, inciting a chronic immune response rich in macrophages that increases

vascular plaque build up [33]. One can also broadly conceive of both pathologies as wound

healing responses to abnormal or damaged tissue. Multiple studies have shown cardiovascular

benefit from chronic IMT [34–38], and interestingly canakinumab, an Il-1 beta inhibitor,

reduced mortality from coronary artery disease in a recent randomized controlled trial [39].

Mycophenolate mofetil has multiple mechanisms of action, at least one of which may

explain the protective effect found herein. As an inosine monophosphate (IMP) dehydroge-

nase inhibitor, it primarily antagonizes lymphocytes. Both T and B lymphocytes cannot pro-

duce guanosine de novo and must rely on the salvage pathway in order to replicate DNA.

Because IMP dehydrogenase is essential to the salvage pathway but not the de novo one, myco-

phenolate is relatively selective for lymphocytes. T and B cells are largely absent from the

immune response in AMD, and thus this mechanism is unlikely to be the causative one. On

the other hand, by reducing glycosylation of intercellular and vascular cell adhesion molecules,

mycophenolate reduces the infiltration of pro-angiogenic M2 macrophages and monocytes

into the eye. Bone marrow-derived stem cells are also recruited via vascular adhesion mole-

cules and are increasingly recognized as important in angiogenesis. They differentiate into

endothelial progenitor cells and incorporate into the nascent choroidal neovascular membrane

[40, 41, 42]. Because mycophenolate prevents these cells from leaving the bloodstream and

entering the choroid and RPE, their potential to stimulate or sustain choroidal neovasculariza-

tion would theoretically be inhibited.

The canonical inflammasome also plays a role in the pathogenesis of advanced AMD, and

mycophenolate’s downregulatory effect on Il-1 beta is a third biologically plausible mechanism

by which the drug could protect against conversion from dry to wet AMD. The inflammasome

is a complex of pro-Il-1 beta and Il-18 that becomes active and released from inflammatory

cells after cleavage by caspase-1, which in turn is activated by signals from NOD-like receptor

Table 4. Hazard ratios of developing dry AMD, wet AMD without prior diagnosis of dry, or conversion from dry to wet by IMT agent in cohort 1 patients. Results

significant at the p = 0.05 level are in bold.

Total number of patients with a

prescription

Hazard Ratios

Dry AMD (95% CI, p

value)

Wet AMD (95% CI, p

value)

Conversion from Dry to Wet AMD (95% CI,

p value)

Mycophenolate

mofetil

5539 0.92 (0.81–1.05, p = 0.23) 1.06 (0.79–1.43, p = 0.70) 1.03 (0.69–1.52, p = 0.90)

Azathioprine 341 0.82 (0.48–1.38, p = 0.44) 1.03 (0.33–3.19, p = 0.96) 0.56 (0.08–3.97, p = 0.56)

Methotrexate 3 0.0001 (0-infinitiy,

p = 0.96)

0.0001 (o-infinity,

p = 0.98)

0.0001 (0-infinity, p = 0.985)

Tacrolimus 6128 0.92 (0.81–1.04, p = 0.17) 0.92 (0.68–1.25, p = 0.60) 1.25 (0.89–1.76, p = 0.202)

Sirolimus 147 0.86 (0.39–1.92, p = 0.72) 0.87 (0.12–6.16, p = 0.89) 1.42 (0.20–10.1, p = 0.724)

Everolimus 126 2.14 (1.24–3.69,

p = 0.006)

2.10 (0.52–8.43, p = 0.29) 0 (0-infinity, p = 0.98)

Cyclosporine 871 1.07 (0.79–1.44, p = 0.68) 1.03 (0.49–2.18, p = 0.93) 0.74 (0.24–2.30, p = 0.60)

Belatacept 5 2.75 (0.39–19.5, p = 0.31) 0.0001 (0-infinitiy,

p = 0.98)

0.0001 (0-infinity, p = 0.99)

Prednisone 8153 0.94 (0.84–1.04, p = 0.23) 0.83 (0.63–1.11, p = 0.21) 1.24 (0.92–1.68, p = 0.16)

https://doi.org/10.1371/journal.pone.0203492.t004
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family pyrin domain 3 (NLRP3). Excessive inflammasome activity has been implicated in

other neurodegenerative diseases such as Alzheimer’s [43]. While Il-18’s role in advanced

AMD is unclear–there is mixed evidence that it might inhibit CNV and some that it may pro-

mote geographic atrophy [44–47], Il-1 beta is clearly a pro-angiogenic cytokine. The drusen

component A2E induces Il-1 beta expression [48], which promotes angiogenesis both in a

VEGF-dependent and VEGF-independent fashion [49, 50, 51]. Moreover, inhibition of Il-1

beta has decreased the size of CNV lesions in preclinical studies. Mycophenolate downregu-

lates expression of Il-1 beta by leukocytes and microglia, which would theoretically decrease

choroidal neovascularization [52, 53, 54]. As mentioned, there is now a selective Il-1 beta

inhibitor which has shown a mortality benefit in cardiovascular disease, and these data as well

as the notable similarities between the two diseases raise the prospect of Il-1 beta modulation

as therapy for AMD.

The drug’s last mechanism of action, inhibition of inducible nitric oxide synthase, is less

likely to explain any therapeutic effect. While nitric oxide can cause oxidative damage to the

RPE, evidence for a specific role in AMD pathogenesis is limited.

A second finding in this study was the harmful effect of everolimus, which increased the

hazard of developing dry AMD by over two fold. Everolimus is an mTOR inhibitor. The mech-

anistic/mammalian target of rapamycin is a serine-threonine protease associated with a large

protein complex that integrates various signals from growth factors and cellular nutrients to

direct protein synthesis, cell growth, and cell proliferation. It is also integral to allowing lym-

phocytes to enter the S phase of the cell cycle, and thus is effectively a T cell inhibitor. As

explained above, lymphocytes are rarely present in AMD histopathology, and thus one would

not intuitively expect T cell inhibition to be therapeutic in this disease. This study supports

such a rationale, as no T cell inhibitor showed a protective effect. However, observing a harm-

ful effect raises questions. A small, phase I study of intravitreal sirolimus, another mTOR

inhibitor, for geographic atrophy (GA) in AMD was halted early because two of the six patients

developed rapid, progressive central retinal thinning on OCT [55]. The investigators noted

that mTOR affects multiple intracellular pathways, rendering the ultimate effect of its inhibi-

tion unpredictable. Some preclinical studies have shown a beneficial effect from mTOR inhibi-

tion on RPE senescence while others have shown that mTOR physiologically extends

photoreceptor survival in animal models of retinal degeneration and mediates the RPE’s

response to nerve growth factors. The exact reason for everolimus’ harmful effect in this study

is unclear. As is the case for any of the effects seen in this study, one must consider the possibil-

ity that an off-target drug effect is responsible. Last, this is a single study whose results require

further validation, and thus there remains the possibility that these effects are spurious.

This study has several notable limitations. First, it did not control for smoking or race, both

risk factors for AMD to different extents. Smoking is not coded for by ICD9 or 10 diagnoses,

and race was not included in the dataset, thus making it impossible to control for either.

Second, both incident and prevalent cases of kidney transplants were included in this study,

which has both benefits and drawbacks. Most renal allograft recipients in the US are middle

aged at the time of transplantation while onset of AMD correlates more strongly with age than

any other risk factor. Including only incident cases of renal transplant recipients over 50

would greatly reduce the sample size, hazard of disease, and power of the study. Conversely, by

including prevalent transplant cases with older patients (i.e. patients who underwent trans-

plantation prior to their entering the insurance dataset), the sample, hazard of disease, and

power of the study all increase. The drawback to this approach is that the IMT medication his-

tory of these patients cannot be tracked prior to their entering the dataset. While all allograft

recipients must be on some continuous IMT, we do not know the exact nature of said regimen

for each patient. For example, a patient in this study on mycophenolate alone for five years
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may have always been on mycophenolate, or she may have been switched from azathioprine to

mycophenolate a few years prior to inclusion in this dataset. Because the prior regimen is

unknown, the extent to which other agents may have contributed to the protective effect seen

for mycophenolate is unclear. Having stated that, because no other agents showed a protective

effect and one even showed a deleterious one, it is more likely that these prior unknowns have

diluted mycophenolate’s protective effect rather than enhanced it. Moreover, we posit that the

beneficial interaction effect seen between patient age and mycophenolate use is probably a sur-

rogate for length of use of mycophenolate, the standard of care anti-metabolite agent for allo-

graft recipients since its FDA approval in 2000. Thus, the effect of mycophenolate is strongest

in the very group of patients who are at higher risk of developing the disease due to their

advanced age. Similarly, by the same logic, the true harmful effect of everolimus may also be

diluted. Since most renal transplants occur in middle age but AMD’s onset is largely in the

elderly, only a dataset with 20–30 years of continuous patient data can address this issue

rigorously.

Third, although it is clear that immune dysregulation has a role in the development of

CNV, and possibly dry AMD, the uremic state is associated with disorders of the innate and

adaptive immune systems in ESRD [56]. Thus, a state of acquired immune dysfunction in ure-

mia could be an important confounding variable for both the development of dry and wet

AMD. Until a better understanding of the pathophysiology of AMD is obtained the impor-

tance of such changes in the population studied are unknown.

Finally, as in all retrospective cohort studies, even when employing multiple covariates and

matching for kidney disease severity, it is always possible that some unidentified, causal risk

factor does not segregate evenly between groups, thereby introducing systematic bias.

The strengths of this study include its large sample size, its use of a transplant population to

mitigate confounding by indication (indication bias), and its novelty. To the best of our knowl-

edge, this is the first study to examine systemic IMT for AMD in a large set of patients. Using

the advanced CKD population substantially reduces confounding, a fatal flaw in many studies

of similar methodology, because either dialysis or transplantation plus IMT is a viable option

for advanced CKD as described in the introduction.

More research is needed to corroborate these results both in other well designed studies of

different organ allografts and perhaps also in patients with chronic inflammatory diseases who

were deliberately excluded from this study because of the notable caveats listed above. More-

over, while the mTOR inhibitors have been the subject of considerable pre-clinical work in

this area, the same is untrue of anti-metabolites or other IMT agents. A logical next step would

be to test these agents for efficacy in animal models of AMD and choroidal neovascularization.

It would also be intriguing to see if everolimus recapitulates or accelerates an AMD phenotype

in susceptible animal models. While systemic IMT carries considerable systemic health risks,

one hopes local IMT agents might equal or even surpass systemic ones in efficacy for this

blinding disease.

Conclusion

In general, most systemic IMT does not affect the risk of onset or progression of AMD in

patients with chronic kidney disease. However, mycophenolate mofetil may confer some

degree of protection against the conversion of dry AMD to wet AMD, suggesting that modula-

tion of the immune response may prevent progression of the disease. Conversely, everolimus

may increase the risk of dry AMD. More research is needed to validate these findings in other

patient populations. If such validation comes to fruition, more work would be needed to eluci-

date the exact immunologic mechanisms by which these effects occur.
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