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Background
Recent advances in technology enable one to study heterogeneous mixtures of cell pop-
ulations at the single-cell level. Single-cell RNA sequencing (scRNA-seq) [1] provides 
whole-genome transcription profiling, single-cell ATAC-seq (scATAC-seq) [2] identifies 
accessible chromatin regions, single-cell bisulfite sequencing [3] measures DNA meth-
ylation, and single-cell CUT&Tag [4] profiles histone modifications or transcription fac-
tors all at the single-cell level. Several single-cell multi-modality sequencing technologies 
have been developed, such as single-cell CITE-seq [5] for joint profiling of gene expres-
sion and protein expression, single-cell multiome [6] for joint profiling of gene expres-
sion and chromatin accessibility, and single-cell Paired-Tag [7] for joint profiling of gene 
expression and histone modification. However, it is difficult to observe all genomics pro-
files in the same single cell at the same time. One alternative way is to generate some 
modalities of genomics data on some cells and generate other modalities on other cells 
but from the same heterogeneous population.

Multi-omics analyses have been reported to provide a comprehensive understand-
ing of cellular processes through the integration of different types of molecular data. 

Abstract 

Despite recent developments, it is hard to profile all multi-omics single-cell data 
modalities on the same cell. Thus, huge amounts of single-cell genomics data of 
unpaired observations on different cells are generated. We propose a method named 
UnpairReg for the regression analysis on unpaired observations to integrate single-cell 
multi-omics data. On real and simulated data, UnpairReg provides an accurate estima-
tion of cell gene expression where only chromatin accessibility data is available. The cis-
regulatory network inferred from UnpairReg is highly consistent with eQTL mapping. 
UnpairReg improves cell type identification accuracy by joint analysis of single-cell 
gene expression and chromatin accessibility data.
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Traditionally, expression and accessibility profiling are done separately on different 
sub-samples from the heterogeneous population. Huge amounts of such unpaired 
scRNA-seq and scATAC-seq, not profiled from the same cell, have been generated 
[8–13]. Integrative analysis of scRNA-seq with scATAC-seq could identify the sub-
populations more accurately and provide more detail about the gene regulation [14–
18]. For jointly analyzing these two types of data, all these methods require a linking 
function between cis-regulatory elements (REs) and target genes (TGs). For example, 
SOMatic [16] links the RE to the nearest gene. Our previously developed methods, 
Coupled NMF [18] and DC3 [17], learn the RE-TG connection from external bulk 
data from diverse cellular contexts and bulk 3D chromatin contact data, respectively. 
Distance-based linkage is problematic as some REs do not regulate the nearest genes 
[19]. Proper external bulk data are not always available, and the association learned 
from the external bulk data will omit the RE-TG relations specific to those subpop-
ulations that have not been included in the database [15]. A more general format 
of the linking function is using chromatin accessibility to predict gene expression. 
Many methods, including Seurat [20] and Signac [21], calculate a gene activity score 
for scATAC-seq cells, which was defined as the read count in the gene body and pro-
moter region. A different version of gene activity score has been defined in Cicero 
[22], which is a weighted sum of nearby REs where the weight is dependent on the 
correlation of RE and promoter accessibility; MAESTRO [15] defines gene activity 
score as a weighted sum of nearby REs where the weight is an exponentially decreas-
ing function of RE-TG distances; SnapATAC [23] defines a gene accessibility score 
by smoothing the read count in the gene body [17–19]. An accurate linking function, 
RE-TG linking or a prediction of TG expression from REs, is a key to whether these 
methods perform well. A statistical method to learn such linking functions without 
using external data is in urgent need.

The main contribution of this paper is to fill this gap by the introduction of a 
regression model to predict the gene expression from chromatin accessibility on 
unpaired cells. This model allows unpaired observation of feature and response 
variables, say accessibility of REs are features and expression of target genes are 
response variables. The traditional regression model requires observation of feature 
variables and response variables on the same samples (we call it paired observation). 
Note that here we have multiple response variables and multiple feature variables. 
We transfer the regression problem into a covariance level quadratic equation, in 
which the inner products of response variables are represented as a quadratic of the 
inner product of feature variables. By fitting such equations, we learn the coefficient 
for each RE and predict gene expression of cells for which only chromatin accessibil-
ity is measured. The cis-regulation learned from this model would help understand 
the cell type-specific regulatory mechanism. The predicted gene expression from 
our model is a weighted sum of accessibility of gene nearby REs where the weights 
are the coefficients that we learned from the statistical model. Thus, this method 
should provide a much more accurate estimation of gene expression than previous 
methods. An accurate prediction of gene expression would increase the power of cell 
type identification and be useful for joint analysis.
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Results
Regression analysis on unpaired observations

We propose a statistical method for integrative analysis of unpaired single-cell gene 
expression and chromatin accessibility data from the same tissue/context but from dif-
ferent cells. Our method is based on a regression model on unpaired observations, so 
we name it unpaired regression (UnpairReg). Figure 1 shows the schematic overview of 
UnpairReg. Our goals are (1) to predict gene expression for cells for which only chro-
matin accessibility data is available and (2) to learn the cis-regulatory relations between 
regulatory elements (REs) and target genes (TGs). Let O be a n1 by p1 matrix represent-
ing chromatin accessibility on p1 REs for n1 cells from the first sample. The expression of 
TGs is noted in the E matrix, where E is a n2 by p2 matrix of gene expression data on p2 
genes and n2 cells from the second sample. If we have both gene expression and chroma-
tin accessibility data measured on the same cells (paired data), we can learn the RE-TG 
association by fitting a regression model E = Oβ + ε, where the expression of a TG is rep-
resented as a weighted sum of accessibility of REs close to this gene and the β represents 
the coefficients to be estimated (Fig. 1A). However, such a type of regression analysis is 
not feasible for unpaired data, where gene expression and chromatin accessibility are not 
measured on the same cell (Fig. 1 B).

We propose UnpairReg as a method for integrative analysis of unpaired data. First, we 
introduce the main idea of UnpairReg by an intuitive example in Fig. 1. Assume that we 

E = Oβ + ε

E'E = β' O' Oβ + ε'ε

Fig. 1  Schematic overview of UnpairReg model. A Schematic of the linear regression model based on 
paired chromatin accessibility and gene expression data. Gene expression level and chromatin accessibility 
are observed in the same cell. TG1 and TG2 are from two different genomic locations. RE1-TG1 regulation, 
RE5-TG2 regulation, TG1-TG2 correlation, and RE1-RE5 correlation are observed by data. B Schematic of 
the UnpairReg model based on unpaired data. Gene expression level is observed only for cell 1 to cell 5, 
while chromatin accessibility is observed for cell 6 to cell 10. TG1-TG2 correlation and RE1-RE5 correlation 
are observed in this data but no other significant correlation between REs and TGs. So, we infer RE1-TG1 
regulation and RE5-TG2 regulation
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have two strongly correlated genes, TG1 and TG2, each of which has three nearby REs 
denoted by {RE1, RE2, RE3} and {RE4, RE5, RE6} respectively. For chromatin accessibil-
ity data, if we observe that RE1 and RE5 have a strong correlation, but the other pairs do 
not correlate, then we can easily infer that the regulator of TG1 is more likely to be RE1 
rather than {RE2, RE3}, and the regulator of TG2 is more likely to be RE5 rather than 
{RE4, RE6}.

In unpaired data, the chromatin accessibility of REs is not observed for the cells on 
which the gene expression is available, which we call RNA-seq cells. Thus, we cannot 
learn the association of RE-TG by linear regression model (Fig. 1B). The remaining infor-
mation, RE1-RE5 and TG1-TG2 correlations, and the information on genome location 
are very informative in identifying the regulation of RE to TG. Fetching information of 
the remaining RE-RE and TG-TG correlations from covariance matrices, UnpairReg can 
infer the cis-regulatory information and predict gene expression for the cells for which 
only chromatin accessibility data is available (ATAC-seq cells). Mathematically, the gene-
gene covariance matrix is a quadratic of the RE-RE covariance matrix. We transfer this 
linear regression problem into a regression on covariance matrix under some assump-
tion ETE = βTOTOβ + εTε, where the ETE represents the gene-gene covariance matrix, 
and OTO represents the RE-RE covariance matrix. This covariance regression allows us 
to obtain coefficients similar to the coefficients from linear regression (see the “Meth-
ods” section for detail). We designed a fast algorithm for solving this problem by mak-
ing full use of the sparse structure (i.e., REs on chromosome 1 do not regulate TGs on 
chromosome 2) of the coefficient matrix to iteratively update the coefficient of one gene 
at a time (see the “Methods” section for detail). The estimated regression coefficients 
reflect the cis-regulation, and they also can be used to predict the gene expression level 
for the cells for which only chromatin accessibility data is available. To further improve 
the prediction of gene expression, we developed an optimization model to fine-tune the 
predicted gene expression by preserving both cell-cell covariance and gene-gene covari-
ance in the predicted gene expression data (see the “Methods” section for detail).

Performance evaluation using in silico mixture of cells

To illustrate the efficacy of UnpairReg in cis-regulatory inference and gene expression 
prediction, we simulate cis-regulatory coefficients, gene expression, and chromatin 
accessibility data under different dropout rates (see Additional file 1 for detail).

First, we evaluate the effectiveness of the coefficient estimation. Taking the unpaired 
data as input, we estimate cis-regulatory coefficients by UnpairReg. Since we know the 
real cis-regulatory coefficient in this simulation data, we compare the estimated coef-
ficient with the ground truth by calculating Pearson correlation coefficients (PCC) to 
evaluate the coefficient estimation. Figure 2A shows that the PCC ranges from 0.1 to 0.4 
under a 0.6 to 0.9 dropout rate, which suggests that UnpairReg estimates the coefficient 
accurately.

To evaluate the performance of gene expression prediction, we take the real gene 
expression data as ground truth and calculate the PCC between our prediction 
and ground truth. Here, we calculate PCC for each cell across genes, named cell-
level PCC, as well as the gene-level PCC for each gene across cells. Taking the real 
gene expression data as ground truth, we compare our method with the observed 
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gene expression data. Note that the real gene expression data is different from the 
observed gene expression data. They both are not observed for unpaired data. The 
former reflects the actual level of gene expression in every single cell and cannot be 
observed by sequencing technologies. The latter can be measured by single-cell mul-
tiome data (paired data), and it provides a rough estimation of the gene expression as 
it is affected by dropout. Figure 2B shows the average cell-level PCC of our method 
and the observed gene expression data. The average cell-level PCC of observed gene 
expression decreases from 0.23 to 0.11 along with the increasing dropout rate, while 
the PCC of the predicted gene expression drops from 0.89 to 0.78. It shows the cell-
level PCCs of UnpairReg are larger than that of observed gene expression data at each 
dropout rate. The average gene-level PCC of observed gene expression decreases from 
0.15 to 0.07 along with the increasing dropout rate, while the PCC of the predicted 
gene expression decreases from 0.70 to 0.48 (Fig. 2C). Figure 2D shows the boxplot of 
the cell-level PCC at the 0.87 dropout rate. We compare our prediction with observed 
gene expression data as well as randomly generated gene expression data by one-sam-
ple t-test (p-values: 10−6066 and 10−7008). We perform the same comparison for gene-
level PCC and observe a remarkable difference between our prediction and the other 
two predictions (p-values: 10−312 and 10−391, Fig. 2E).

Fig. 2  Performance of UnpairReg in silico mixture of cells. A PCC of UnpairReg predicted coefficient beta 
and real beta under different dropout rates. B The mean cell-level PCCs between predicted gene expression 
level and real gene expression. Cell-level PCC is PCC calculated for each cell across genes. Color in B to E 
indicates the different types of predicted gene expression data. Orange represents for UnpairReg predicted 
gene expression; blue represents observed gene expression after drop-out; grey represents random data. C 
The average of gene-level PCCs between predicted gene expression level and ground truth. Gene level PCC 
is PCC calculated for each gene across cells. D Cell-level PCC for each cell under a dropout rate of 0.87. The 
value labeled is the -log10 p-value of the one-sample t-test. E Gene level PCC under a dropout rate of 0.87. 
The value labeled is the same as D. Dropout rate is defined by the percentage of 0 in the single-cell data
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The simulation data described above contains an equal proportion of each cell type. 
We generate four other simulation datasets. One of the datasets contains random num-
bers of cell types, and the other three include one to three cell types with a minor pop-
ulation (see Additional file  1 for detail). We observe similar results for the other four 
datasets (Additional file 1: Fig. N1 A to F). Collectively, these results suggest that Unpair-
Reg accurately predicts the gene expression at different dropout level data and that the 
prediction accuracy is even more precise than the observed data.

Predicted gene expression from UnpairReg is consistent with the multiome data

To evaluate the accuracy of UnpairReg in predicting gene expression on actual single-
cell data, we apply our method to peripheral blood mononuclear cells (PBMC) and 
human healthy brain tissue (HHBT) multiome data from 10X Genomics (see the “Meth-
ods” section for detail). We compare UnpairReg with another gene expression predic-
tion method named gene activity score (GAS) [21]. GAS is the method used to integrate 
scRNA-seq and scATAC-seq in Seurat [20], and it is defined as the number of fragments 
overlapping the gene body and a 2-kb upstream region for each gene. We will systemati-
cally compare UnpairReg-predicted gene expression with GAS.

We first evaluate the accuracy of gene expression prediction for each cell by taking 
the gene expression count matrix as the ground truth. Figure 3A and Additional file 2: 
Fig S2A show the cell-level PCCs of all cells, in which the y-axis represents our method 
and the x-axis represents the GAS for PBMC and HHBT data, respectively. These results 
show that UnpairReg performs better for almost all cells (100% for PBMC and 99% for 
HHBT). For PBMC data, the average cell-level PCC is 0.55, which is 5-fold larger than 
the average PCC of GAS 0.11 (one-sample t-test, p-value 10−3959); for HHBT data, the 
average PCCs are 0.39 and 0.19 for UnpairReg and GAS (2-fold and one-sample t-test, 
p-value 10−734). Then, we compare the gene level PCC with GAS for all genes. Unpair-
Reg achieves higher PCCs than GAS for 91.8% of genes for PBMC and 80.7% for HHBT. 
The average gene-level PCC for PBMC is 0.15, which is 4-fold higher than that of GAS 
(Fig. 3B), while the average PCC of HHBT is 0.27 (4-fold) (Additional file 2: Fig. S2C). 
Even though 4-fold increases the gene level PCCs, the actual PCCs of 0.15 and 0.27 can-
not be considered as high correlations. We think one possible reason is that the ground 
truth data is affected by the dropout, and so it may not be able to reflect the real gene 
expression level. To duel with the dropout [24], we impute the gene expression data and 
then compare our prediction with the imputed gene expression data. When we take 
the imputed gene expression data as ground truth, cell-level PCC and gene-level PCC 
increase to 0.84 and 0.47 for PBMC (Additional file  2: Fig. S1 A and B), while that of 
HHBT increases to 0.56 and 0.53 (Additional file 2: Fig. S2 B and D). To investigate the 
prediction result in detail, we choose one cell and show the pattern of observed versus 
predicted expression (Fig. 3C). The imputation may induce bias so that these PCCs may 
not be accurate. The real PCCs should be in the range of PCCs calculated under raw data 
and PCCs calculated under imputed data.

In addition to quantifying the accuracy of gene expression prediction for each cell 
by correlation, we further quantify it by alignment error, defined as the number of 
cells that have a closer distance than the true match (see the “Methods” section for 
detail). Taking the gene expression count matrix as ground truth, UnpairReg achieves 
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the lower alignment error of cells on both PBMC and HHBT datasets (Fig. 3D, one-
sample t-test p-value 10−1027 for PBMC; Additional file 2: Fig. S2E, one-sample t-test 
p-value 10−213 for HHBT). UnpairReg achieves the lower alignment error by tak-
ing the imputed data as ground truth (Additional file 2: Fig. S1C, one-sample t-test 
p-value 10−696 for PBMC; Additional file 2: Fig. S2F, one-sample t-test p-value 10−98 
for HHBT).

To evaluate UnpairReg more generally, we perform a systematical comparison, add-
ing one more dataset, three more metrics, and three more methods for comparison. 
We apply our method to the embryonic E18 mouse brain (EEMB) (see the “Methods” 
section for detail). In addition to PCC as the similarity metric, we add two similarity 
metrics, Spearman correlation coefficient, and cosine similarity, as well as one distance, 
root mean square error (RMSE). Other methods to calculate GAS include Cicero [22], 
SnapATAC [23], and MAESTRO [15]. UnpairReg achieves higher similarity, lower dis-
tance (Additional file 2: Fig. S3 A, B, and C), and lower alignment error (Additional file 2: 
Fig. S3 D, E, and F) than other methods across all datasets. Overall, the predicted gene 

Fig. 3  UnpairReg gene expression prediction is consistent with the paired data. A Cell-level PCC between 
the predicted and multiome gene expression. The x-axis represents the cell-level PCC between UnapirReg 
predicted gene expression and multiome gene expression, while the y-axis gives the cell-level PCC between 
GAS and multiome data. Color in A to C indicates the different methods. Orange represents for UnpairReg, 
and green represents GAS. B Gene-level PCC between predicted and multiome gene expression. The 
x-axis represents the gene-level PCC between UnapirReg predicted gene expression and multiome gene 
expression, while the y-axis represents the gene level PCC of GAS and multiome data. C Gene expression 
of multiome and UnpairReg for one gene. R2 is the r-squared as a goodness-of-fit measure for the linear 
regression model. p-value is for the F-test of linear regression. The y-axis and x-axis give predicted gene 
expression and log10 (1 + count) in a cell. D Alignment error of predicted gene expression. For each cell, 
represented by the predicted gene expression vector, we compute its distance with all cells (observed gene 
expression). Alignment error for a cell is defined as the number of cells that have a closer distance than 
the true match (the same cell). E The performance metrics AUPR for UnpairReg cis-regulatory coefficients 
and other methods. The ground truth is the variant-gene links from eQTLGen. We divide RE-TG pairs into 
different groups based on the distance of RE and the TSS of TG. There are 8634, 5791, 7431, 21,282, and 33,205 
RE-TG pairs in 0–3k, 3–10k, 10–20k, 20–50k, 50–100k, and 100–150k, respectively. PCC denotes the Pearson’s 
correlation coefficient of RE promoter. Distance denotes the decay function of the distance to the TSS; 
random denotes the uniform distribution. This figure corresponds to the PMBC data
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expression from UnpairReg is consistent with the single-cell multiome data and has 
much better performance than the predicted gene expression in previous studies.

To assess the ability of our method to infer cis-regulation, we calculate the consist-
ency of the cis-regulatory coefficients with expression quantitative trait loci (eQTL) 
studies that link genotype variants to their target genes. We download variant-gene links 
defined by eQTL in whole blood from GTEx [25] and eQTLGen [26] and use them to 
validate the RE-TG prediction. As the distance between RE and TG is important for the 
prediction, we divide RE-TG pairs into different groups based on their distance (0–3 
kb, 3–10 kb, 10–20 kb, 20–50 kb, 50–100 kb, and 100–150 kb). In each distance group, 
taking the eQTL data as ground truth, we computed a performance metric, area under 
the precision-recall curve (AUPR), by sliding the cis-regulatory score. We compared our 
method with a distance-based method, PCC between enhancer and promoter accessibil-
ity, and random predictions. UnpairReg achieves higher AUPR than other methods in 
all different distance groups (Fig. 3E, Additional file 2: Fig. S1D). The reason for very low 
AUPR of PCC in the 0–3k group is that REs in the upstream 2k of TSS are considered 
as promoters. These results show that UnpairReg not only can accurately predict gene 
expression but also can provide insight into cis-regulation.

UnpairReg predicted gene expression improves the identification of cell types

To illustrate UnpairReg’s capacity to identify the cell types or cell subpopulations, we 
measure whether the cluster structure embodied in the predicted gene expression 
data agrees with the ground truths cell type labels. Here, we use cell type annotation of 
PBMC data from the 10X Genomics R&D team [27] as ground truth. We compare our 
method with GAS and the observed gene expression data. We first perform principal 
component analysis (PCA) for the predicted or observed expression matrix to generate 
a reduced dimension matrix and choose 2nd to 20th PCs for further analysis (the first 
dimension tends to be highly correlated with the read depth) [9]. Figure 4A–C shows the 
UMAP based on the PCs of UnpairReg predicted gene expression, GAS, and observed 
gene expression data. We find minor populations are better separated in the UnpairReg 
than GAS. For example, plasmacytoid DC and non-classical monocytes. In contrast, 
plasmacytoid DC cells are divided into two subclusters, and non-classical monocytes are 
mixed with intermediate in the UMAP of GAS. We also compare our results with the 
observed gene expression data. Figure 4C shows that Native CD8 T cells are mixed with 
naive CD4 T cells in the UMAP of observed gene expression data, but they form one 
separate cluster in the UMAP of UnpariReg.

We further evaluate the clustering result of predicted gene expression system-
atically by two types of clustering analysis, single modality clustering, and coupled 
clustering (see the “Methods” section for detail). The first method is based on the 
predicted gene expression of ATAC-seq cells, and the second combines it with the 
gene expression of RNA-seq cells. For the single modality clustering method, we 
identify the cluster via the Louvain algorithm [28] based on the reduced dimension 
matrix (PCs). We cluster cells based on UnpairReg predicted gene expression, GAS, 
observed gene expression data, and impute gene expression data, respectively. We 
then calculate the normalized mutual information (NMI) and Adjusted Rand Index 
(ARI) based on the surrogate ground truth to evaluate the clusterings. Clustering 
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based on UnpairReg predicted gene expression achieves the highest NMI and ARI 
(NMI 0.742 for UnpairReg, 0.582 for GAS, 0.714 for observed, and 0.724 for impu-
tation data; ARI 0.643 for UnpairReg, 0.441 for GAS, 0.621 for observed, and 0.469 
for impute). For the coupled clustering, we perform canonical correlation analysis 
(CCA) on the predicted gene expression of ATAC-seq cell and the observed gene 
expression of RNA-seq cells. Compared with the first method, NMI and ARI of 
UnpairReg improve to 0.791 and 0.742, respectively, while those of GAS improve to 
0.700 and 0.577.

To quantify the capacity of cell type identification, we calculate the silhouette 
index (SI) [29] for each cell based on the top PCs (see the “Methods” section for 
detail). A higher SI value indicates that the cell is more similar to those sharing its 
label than other cell types. Figure 4D shows that UnpairReg achieves higher SI than 
GAS for 84.70% of cells. The mean SI of UnpairReg (0.31) is significantly higher than 
GAS (0.08), with a one-sample t-test p-value 10−701 and a fold change of 3.88. Fig-
ure 4E shows a similar result by comparing UnpairReg and observed gene expression 
data. UnpairReg achieves higher SI than the observed gene expression for 75.60% of 
cells. The average SI of UnpairReg (0.31) is 2.04-fold of the observed gene expression 
(0.15), and the difference is significant (one-sample t-test p-value:10−383).

We show the NMI and ARI of both single modality and coupled clustering, as well 
as the SI of 4 GAS score prediction methods in Additional file 2: Fig. S3G. Unpair-
Reg outperforms other methods across all metrics and all methods. Together, the 
predicted gene expression from UnpairReg performs better in identifying distinctive 
cell types than the GAS and the observed gene expression data.

Fig. 4  UnpairReg enhances cell type identification. A UMAP of the predicted gene expression from 
UnpairReg. Color in A to E indicates the ground truth label of PBMC data. The circled cell types from left to 
right are non-classical monocytes, plasmacytoid DC, memory B cells, and naïve B cells, respectively. B UMAP 
of the gene expression predicted by GAS. C UMAP of observed gene expression from the multiome data. 
D Silhouette index (SI) of cells based on predicted gene expression from UnpairReg and GAS. p-value is the 
significant level of the one-sample t-test. E SI of cells based on UnpairReg-predicted gene expression and the 
observed multiome gene expression data. p-value is the same as D 
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UnpairReg improves co‑embedding of gene expression and chromatin accessibility

Co-embedding of scRNA-seq and unpaired scATAC-seq data helps to match the cells 
from these two sources, identify the subpopulations, and reveal cell type-specific regula-
tory networks. To perform co-embedding of unpaired gene expression and chromatin 
accessibility data, we propose a procedure based on UnpairReg and CoupledNMF [18]. 
We first run UnpairReg to obtain the cis-regulatory coefficients and run CoupledNMF 
by taking the cis-regulatory coefficient as the coupling matrix (see the “Methods” sec-
tion). To validate the performance of this procedure in subpopulation identification and 
to remove batch variation between data types, we apply our method to unpaired single-
cell data from the primary bone marrow mononuclear cells (BMMC) population. The 
annotation of cell labels of this data is generated based on the cell type markers from 
bulk data analysis [30]. We compare the results with Seurat V3 co-embedding analysis 
[20], which links ATAC-seq cells with RNA-seq cells via canonical correlation analysis 
(CCA) based on GAS and gene expression data.

We first assess the performance of co-embedding at removing batch variation (RNA-
seq and ATAC-seq) by graph connectivity (GC) [31] score, which ranges from 0 to 1 
(see the “Methods” section for detail). A larger GC suggests cells of the same cell type 
from RNA-seq and ATAC-seq are close to one another in the co-embedding. From the 
co-embedding visualizations in Fig. 5A and C via UMAP and GC score, our method per-
forms better in batch mixing.

To assess the clustering performance, we compare the clustering labels with the 
surrogate ground truth labels by calculating normalized mutual information (NMI) 
and Adjusted Rand Index (ARI) [32]. Figure  5B  and D show the corresponding 
UMAPs colored by the surrogate ground truth labels. Our method achieves an NMI 
of 0.727 and ARI of 0.769, which are much higher than that of Seurat (NMI = 0.688, 
ARI = 0.704). To visualize the mapping of clustering labels and the ground truth, we 
use the Sankey plot to compare three labels: the Seurat label, ground truth labels, 

Fig. 5  UnpairReg improves co-embedding of gene expression and chromatin accessibility. A, B UMAP of 
CoupledNMF co-embedding. Color in A and C indicates the data type of cells. Color in B and D indicates 
cell type of ground truth for the BMMC population. C, D UMAP of Seurat co-embedding. E Sankey plot for 
subpopulations of CoupledNMF, ground truth, and Seurat. Small subpopulations including Mono, HSC, CD8, 
GMP, and MEP are merged into the “Others” cluster
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and our labels (Fig.  5E). To make the plot clear, we merge the 7 different progeni-
tors’ cells (CLP, CMP, GMP, HSC, LMPP, MEP, MPP) into one cell type named pro-
genitors cells in the ground truth since the proportion of those cells is very small 
and cannot be detected by current methods. Most of the CD4 cells in the surrogate 
ground truth map to cluster 0 and cluster 1 by Seurat and our method, respectively. 
In Seurat, 15.34% of CD4 RNA-seq cells are mismatched to other clusters, while 
this percentage in our method is 8.90%. In Addition, 67.02% of progenitor cells are 
mapped to cluster 6 in our method (76.47% for RNA-seq cells and 61.75% for ATAC-
seq cells), while these cells are scattered in all Seurat clustering. Overall, UnpairReg 
identifies the clusters with higher accuracy.

Discussion
This paper proposes a linear regression model, UnpairReg, allowing unpaired obser-
vation of feature and response variables. We apply UnpairReg to unpaired single-cell 
genomic data and utilize RE-RE and TG-TG correlations to infer cis-regulation and 
predict gene expression. Both simulation studies and real data analysis show that 
UnpairReg effectively recovers enhancer-target gene regulation and accurately pre-
dicts the gene expression. Predicted gene expression from UnpairReg is consistent 
with the multiome data. The inferred cis-regulation provides an accurate RE-TG 
connection for co-embedding analysis. The results show superior accuracy and 
robustness of UnpairReg.

From the machine learning point of view, the linear regression model using paired 
data to predict gene expression belongs to supervised learning, in which the feature is 
chromatin accessibility, and the label is gene expression. For supervised learning, fea-
tures and labels are accessible for each sample. Current gene expression estimation 
methods, such as gene activity score, only use the chromatin accessibility data. These 
methods belong to unsupervised learning, in which the data is not labelled. UnpairReg 
falls between unsupervised and supervised learning. In detail, for each cell (sample) 
from scATAC-seq data, chromatin accessibility (feature) is accessible, but gene expres-
sion (label) is not accessible. For each sample in single-cell RNA-seq data, the label is 
accessible, but the feature is not. Taking the advantage of the input data having multiple 
response variables and features, UnpairReg solves this problem by building the connec-
tion between the covariance matrices of response variables and features.

At last, we discuss the limitation of our method. UnpairReg is based on the assumption 
that the expression of different genes is independent under the condition of REs acces-
sibility given. But some transcription factors could regulate some target genes without 
changing the accessibility of REs. For those target genes, this assumption does not hold 
anymore, which may cause bias. The validation results reported above show that our 
method is already useful for many types of inference and predictions despite this. Thus, 
we expect that the independence assumption will not cause serious bias in the applica-
tion of this method. Another limitation is that there are dropouts in the observed (raw) 
data. To generate data with fewer dropouts, we impute the data and use the imputa-
tion data as ground truth for several analyses. However, imputation might induce bias, 
although we use a naïve method to impute the raw data to avoid bias.
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Conclusions
As a linear regression-based model, UnpairReg remarkably allows unpaired obser-
vation of feature and response variables. As an integrative analysis of single-cell 
unpaired multi-omics data where different modalities are measured on different cells, 
UnpairReg yields the gene expression prediction and the cis-regulatory network of 
REs and TGs. Taking the single-cell RNA-seq data as ground truth, we compare the 
mean cell-level PCC and the gene-level PCC of UnpairReg and the other four meth-
ods across three datasets. The predicted gene expression from UnpairReg is about 
1.67–9.93-fold (cell-level PCC) and 1.12–5.78 (gene-level PCC) fold more accurate 
than the widely used gene activity score, offering a good method to obtain gene 
expression and chromatin accessibility on the same cell. The inferred cis-regulatory 
network from UnpairReg serves as an accurate linking function of REs and TGs for a 
multitude of integrative analysis methods of scRNA-seq with scATAC-seq. Therefore, 
UnpairReg expands the opportunities in single-cell integration.

Methods
UnpairReg model

UnpairReg attempts to perform linear regression on the unpaired data. In the clas-
sical linear regression model, both predictors and responses are observed for each 
sample. We call such data paired data. Here, unpaired data allows missing predictors 
or responses for some samples. None of the samples has the simultaneous observa-
tion of predictor and response variables. Unpaired single-cell RNA-seq and ATAC-
seq data is a good example, missing gene expression or chromatin accessibility for 
each cell.

We describe the UnpairReg model based on the unpaired single-cell data. Let O be a 
n1 by p1 matrix representing chromatin accessibility on p1 REs for n1 cells from the first 
sample. The expression of TGs is noted in the E matrix, where E is a n2 by p2 matrix of 
gene expression data on p2 genes and n2 cells from the second sample. For paired data, 
we can use the following linear regression model.

where β is the regression coefficient, and ε is the error term. This model does not work 
for unpaired data, due to the n1 cells and n2 cells being mismatched.

We transfer this linear regression problem (1) into a regression on the covariance 
matrix under an assumption of the expression of different genes is an independent col-
umn under the accessibility of REs given.

where the ETE represents the gene-gene covariance matrix if each gene is normalized to 
0 across cells, and OTO represents the RE-RE covariance matrix if each RE is normalized.

Due to the cis-regulation decays along with the increase of genomic distance [33], the 
elements of β which represent RE-TG regulations should also decay following the dis-
tance. Thus, we add the regularization form to penalize the long-distance regulation by 
an exponential transform of the distance matrix as follows.

(1)E = Oβ + ε

(2)ETE = βTOTOβ + εT ε
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Here, Aij = exp
(

dij
d0

)

 is an p1 × p2 matrix for regularizing β; dij is the distance between 

the ith RE and the jth TG (infinity for different chromosomes); * denotes Hadamard 
product. To avoid the spurious RE-TG regulatory on different chromosomes or far apart 
on the same chromosome, βij is fixed to 0 if dij is larger than a given distance D0 (200k in 
our study).

Algorithm

We design a fast linear approximation algorithm for UnpairReg, taking into account the 
high sparsity of the cis-regulatory coefficient. We update β for one gene at a time (cor-
respond to one column), just using the nearby REs. For one gene this step is to solve 
a linear ridge regression model with dozens of explanatory variables. The input of our 
algorithm is 4 matrices, scRNA-seq E, scATAC-seq O, cis-regulatory coefficient β0, 
and the distance between genes and REs D. The output is cis-regulatory coefficient and 
paired gene expression. Additionally, there are 2 tuning parameters, λ and d0, which have 
the default value of λ = 107and d0 = 10000 in this study.

We solve β by an iteration algorithm.
Let β = β0, Aij = exp

dij
d0

 , X = βTOTO, and Y = ETE. Then, the quadratic equation 

ETE = βTOTOβ can be transformed into linear equation Y = Xβ.
For each gene, we renew the corresponding column of β. Note βij is fixed to 0, if dij is 

greater than the given distance D0 (200 kbp in our study). Thus, instead of using all col-
umns of X and A, we only retain the enhancers nearby the gene. We denoted the set of 
nearby enhancers of the jth gene as Sj, the corresponding columns of X as x̂

(

X.,Sj

)

 , and 

corresponding rows of the jth gene of A as â
(

ASj ,j

)

 . We renew the jth column and the 

rows of nearby enhancers of β as 
(

x̂T x̂ + �âT â
)−1

x̂TY.,j . Afterward, we renew the jth 
row of X with β.j by Xj . = βT

.j O
TO.

Specify a finite number of iterations and repeat step (2) and finally obtain β.
Predict paired gene expression Ê = Oβ.

Data pre‑processing

We filter genes and REs only being active in less than 1% of cells of E and O matrix, and 
then, we impute these two matrices for each cell by averaging K nearest cell (K is 100 
in our study). To measure the distance between cells, we use PCA to generate a lower-
dimensional representation of the cells and compute the Euclidean distance by only 
retaining the 2nd through 20th dimensions (the first dimension tends to be highly cor-
related with the read depth) [9]. We also denoted the gene expression and chromatin 
accessibility matrix after pre-processing as E and O respectively.

Initialize cis‑regulatory coefficient

To initialize the cis-regulatory coefficient, we sketchily estimate the gene expression 
matrix paired with the ATAC-seq and then compute the initialization of the cis-regula-
tory coefficient by solving (1).

(3)min
β

∥

∥

∥
ETE − βTOTOβ

∥

∥

∥

2
+ �

∥

∥A∗β
∥

∥

2
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We estimate gene expression Êk1j for the cell k1 and the gene j by a combination of the 
mean expression of gene j and relative cell depth of  k1:

where 1A(x) =
{

1, if x ∈ A
0, else

 ; 
∑p1

i=1 1(0,+∞)

(

Ok1i

)

 is the number of nonzero REs in cell k1, 

denoting the cell depth. We transform this value to exp
(

10
M

∑p1
i=1 1(0,+∞)

(

Ok1i

)

)

 by an 

exponential transformation, also denoting a metric of cell depth; 
1
n1

∑n1
k=1 exp

(

10
M

∑p1
i=1 1(0,+∞)(Oki)

)

 denotes the mean cell depth. Therefore, 
exp

(

10
M

∑p1
i=1 1(0,+∞)

(

Ok1i

))

1
n1

∑n1
k=1

exp
(

10
M

∑p1
i=1 1(0,+∞)(Oki)

) is a fold change, denoting the relative cell depth of cell k1; 

1
n2

∑n2
k=1 Ekj denotes the mean expression of the cell j. The rationale here is combining 

the mean expression level for each gene from RNA-seq data and the expression level for 
each cell (cell depth) from ATAC-seq data to predict gene expression in ATAC-seq data. 
Then, we perform linear regression based on the predicted gene expression and the 
imputed chromatin accessibility matrix O, and generate β0 as the initial value of the reg-
ulatory matrix. β0 is given by β0 =

(

OTO
)−1

(O)T Ê.

Fine‑tuning of gene expression

We have gained the predicted gene expression from the algorithm above based on the 
gene-gene covariance and RE-RE covariance. To improve the gene expression in pre-
serving both cell-cell covariance and gene-gene covariance better, we developed an 
optimization model to fine-tune the predicted gene expression further. We design an 
optimization model to find a fine-tuned gene expression X, so that the predicted gene-
gene covariance (XTX) is the same with the real gene-gene covariance (R1), and mean-
while, the predicted RE-RE covariance (XXT) is the same with the real one:

Here, 
∥

∥R1 − XTX
∥

∥

2

F
 aims to preserve gene-gene covariance, where R1 =

n1
n2
ETE is the 

gene-gene covariance, defined by ETE timing a scaling factor, the ratio of the number of 
cells, to eliminate the gap of cell number between RNA-seq and ATAC-seq, matching 
the scale of ETE and XTX. 

∥

∥R2 − XXT
∥

∥

2

F
 aims to preserve cell-cell covariance, where 

R2 =
µ2
µ1

OOT is the cell-cell covariance, defined by OOT timing another scaling factor 
the ratio of the mean of EET and OOT to eliminate the difference of data type. λ1 is a tun-
ing parameter to weight the two objectives. The scaling factor is introduced. We design a 
fixed point iterative algorithm, taking Ê = Oβ as the start point, renewing X by 
Xij = Xij

Bij
Cij

 , where B = XR1 + λ1R2X and C = (1 + λ1)XXTX.

Simulation

To illustrate the efficacy of UnpairReg in regulatory inference and gene expression predic-
tion, we performed a simulation study. We simulate the scATAC-seq data according to the 
method proposed in ref [34] taking bulk ATAC-seq count matrix [35] as input. We use Lun 

(4)Êk1j =
exp

(

10
M

∑p1
i=1 1(0,+∞)

(

Ok1i

)

)

1
n1

∑n1
k=1 exp

(

10
M

∑p1
i=1 1(0,+∞)(Oki)

)

1

n2

n2
∑

k=1

Ekj

(5)min
X

∥

∥

∥
R1 − XTX

∥

∥

∥F
2
+ �1

∥

∥

∥
R2 − XXT

∥

∥

∥F
2
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[36] to simulate scRNA-seq data. The detail about the simulation pipeline is described in 
the Additional file 1.

PBMC 10x data

We download the PBMC 10K data from the 10X genomics website https://​suppo​rt.​10xge​
nomics.​com/​single-​cell-​multi​ome-​atac-​gex/​datas​ets. Note that it contains 11,909 cells, and 
the granulocytes were removed by cell sorting of this dataset. We use the filtered cells by 
features matrix from the output of 10X genomics software Cell Ranger ARC as input and 
perform the downstream analysis. First, we perform Seurat 4.0 [37] weighted nearest neigh-
bor (WNN) analysis and it removes 1497 cells. We also remove the cells that do not have 
surrogate ground truth and it results in 9543 cells. Then, we generate the unpaired data by 
randomly selecting 4771 cells as ATAC-seq data with the remaining 4772 cells as RNA-seq 
data. We next perform the UnpairReg procedure, remaining 33,050 peaks and 11,277 genes 
when preprocessing data, only considering the REs within 200 kbp from TSS. The ground 
truth of predicted gene expression is the RNA-seq data of the 4771 cells.

HHBT 10x data

We download the HHTB data from the 10X genomics website https://​suppo​rt.​10xge​nom-
ics.​com/​single-​cell-​multi​ome-​atac-​gex/​datas​ets. We use the filtered cells by features matrix 
from the output of the 10X genomics software Cell Ranger ARC as input and perform the 
downstream analysis. It contains 3332 cells. We generate unpaired data by taking all cells as 
RNA-seq cells and ATAC-seq cells. We next perform the UnpairReg procedure, remaining 
48,053 peaks and 15,980 genes when preprocessing data, only considering the REs within 
200 kbp from TSS. The ground truth of predicted gene expression is the RNA-seq data of 
the 3332 cells.

EEMB 10x data

We download the EEMB data from the 10x genomics website https://​suppo​rt.​10xge​nom-
ics.​com/​single-​cell-​multi​ome-​atac-​gex/​datas​ets. We use the same pipeline to analyze the 
data, generating scRNA-seq data with 15,109 genes and 4881 cells, as well as scATAC-seq 
data with 37,758 peaks and 4881 cells.

Clustering of cells

We identify the cluster by 2 methods. For the first method, we perform PCA based on the 
gene expression data and nomalize each PC, rescaling the standard deviation to 1. Then, we 
perform Louvain algrithm based on the 2nd to the 20th PCs. In the second method, we per-
form canonical correlation analysis (CCA) taking predicted gene expression data of ATAC-
seq cells and the gene expression data of RNA-seq cells as input. The output of CCA is a 
co-embedding of ATAC-seq and RNA-seq cells. We cluster the cells via Louvain algorithm 
based on the co-embedding.

Alignment error

Alignment error is used to evaluate the alignment accuracy of each cell. Denote X and Y 
as the predicted gene expression matrix and ground truth of gene expression. The align-
ment error for the kth cell is defined as:

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
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where nk1 is the number of cells which is closer to the kth cell than the same cell in the 
ground truth gene expression data, d is the Euclidean distance, and xk. and yk. represent 
the predicted and ground truth gene expression of the kth cell, respectively.

SI

Based on the 2nd to the 20th PCs obtained from the first clustering method, we compute 
SI [29] for each cell using cosine distance.

Co‑embedding analysis for BMMC population

BMMC data is unpaired single-cell data with 2760 cells from scRNA-seq and 3928 cells 
from scATAC-seq (GEO under accession number GSE159417). After we get regulatory 
matrix β , we perform CoupledNMF [18] replacing the A matrix in (3) by β. H1 and H2 
give the cluster membership (7 clusters) of ATAC-seq and RNA-seq cells. We perform 
CCA for co-embedding by finding linear combinations of H1 and H2 which have a maxi-
mum correlation with each other. We get a co-embedding matrix via CCA, the embed-
ding of scRNA-seq and scATAC-seq cells, for further analysis, including UMAP and 
computing graph connectivity score.

The optimization problem for CoupledNMF is as follows:

Seurat co-embedding analysis follows the “integrating scRNA-seq and scATAC-seq 
data” vignette (https://​satij​alab.​org/​seurat/​artic​les/​atacs​eq_​integ​ration_​vigne​tte.​html).

Graph connectivity

The graph connectivity metric assesses whether cells of the same type from different 
batches (RNA and ATAC in our study) are close to one another in the embedding. This 
is evaluated by computing a k-nearest neighbor (kNN) graph, G(N; E), on the co-embed-
ding using Euclidean distances. We then check if all cells with the same cell type label 
are connected on this kNN graph. For each cell type label c, we generate the subset kNN 
graph G(Nc; Ec), which contains only cells from a given label. Using these subset kNN 
graphs, we compute the graph connectivity score:

Here, C represents the set of cell type labels, |LCC(G(Nc; Ec))| is the number of nodes 
in the largest connected component of the graph, and |Nc| is the number of nodes with 

(6)Ak = n
(k)
1 + n

(k)
2

(7)nk1 =
∑K

i=1 1d(xk . ,yi.)<d(xk . ,yk .)

(

d
(

xk ., yi.
)

, d
(

xk ., yk .
))

(8)nk2 =
∑K

i=1 1d(xi. ,yk .)<d(xk . ,yk .)

(

d
(

xi., yk .
)

, d
(

xk ., yk .
))

(9)minW1 ,H1 ,W2 ,H2≥0
1

2
∥ O −W1H1 ∥

2
F
+

�1

2
∥ E −W2H2 ∥

2
F
− �2tr

(

W
T

2
AW1

)

+ �
(

∥ W1 ∥
2
F
+ ∥ W2 ∥

2
F

)

(10)gc = 1
|C|

∑

c∈C
|LCC(G(Nc;Ec))|

|Nc|

https://satijalab.org/seurat/articles/atacseq_integration_vignette.html
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cell type c. The resulting score has a range of (0, 1], where 1 indicates that all cells with 
the same cell type are connected in the integrated kNN graph.

Comparison of PCCs from two different methods

We use a one-sample t-test to compare the two groups because the samples are a sample 
of the two groups. So, we test whether the mean difference of the two group is different 
from zero, which is a one-sample t-test.

Model parameters

We use the default parameters of UnpairReg for all analyses in this manuscript. We 
set the fixed distance d0 in matrix A from (3) 10,000 as the default value. The tuning 
parameters in the λ in (3) and λ1 in (5) are set as 107 and 0.5, respectively. We use default 
parameters for methods for comparison, including Signac, Cicero, MAESTRO, and sna-
pATAC. For Signac, we use the GeneActivity function from Signac R package 1.4.1 to 
get the gene activity score following the tutorial on Signac website https://​satij​alab.​org/​
signac/​artic​les/​pbmc_​vigne​tte.​html. For Cicero, we calculate the score by normalize_
gene_activities function implemented in the Cicero R package 1.3.5. We follow the rec-
ommended analysis protocol https://​cole-​trapn​ell-​lab.​github.​io/​cicero-​relea​se/​docs_​m3/ 
from the Cicero website. For MAESTRO, we perform the calculate_RP_score function 
from MAESTRO R package 1.5.1. For snapATAC, we take the standard pipeline, analyz-
ing the 5k PBMC dataset from 10X genomics https://​kzhang.​org/​SnapA​TAC2/​tutor​ials/​
pbmc.​html, as reference. The version of the SNAPATAC2 python module is 1.99.99.3. 
The gene activity score is calculated by the snap.pp.make_gene_matrix function.
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