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A B S T R A C T   

The modified extended tanh technique is used to investigate the conformable time fractional 
Drinfel’d-Sokolov-Wilson (DSW) equation and integrate some precise and explicit solutions in this 
survey. The DSW equation was invented in fluid dynamics. The modified extended tanh technique 
executes to integrate the nonlinear DSW equation for achieve diverse solitonic and traveling wave 
envelops. Because of this, trigonometric, hyperbolic and rational solutions have been found with a 
few acceptable parameters. The dynamical behaviors of the obtained solutions in the pattern of 
the kink, bell, multi-wave, kinky lump, periodic lump, interaction lump, and kink wave types 
have been illustrated with 3D and density plots for arbitrary chose of the permitted parameters. 
By characterizing the particular benefits of the exemplified boundaries by the portrayal of 
sketches and by deciphering the actual events, we have laid out acceptable soliton plans and 
managed the actual significance of the acquired courses of action. New precise voyaging wave 
arrangements are unambiguously gained with the aid of symbolic computation using the pro
cedures that have been announced. Therefore, the obtained outcomes expose that the projected 
schemes are very operative, easier and efficient on realizing natures of waves and also introducing 
new wave strategies to a diversity of NLEEs that occur within the engineering sector.   

1. Introduction 

Nonlinear evolution equations (NLEEs) have recently taken center stage in a few areas of the nonlinear sciences. The amazing and 
an extraordinary variety of explanatory methods which are growing more important for NLEEs may be used to demonstrate the 
excessive miracles that have emerged in the domains of diagram and mathematical component science. Numerous disciplines, 
including as physics of solid state, mathematical physics, optical fiber, oceanography, communication systems, mathematical biology, 
fluid mechanics, geochemistry, plasma physics, and chemical physics [1–12], make advantage of the wave phenomena of NLEEs. The 
NLEEs equation has not yet been solved using such a technique. Due to this, several researchers have created a variety of trustworthy, 
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effective, and simple methods for solving NLEEs equations like as the procedure of enhanced (G ′/G)-expansion [13], the manner of 
modified Kudryashov [14], the procedure of modified simple equation [15], the procedure of sine-Gordon equation expansion [16], 
the procedure of extended sinh-Gordon equation expansion [17], the manner of exp ( − φ(ξ))-expansion [18], the new auxiliary 
equation and modified Kudryashov scheme [19], MSE scheme [20], the trial solution formula [21], the procedure of Frobenius 
integrable decomposition [22], 

( G′

G ,
1
G
)
– expansion and Sine-Gordon-expansion methods [23], the manner of multiple simplest equation 

[24], the manner of solitary wave ansatzes [25], the manner of simple equation [26], the manner of extended simplest equation [27], 
the scheme of modified extended tanh-function [28], the manner of Hirota [29–32], new extended direct algebraic method [33], MSE 
method [34], the tanh-coth method [35], Riemann-Hilbert problems [36–39] and so on. As a result, nonlinear science is emerging as 
one of the fundamental areas of research in the growing wave system. 

We have implemented the modified extended tanh technique [40] which finds out innovative traveling wave solution of the 
conformable time fractional DSW equation. The conformable time fractional DSW equation is as following form: 

Dδ
t (ut) + αvvx = 0,

Dδ
t (vt) + βuvx + suxv + ηvxxx = 0

}

. (1)  

Where α, β, s, η are all non-zero wave modes and u, v are the functions of space and time. The DSW condition is initially presented by 
Drinfel’d and Sokolov [41] and Wilson [42]. The DSW condition has been viewed as in late expositions [43–49], where a number of 
doubly periodic and soliton solutions are introduced. The DSW equation belongs to the Kadomtsev–Petviashvili (KP) hierarchy [50], as 
demonstrated by Jimbo and Miwa. The DSW condition can be gotten from a six-decrease of the KP ordered progression in Ref. [43]. 
Using the direct algebra method [44,45], recent traveling wave authorizations to the DSW equation have been viewed. Fan used the 
algebraic manner [46] a year later to precisely solve the DSW equation. The DSW equation was solved precisely using the manner of 
generalized Jacobi elliptic function [47], which was demonstrated to yield kink, bell, singular, and periodic solutions. Inc [48] has 
tracked down the around doubly occasional wave arrangements of the DSW condition by utilizing the Adomain decomposition 
technique. Using the improved F-expansion technique, Zhao and Zhi [49] discovered the periodic and rational solution to DSW 
equation. The DSW equation is subjected to the Darboux transformation [51], which results in a reduction and precise solutions. In 
addition, references [52–54] discuss the DSW equation’s discussion of the conservation law and lie symmetry analysis. We additionally 
examined the nonlocal evenness and acquired the unequivocal arrangements of the DSW condition [55]. 

The purpose of our study is to build up the precise traveling wave solutions in mathematical physics for NEEs applying the modified 
extended tanh approach and the DSW equation. We learned the new type of trigonometric, exponential and rational solitary wave 
condition in different way. We also compare our solutions to other solutions. In recent years, many researchers have worked on our 
proposed model, which is mentioned in the paragraph above. The paper is manufactured as: in section 2, the CFD and its properties are 
described; in section 3, the suggested technique is discussed. We have used methods to the nonlinear evolution equation that was 
mentioned earlier in section 4. Section 5 presents our findings and related debates. in section 6 presents the similarity and difference 
with other published paper. Conclusions are provided in the final part. 

2. Preliminaries and methods 

2.1. Definition and a few features of conformable fractional derivative 

Khalil et al. [56] first proposed the conformable fractional derivative with a limit operator. 
Definition: f : (0,∞)→R then, the conformable fractional derivative of f with order δ is stated to be 

Dδ
t f (t)= lim

ε→

(
f (t + εt1− δ) − f (t)

ε

)

for all t> 0, 0< δ ≤ 1.

Afterward, Abdeljawad [57] made fractional versions of conformable derivatives for Taylor power series expansions, chain rule, 
Laplace transform, Gronwalls inequality, integration by parts, and exponential functions. The shortcomings of the current modified 
Riemann-Liouville derivative definition can be easily overcome with the definition of a conformable fractional derivative. 

Theorem 1. Assume δ∈ (0, 1], and f = f(t), g = g(t) be δ-conformable differentiable [57] at a point t > 0, then:  

(i) Dδ
t (cf + dg) = cDδ

t f + dDδ
t g, for all c,d ∈ R.  

(ii) Dδ
t (tγ) = γtγ− δ, for all γ ∈ R.  

(iii) Dδ
t (fg) = gDδ

t (f)+ fDδ
t (g)..  

(iv) Dδ
t (f /g) =

gDδ
t (f)− fDδ

t (g)
g2 .. 

Yet, Dδ
t (f(t)) = t1− δdf

dt, where f is differentiable. 

Theorem 2. Assume f : (0,∝)→R is a function like that f is differentiable and δ-conformable differentiable [58]. Further, expect g is a 
differentiable capability characterized in the scope of f . Then, 
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Dδ
t (fog)(t) = t1− δf ′

(g(t))g
′

(t).

Where prime indicate the classical derivatives dependent on t. 

3. Procedures of modified extended tanh method 

In this segment, we tell in details the modified extended tanh scheme for discovering traveling wave equations of nonlinear 
equations. Assume the partial differential equation: 

R(U,Ut,Ux,Utt,Uxx,Uxt.........)= 0. (2) 

R is a polynomial of u(x, t) and its partial derivatives, including the highest order derivatives and nonlinear terms, where U = u(x, t)
is an unfamiliar function. Recognition the arrangement of the nonlinear equation (7) is linked to the advancements listed below 
employing this technique. 

Step-1: The definite PDE (2) can be transferred into ODE by utilizing the change of = u(x, t) = u(ζ); ζ = x ± ω tδ

δ , where ω is the 
velocity of traveling wave like that ω ∈ R − {0}. The mentioned wave variable turns the NLPDE eq. (2) into an ODE as 

R(u, u′

, u′′, ..................)= 0. (3)  

Where u′

(ζ) = du
dζ, u

′′(ζ) = d2u
dζ2 , and so on. 

Step-2: Assume the solution of eq. (3) can be defined by a polynomial in Θ(ζ): 

U = u(ζ)=Ω0 +
∑m

j=1

(
Ωj(Θ(ζ))j

+Δj(Θ(ζ))− j)
. (4) 

and Θ(ζ) satisfies the ODE in 

Θ
′

(ζ) =Е+ Θ2(ζ). (5) 

Equation (5) has the accompanying solutions: 
Case-I: Whereas Е < 0, the following hyperbolic solutions are earned: 
Θ(ξ) = −

̅̅̅̅̅̅̅
− Е

√
tanh(

̅̅̅̅̅̅̅
− Е

√
ζ).And Θ(ξ) = −

̅̅̅̅̅̅̅
− Е

√
coth(

̅̅̅̅̅̅̅
− Е

√
ζ). 

Case-II: Whereas Е > 0, the following trigonometric solutions are earned: 
Θ(ξ) =

̅̅̅
Е

√
tan(

̅̅̅
Е

√
ζ). 

And Θ(ξ) = −
̅̅̅
Е

√
cot(

̅̅̅
Е

√
ζ). 

Case-III: Whereas Е = 0, we get the following solution: 
Θ(ξ) = − 1

ζ. 
Step-3: Balance the highest order derivatives terms with the highest order nonlinear terms in eq. (4) to get the standard of the 

positive integer. Whether the degree of u(ζ) is D[u(ζ)] = m, then the degree of the other expressions will be as follows: 

D
[

dpu(ζ)
dζp

]
= m+ p,D

[
up
(

dqu(ζ)
dζq

)s]
= mp+ s(m + q). 

Step-4: Concerning the replacement of eq. (4) into eq. (3) and by applying eq. (5), in which we perform a polynomial form of (Θ(ξ))
after bringing together all of the same order of (Θ(ξ)). An algebraic system can be constructed by reducing all polynomial’s coefficient 
to zero. 

Step-5: Measure the mathematical terms that were established in step 4 to alter the approximation of the constants. Replacing the 
approximations of the constants organized with the preparations of eq. (5), we will be able to obtain new precise and extensive 
traveling wave arrangements for the nonlinear development eq. (2). 

4. Applications 

By rule we started, the fractional complex transformation [59] is as follow: 

u(x, t)=U(ξ), v(x, t) =V(ξ), ξ= k
(

x − ω tδ

δ

)
. (6) 

Put equation (6) into equation (1), the ODE form of equation (1) is as: 

− kωU′

+ αkVV ′

= 0
− kωV ′

+ βkUV ′

+ skU ′V + ηk3V ′′′

= 0

}

. (7)  

From 1st equation in eq. (7) we have 

U =
α

2ωV2. (8) 
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Using eq. (8) into the 2nd equation of eq. (7), we gain under mentioned ODE: 

− 6ω2V +α(β+ 2s)V3 + 6ηωk2V ′′ = 0. (9) 

According to Modified Extended tanh Method by balancing V′′ and V3 of eq. (9) we have following solution form: 

V(ξ)=Ω0 + Ω1Θ(ζ) +
Δ1

Θ(ζ)
. (10) 

Substituting eq. (10) with (5) into (9) and afterward setting the coefficients of Θ(ζ) to zero, which can be tackled by Maple, we can 
get the accompanying sets: 

Set 1: k = k,ω = 2Еηk2,Ω0 = 0,Ω1 = ±2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 6Е

αβ+2αs

√
k2η,Δ1 = 0. 

Set 2: k = ±
(

αβΔ1
2+2αsΔ1

2

48Е3η2

)1
4
,ω = −

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

48Е3η2

√ ,Ω0 = 0,Ω1 = Δ1
Е ,Δ1 = Δ1. 

Set 3: k = ±I
(

αβΔ1
2+2αsΔ1

2

48Е3η2

)1
4
,ω =

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

48Е3η2

√ ,Ω0 = 0,Ω1 = Δ1
Е ,Δ1 = Δ1. 

Set 4: k = ±
(

αβΔ1
2+2αsΔ1

2

− 96Е3η2

)1
4
,ω = −

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

− 96Е3η2

√ ,Ω0 = 0,Ω1 = Δ1
Е ,Δ1 = Δ1. 

Set 5: k = ±I
(

αβΔ1
2+2αsΔ1

2

− 96Е3η2

)1
4
,ω =

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

− 96Е3η2

√ ,Ω0 = 0,Ω1 = Δ1
Е ,Δ1 = Δ1. 

Hyperbolic solution because of Е < 0. 
Family 1: 

V1,2 = ∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅̅̅̅̅
− Е

√
tanh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)
.

U1,2 =
α

2ω

(

∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅̅̅̅̅
− Е

√
tanh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)
)2

.

V3,4 = ∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅̅̅̅̅
− Е

√
coth

( ̅̅̅̅̅̅̅
− Е

√
ζ
)
.

U3,4 =
α

2ω

(

∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅̅̅̅̅
− Е

√
coth

( ̅̅̅̅̅̅̅
− Е

√
ζ
)
)2

.

Where k = k,ω = 2Еηk2 and ξ = k
(
x − ω tδ

δ

)
. 

Family 2 

V5,6 = −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U5,6 =
α

2ω

⎛

⎝ −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

V7,8 =
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U7,8 =
α

2ω

⎛

⎝
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±
(

αβΔ1
2+2αsΔ1

2

48Е3η2

)1
4
,ω = −

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

48Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 
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Family 3: 

V9,10 = −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U9,10 =
α

2ω

⎛

⎝ −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

V11,12 =
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U11,12 =
α

2ω

⎛

⎝
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±I
(

αβΔ1
2+2αsΔ1

2

48Е3η2

)1
4
,ω =

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

48Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 

Family 4: 

V13,14 = −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U13,14 =
α

2ω

⎛

⎝ −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

V15,16 =
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U15,16 =
α

2ω

⎛

⎝
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±
(

αβΔ1
2+2αsΔ1

2

− 96Е3η2

)1
4
,ω = −

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

− 96Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 

Family 5: 

V17,18 = −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U17,18 =
α

2ω

⎛

⎝ −
Δ1 sech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
sinh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

V19,20 =
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
) .

U19,20 =
α

2ω

⎛

⎝
Δ1cosech

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

̅̅̅̅̅̅̅
− Е

√
cosh

( ̅̅̅̅̅̅̅
− Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±I
(

αβΔ1
2+2αsΔ1

2

− 96Е3η2

)1
4
,ω =

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

− 96Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 
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Trigonometric solution because of E > 0 
Family 6: 

V21,22 = ∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅
Е

√
tan
( ̅̅̅
Е

√
ζ
)
.

U21,22 =
α

2ω

(

∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅
Е

√
tan
( ̅̅̅
Е

√
ζ
)
)2

.

V23,24 = ± 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅
Е

√
cot
( ̅̅̅
Е

√
ζ
)
.

U23,24 =
α

2ω

(

± 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6Е

αβ + 2αs

√

k2η
̅̅̅
Е

√
cot
( ̅̅̅
Е

√
ζ
)
)2

.

Where, k = k,ω = 2Еηk2 and ξ = k
(
x − ω tδ

δ

)
. 

Family 7: 

V25,26 =
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
) .

U25,26 =
α

2ω

⎛

⎝
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

V27,28 = −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
) .

U27,28 =
α

2ω

⎛

⎝ −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±
(

αβΔ1
2+2αsΔ1

2

48Е3η2

)1
4
,ω = −

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

48Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 

Family 8: 

V29,30 =
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
) .

U29,30 =
α

2ω

⎛

⎝
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

V31,32 = −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
) .

U31,32 =
α

2ω

⎛

⎝ −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±I
(

αβΔ1
2+2αsΔ1

2

48Е3η2

)1
4
,ω =

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

48Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 

M.H. Bashar et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e15662

7

Family 9: 

V33,34 =
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
) .

U33,34 =
α

2ω

⎛

⎝
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

V35,36 = −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
) .

U35,36 =
α

2ω

⎛

⎝ −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±
(

αβΔ1
2+2αsΔ1

2

− 96Е3η2

)1
4
,ω = −

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

− 96Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 

Family 10: 

V37,38 =
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
) .

U37,38 =
α

2ω

⎛

⎝
Δ1 sec

( ̅̅̅
Е

√
ζ
)

sin
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

Fig. 1. Profile of bell shape of the solution U1(x, t) for the standard of parameters E = − 1, η = α = s = Z = 1, β = 2, k = 0.55,Ω0 = Δ1 = 0 at the 
fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D plots while (e), (f), (g), (h) display 
density plots. 
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V39,40 = −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
) .

U39,40 =
α

2ω

⎛

⎝ −
Δ1cosec

( ̅̅̅
Е

√
ζ
)

cos
( ̅̅̅
Е

√
ζ
)

⎞

⎠

2

.

Where, k = ±I
(

αβΔ1
2+2αsΔ1

2

− 96Е3η2

)1
4
,ω =

αΔ1
2(β+2s)

12Е2η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβΔ12+2αsΔ12

− 96Е3η2

√ and ξ = k
(
x − ω tδ

δ

)
. 

Rational solution is rejected for their predefined condition. 
N.B. all solution has been satisfied in the proposed equation with the favor of computational programing software maple and 

Mathematica. 

5. Results and discussion 

In this section, using the modified extended tanh approach, We will investigate whether the DSW equation’s explicit and analytic 
traveling wave solutions are physically feasible. For the particular parameter’s values in the solution that was obtained, the impact of 
time fractional derivative is recorded for the standards of the fractional parameters δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 with 3D 
graphical and corresponding density plots. Form the obtained solution, we get bell shape solution, periodic soliton solution, periodic 
lump wave solution, multi-wave solution, kinky periodic wave, linked-lump wave, interaction of kink and lump wave etc. 

For the value of parameters E = − 1, η = α = s = Z = 1, β = 2, k = 0.55,Ω0 = Δ1 = 0, Fig. 1 illustrates the bell shape of the 
solution U1(x, t) at the values of the fractional parameters δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. In Fig. 2, the periodic 
wave solution illustrates from the solution U21(x, t) for the value of parameters E = 0.1, η = − s = Z = k = 1, β = 0.5, α = 2,Ω0 = Δ1 =

0 where the standards of the fractional parameters δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. In Fig. 3, the profile of the 
periodic rouge wave obtains from the solution U29(x, t) for the standard of the parameters α = z = β = η = 1,Ω0 = 0,Δ1 = − 3, E =, s =
− 1 at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. The solution U7(x, t) illustrated the multi 
type wave of the solution for the standard of the parameters E = α = z = 1, β = η = − 1,Ω0 = 0,Δ1 = − 0.1, s = − 6 at the fractional 
parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively, that shows in Fig. 4. For the value of the parameters E = − 3,
α = z = β = η = s = 1,Ω0 = 0,Δ1 = − 3, Fig. 5 represents the profile of the kinky periodic wave of the solution U19(x, t) at the 

Fig. 2. Profile periodic wave of the solution U21(x, t) for the standard of parameters E = 0.1, η = − s = Z = k = 1, β = 0.5, α = 2,Ω0 = Δ1 = 0 at the 
fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D plots while (e), (f), (g), (h) display 
density plots. 
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Fig. 3. Profile of the periodic rouge wave of the solution eq. U29(x, t) for the standard of the parameters α = z = β = η = 1,Ω0 = 0,Δ1 = − 3, E =

s = − 1 at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D plots while (e), (f), (g), (h) 
display density plots. 

Fig. 4. Profile of the multi-wave of the solution eq. U7(x, t) for the standard of the parameters E = α = z = 1, β = η = − 1,Ω0 = 0,Δ1 = − 0.1, s = − 6 
at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D plots while (e), (f), (g), (h) display 
density plots. 
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Fig. 5. Profile of the kinky periodic wave of the solution eq. U19(x, t) for the standard of the parameters E = − 3, α = z = β = η = s = 1,Ω0 = 0,Δ1 =

− 3 at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D plots while (e), (f), (g), (h) 
display density plots. 

Fig. 6. Profile of the linked-lump wave of the solution eq. U39(x, t) for the standard of the parameters E = 0.3, α = − 2, z = 1, β = 1, η = − 1,Ω0 =

0,Δ1 = 1, s = − 1 at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D plots while (e), 
(f), (g), (h) display density plots. 
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fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. In Fig. 6, the profile of the linked-lump wave of the 
real portion of solution U39(x, t) for the standard of the parameters E = 0.3,α = − 2, z = 1, β = 1, η = − 1,Ω0 = 0,Δ1 = 1, s = − 1 at the 
fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. In Fig. 7, the profile of the interaction of kink and 
lump wave of the imaginary portion of solution U39(x, t) for the standard of the parameters E = 0.3,α = − 2, z = 1, β = 1, η = − 1,Ω0 =

0,Δ1 = 1, s = − 1 at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. 

6. Resemblances and comparisons of this manuscript 

In this portion, we will evaluate the obtained solutions to those of Arnous et al. [60] that was using the Riccati equation’s backlund 
transformation and the trial function approaches and also to find resemblances of our obtained solution with Bashar et al. [61] that was 
using the manner of new auxiliary equation. 

6.1. For Backlund transformation of Riccati equation method 

With the assist of the backlund transformation of the Riccati equation, Arnous et al. [60] investigated the soliton solutions to Eq. (1) 
and discovered four pairs of solutions (Kindly see in Ref. [60]). On the other hand, in this article, using the manner of modified 
extended tanh, we have discovered forty precise solutions to Eq. (1). For both approaches, the Riccati equation is not the same. 

6.2. For trail function method 

With the assist of the trail function method, Arnous et al. [60] investigated the soliton solutions to Eq. (1) and discovered eight sets 
of arrangements (Kindly see Ref. [60]). On the other hand, in this article, using the technique of modified extended tanh, we have 
discovered forty-four precise solutions to Eq. (1). For both approaches, the Riccati equation is not the same. 

It is clear that the approach is strong, practical, and easy to use and that it can be used with all NLEEs. Many solutions, including 
hyperbolic function solutions, trigonometric function solutions, and rational function solutions, have been found for this work. The 
results are expressed as wave profiles with kink shapes, bell shapes, bright shapes, dark shapes, and unique stage shapes. We have 
talked about some of these wave profiles’ consequences, which make quite evident. There are numerous potential applications for 
these wave characteristics. 

6.3. For new auxiliary equation method 

We discovered several solutions to the provided equation by the assist of the modified extended tanh method. Bashar et al. [61] 
used new auxiliary equation scheme and acquired forty four solutions (Kindly see Ref. [61]) to the DSW equation. 

Bashar et al. [61] solutions 
Placing p ̅̅̅̅̅̅̅̅

− rp√
=

̅̅̅̅̅̅̅
− Е

√
, V27,28 = V1,2, V29,30 = V3,4, U27,28 = U1,2, and U29,30 = U3,4 in solution set 8 then it’s turns to similar of our 

solution (see in family 1). 

V1,2 = ∓2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 6Е

αβ+2αs

√
k2η

̅̅̅̅̅̅̅
− Е

√
tanh(

̅̅̅̅̅̅̅
− Е

√
ζ). 

(
̅√ ̅√

(
̅√
)
)

. 
(
̅√ ̅√

(
̅√
)
)

V3,4 = ∓2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 6Е

αβ+2αs

√
k2η

̅̅̅̅̅̅̅
− Е

√
coth(

̅̅̅̅̅̅̅
− Е

√
ζ). 

U3,4 = α
2ω

(
∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 6Е

αβ+2αs

√
k2η

̅̅̅̅̅̅̅
− Е

√
coth (

̅̅̅̅̅̅̅
− Е

√
ζ)
)2

. 

Placing p =
̅̅̅
Е

√
, V43,44 = V21,22, and U43,44 = U21,22 in solution set 19 then its turns to similar of our solution (see in family 6). 

V21,22 = ∓2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 6Е

αβ+2αs

√
k2η

̅̅̅
Е

√
tan (

̅̅̅
Е

√
ζ). 

U21,22 = α
2ω

(
∓ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 6Е

αβ+2αs

√
k2η

̅̅̅
Е

√
tan (

̅̅̅
Е

√
ζ)
)2

. 

It should have noted that, we got some of our solution of this is as same as previous published paper. Bashar et al. [61] used new 
auxiliary equation are seen in Appendix. 

7. Conclusions 

In this work, the bell shape solution, periodic wave solution, periodic lump wave solution, multi-wave solution, kinky periodic 
wave, linked-lump wave, interaction of kink and lump wave solution have been presented in this work to observe fluid dynamics 
problems by applying the modified extended tanh techniques. Additionally, these methods can be computerized by utilizing a personal 
computer and well-known applications like Maple, Matlab, and Mathematica, among others. This gives us permission to perform 
tedious and baffling arithmetic counting. The traveling wave transformation formulae were used to find the required solutions, and 
visual representations were used to interpret these solutions. Last but not least, we have emphasized that the proposed approach 
outperforms all other expansion techniques for nonlinear evolution equations and related mathematical physics models in terms of 
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ease of use, efficiency, power, and output. In future, we will investigate the non-autonomous soliton solutions that would be 
engendered by diverse NLEEs when their coefficients are variables. 
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Appendix 

The solutions of Bashar et al. [61] are listed below 
Solutions set 8: when pr < 0, q = 0 and r ∕= 0, . 

V27,28 = ∓

(

−

̅̅̅̅̅̅̅
− p
r

√

tanh
(
p
̅̅̅̅̅̅̅̅
− rp

√
ξ
)
) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
24p2

αβ + 2αs

√

rk2η  

U27,28 =
α

2ω

⎛

⎝∓

(

−

̅̅̅̅̅̅̅
− p
r

√

tanh
(
p
̅̅̅̅̅̅̅̅
− rp

√
ξ
)
) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
24p2

αβ + 2αs

√

rk2η

⎞

⎠

2 

Fig. 7. Profile of the interaction of kink and lump wave of the solution eq. U39(x, t) for the standard of the parameters E = 0.3, α = − 2, z = 1, β =

1, η = − 1,Ω0 = 0,Δ1 = 1, s = − 1 at the fractional parameter values δ = 0.3, δ = 0.5, δ = 0.75 and δ = 0.98 respectively. (a), (b), (c), (d) display 3D 
plots while (e), (f), (g), (h) display density plots. 

M.H. Bashar et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e15662

13

Or 

V29,30 = ∓

(

−

̅̅̅̅̅̅̅
− p
r

√

coth
(
p
̅̅̅̅̅̅̅̅
− rp

√
ξ
)
) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
24p2

αβ + 2αs

√

rk2η  

U29,30 =
α

2ω

⎛

⎝∓

(

−

̅̅̅̅̅̅̅
− p
r

√

coth
(
p
̅̅̅̅̅̅̅̅
− rp

√
ξ
)
) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
24p2

αβ + 2αs

√

rk2η

⎞

⎠

2 

Solutions set 19:when r = p and q = 0, . 

V43,44 = ± 2 tan(pξ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6p2

αβ + 2αs

√

pk2η  

U43,44 =
α

2ω

⎛

⎝± 2 tan(pξ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
6p2

αβ + 2αs

√

pk2η

⎞

⎠

2  
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